ebook img

Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces PDF

0.22 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces

Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces D. Q. Khai, N. M. Tri Institute of Mathematics, VAST 18 Hoang Quoc Viet, 10307 Cau Giay, Hanoi, Vietnam 6 1 0 2 Abstract: In this paper, we study local well-posedness for the Navier-Stokes n equations (NSE) with the arbitrary initial value in homogeneous Sobolev- a J Lorentz spaces H˙ s (Rd) := ( ∆)−s/2Lq,r for d 2,q > 1,s 0, 1 Lq,r − ≥ ≥ ≤ 8 r , and d 1 s < d, this result improves the known results for ≤ ∞ q − ≤ q ] q > d,r = q,s = 0 (see [4, 7]) and for q = r = 2, d 1 < s < d (see [4, 9]). P 2 − 2 In the case of critical indexes (s = d 1), we prove global well-posedness for A q − NSE provided the norm of the initial value is small enough. The result that . h is a generalization of the result in [5] for q = r = d,s = 0. t a m [ 1. Introduction 1 § v 2 We consider the Navier-Stokes equations in Rd: 4 7 ∂ u = ∆u .(u u) p, 1 t −∇ ⊗ −∇ 0  .u = 0, .  ∇ 1 u(0,x) = u , 0 0  6 which is a condensed writing for 1 : v 1 k d, ∂ u = ∆u d ∂ (u u ) ∂ p, i ≤ ≤ t k k − l=1 l l k − k X  d ∂ u = 0, P r  l=1 l l a P1 k d, uk(0,x) = u0k. ≤ ≤  The unknown quantities are the velocity u(t,x) = (u (t,x),...,u (t,x)) of 1 d the fluid element at time t and position x and the pressure p(t,x). In the 1960s, mild solutions were first constructed by Kato and Fujita ([18], [19]) that are continuous in time and take values in the Sobolev spaces 12010 Mathematics Subject Classification: Primary 35Q30; Secondary 76D05, 76N10. 2Keywords: Navier-Stokesequations,existenceanduniqueness oflocalandglobalmild solutions, Sobolev-Lorentz. 3e-mail address: [email protected]@math.ac.vn 1 Hs(Rd),(s d 1), say u C([0,T];Hs(Rd)). In 1992, a modern treat- ≥ 2 − ∈ ment for mild solutions in Hs(Rd),(s d 1) was given by Chemin [9]. In ≥ 2 − 1995, using the simplified version of the bilinear operator, Cannone proved the existence of mild solutions in H˙ s(Rd),(s d 1), see [4]. Results on the ≥ 2 − existence of mild solutions with value in Lq(Rd),(q > d) were established in the papers of Fabes, Jones and Rivi`ere [11] and of Giga [14]. Concerning the initial data in the space L∞, the existence of a mild solution was obtained by Cannone and Meyer in ([4], [7]). In 1994, Kato and Ponce [23] showed that the NSE are well-posed when the initial data belong to the homogeneous Sobolev spaces H˙ dq−1(Rd),(d q < ). Recently, the authors of this article q ≤ ∞ have considered NSE in the mixed-norm Sobolev-Lorentz spaces, see [17]. In this paper, for d 2,q > 1,s 0, 1 r , and d 1 s < d, we ≥ ≥ ≤ ≤ ∞ q − ≤ q investigate mild solutions to NSE in the spaces L∞ [0,T];H˙ s (Rd) when Lq,r the initial data belong to the Sobolev-Lorentz spac(cid:0)es H˙ s (Rd), wh(cid:1)ich are Lq,r more general than the spaces H˙ s(Rd), (H˙ s(Rd) = H˙ s (Rd)). We obtain q q Lq,q the existence of mild solutions with arbitrary initial value when T is small enough, and existence of mild solutions for any T > 0 when the norm of the initial value in the Besov spaces B˙s−d(1q−q1˜),∞(Rd), 1(1 + s) < 1 < q˜ 2 q d q˜ min 1 + s , 1 is small enough. (cid:0) 2 2d q In th(cid:8)e particu(cid:9)la(cid:1)r case (q > d,r = q,s = 0), we get the result which is more general than that of Cannone and Meyer ([4], [7]). Here we obtained a state- ment that is stronger than that of Cannone and Meyer but under a much weaker condition on the initial data. In the particular case (q = r = 2, d 1 < s < d), we get the result which is 2 − 2 more general than those of Chemin in [9] and Cannone in [4]. Here we ob- tained a statement that is stronger than those of Chemin in [9] and Cannone in [4] but under a much weaker condition on the initial data. In the case of critical indexes (1 < q d,r 1,s = d 1), we get a ≤ ≥ q − result that is a generalization of a result of Cannone [5]. In particular, when q = r = d,s = 0, we get back the Cannone theorem (Theorem 1.1 in [5]). The paper is organized as follows. In Section 2 we prove some inequalities for pointwise products in the Sobolev spaces and some auxiliary lemmas. In Section 3 we present the main results of the paper. In the sequence, for a space of functions defined on Rd, say E(Rd), we will abbreviate it as E. 2. Some auxiliary results § In this section, we recall the following results and notations. Definition 1. (Lorentz spaces). (See [1].) 2 For 1 p,r , the Lorentz space Lp,r(Rd) is defined as follows: ≤ ≤ ∞ A measurable function f Lp,r(Rd) if and only if ∈ f (Rd) := ∞(tp1f∗(t))rdt 1r < when 1 r < , Lp,r 0 t ∞ ≤ ∞ (cid:13)(cid:13)f(cid:13)(cid:13) (Rd) :=(cid:0)sRup tp1f∗(t) < (cid:1) when r = , Lp,∞ ∞ ∞ (cid:13) (cid:13) t>0 (cid:13)wh(cid:13)ere f∗(t) = inf τ : d( x : f(x) > τ ) t , with d being the M { | | } ≤ M Lebesgue measure i(cid:8)n Rd. (cid:9) Before proceeding to the definition of Sobolev-Lorentz spaces, let us in- troduce several necessary notations. For real number s, the operator Λ˙s is defined through Fourier translation by Λ˙sf ∧(ξ) = ξ sfˆ(ξ). | | (cid:0) (cid:1) For 0 < s < d, the operator Λ˙s can be viewed as the inverse of the Riesz potential I up to a positive constant s f(y) I (f)(x) = dy for x Rd. s Z x y d−s ∈ Rd | − | For q > 1,r 1, and 0 s < d, the operator I is continuous from Lq,r to ≥ ≤ q s Lq˜,r, where 1 = 1 s, see ([26], Theorem 2.4 iii), p. 20). q˜ q − d Definition 2. (Sobolev-Lorentz spaces). (See [12].) For q > 1,r 1, and 0 s < d, the Sobolev-Lorentz space H˙ s (Rd) is ≥ ≤ q Lq,r defined as the space I (Lq,r(Rd)), equipped with the norm s f := Λ˙sf . (cid:13) (cid:13)H˙Lsq,r (cid:13) (cid:13)Lq,r (cid:13) (cid:13) (cid:13) (cid:13) Lemma 1. Let q > 1,1 r r˜ , and 0 s < d. Then we have the ≤ ≤ ≤ ∞ ≤ q following imbedding maps (a) H˙ s ֒ H˙ s ֒ H˙ s ֒ H˙ s . Lq,1 → Lq,r → Lq,r˜ → Lq,∞ (b) H˙ s = H˙ s (equality of the norm). q Lq,q Proof. It is easily deduced from the properties of the standard Lorentz spaces. In the following lemmas, we estimate the pointwise product of two functions in H˙ s(Rd),(d 2) which is a generalization of the Holder inequality. In q ≥ the case when s = 0 we get back the usual Holder inequality. Pointwise multiplication results for Sobolev spaces are also obtained in literature, see for example [10], [26], [22] and the references therein. 3 Lemma 2. Assume that 1 1 1 1 < p,q < d, and + < 1+ . p q d Then the following inequality holds uv . u v , u H˙ 1,v H˙ 1, (cid:13) (cid:13)H˙r1 (cid:13) (cid:13)H˙p1(cid:13) (cid:13)H˙q1 ∀ ∈ p ∈ q (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where 1 = 1 + 1 1. r p q − d Proof. By applying the Leibniz formula for the derivatives of a product of two functions, we have uv ∂α(uv) (∂αu)v + u(∂αv) . (cid:13) (cid:13)H˙r1 ≃ X (cid:13) (cid:13)Lr ≤ X (cid:13) (cid:13)Lr X (cid:13) (cid:13)Lr |α|=1 |α|=1 |α|=1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) By applying the H¨older and Sobolev inequalities we obtain (∂αu)v ∂αu v . u v , X (cid:13) (cid:13)Lr ≤ X (cid:13) (cid:13)Lp(cid:13) (cid:13)Lq1 (cid:13) (cid:13)H˙p1(cid:13) (cid:13)H˙q1 |α|=1 |α|=1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where 1 1 1 = . q q − d 1 Similar to the above reasoning, we have u(∂αv) . u v . Lr H˙1 H˙1 X (cid:13) (cid:13) (cid:13) (cid:13) p(cid:13) (cid:13) q |α|=1 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) This gives the desired result uv . u v . H˙1 H˙1 H˙1 (cid:13) (cid:13) r (cid:13) (cid:13) p(cid:13) (cid:13) q (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Lemma 3. Assume that 1 s 1 s 1 1 s 0 s 1, > , > , and + < 1+ . (1) ≤ ≤ p d q d p q d Then the following inequality holds uv . u v , u H˙ s,v H˙ s, (cid:13) (cid:13)H˙rs (cid:13) (cid:13)H˙ps(cid:13) (cid:13)H˙qs ∀ ∈ p ∈ q (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where 1 = 1 + 1 s. r p q − d 4 Proof. It is not difficult to show that if p,q,and s satisfy (1) then there exists numbers p ,p ,q ,q (1,+ ) (may be many of them) such that 1 2 1 2 ∈ ∞ 1 1 s s 1 1 s s 1 1 = − + , = − + , + < 1, p p p q q q p q 1 2 1 2 1 1 1 1 1 p < d,q < d, and + < 1+ . 2 2 p q d 2 2 Setting 1 1 1 1 1 1 1 = + , = + , r p q r p q − d 1 1 1 2 2 2 we have 1 1 s s = − + . r r r 1 2 Therefore, applying Theorem 6.4.5 (page 152) of [1] (see also [25] for H˙ s), p we get H˙ s = [Lp1,H˙ 1 ] ,H˙ s = [Lq1,H˙ 1 ] ,H˙ s = [Lr1,H˙ 1 ] . p p2 s q q2 s r r2 s Applying the Holder inequality and Lemma 2 in order to obtain uv . u v , u Lp1,v Lq1, Lr1 Lp1 Lq1 ∀ ∈ ∈ (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13)uv (cid:13) . (cid:13)u(cid:13) (cid:13)v(cid:13) , u H˙ 1 ,v H˙ 1 . (cid:13) (cid:13)H˙r12 (cid:13) (cid:13)H˙p12(cid:13) (cid:13)H˙q12 ∀ ∈ p2 ∈ q2 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) From Theorem 4.4.1 (page 96) of [1] we get uv . u v . H˙s H˙s H˙s (cid:13) (cid:13) r (cid:13) (cid:13) p(cid:13) (cid:13) q (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Lemma 4. Assume that s 1 1 1 1 s q > 1,p > 1,0 < min , , and + < 1+ . (2) ≤ d np qo p q d Then we have the inequality uv . u v , u H˙ s,v H˙ s, (cid:13) (cid:13)H˙rs (cid:13) (cid:13)H˙ps(cid:13) (cid:13)H˙qs ∀ ∈ p ∈ q (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where 1 = 1 + 1 s. r p q − d 5 Proof. Denote by [s] the integer part of s and by s the fraction part { } of the argument s. Using the formula for the derivatives of a product of two functions, we have uv = Λ˙s(uv) = Λ˙{s}(uv) (cid:13) (cid:13)H˙rs (cid:13) (cid:13)Lr (cid:13) (cid:13)H˙r[s] ≃ (cid:13) (cid:13)∂αΛ˙{s(cid:13)}(uv) (cid:13)= (cid:13) Λ˙{s}∂α(cid:13)(uv) Lr Lr X (cid:13) (cid:13) X (cid:13) (cid:13) |α|=[s] |α|=[s] (cid:13) (cid:13) (cid:13) (cid:13) = ∂α(uv) . ∂γu∂βv . X (cid:13) (cid:13)H˙r{s} X (cid:13) (cid:13)H˙r{s} |α|=[s] |γ|+|β|=[s] (cid:13) (cid:13) (cid:13) (cid:13) Set 1 1 s γ s 1 1 s β s = −| |−{ }, = −| |−{ }. p˜ p − d q˜ q − d Applying Lemma 3 and the Sobolev inequality in order to obtain ∂γu∂βv . ∂γu ∂βv . u v . u v . (cid:13) (cid:13)H˙r{s} (cid:13) (cid:13)H˙p{˜s}(cid:13) (cid:13)H˙q˜{s} (cid:13) (cid:13)H˙p|˜γ|+{s}(cid:13) (cid:13)H˙q˜|β|+{s} (cid:13) (cid:13)H˙ps(cid:13) (cid:13)H˙qs (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) This gives the desired result uv . u v . H˙s H˙s H˙s (cid:13) (cid:13) r (cid:13) (cid:13) p(cid:13) (cid:13) q (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Lemma 5. Let 1 p,q and s R. ≤ ≤ ∞ ∈ (a) If s < 1 then the two quantities ∞ dt 1/p (cid:16)Z t−2s et∆t12Λ˙f q p t (cid:17) and f B˙qs,p are equivalent. 0 (cid:0) (cid:13) (cid:13) (cid:1) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (b) If s < 0 then the two quantities ∞ dt 1/p (cid:16)Z t−2s et∆f q p t (cid:17) and f B˙qs,p are equivalent, 0 (cid:0) (cid:13) (cid:13) (cid:1) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) where B˙s,p is the homogeneous Besov space. q Proof. See ([13], Proposition 1, p. 181 and Proposition 3, p. 182), or see ([26], Theorem 5.4, p. 45). The following lemma is a generalization of the above lemma. Lemma 6. Let 1 p,q , α 0, and s < α. Then the two quantities ≤ ≤ ∞ ≥ ∞ dt 1 (cid:16)Z (t−2s et∆tα2Λ˙αf Lq)p t (cid:17)p and f B˙qs,p are equivalent, 0 (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) 6 Proof. Note that Λ˙s0 is an isomorphism from B˙s,p to B˙s−s0,p, see [3], q q then we can easily prove the lemma. Lemma 7. Assume that q > 1,1 r , and 0 s < d. The fol- ≤ ≤ ∞ ≤ q lowing statement is true: If u H˙ s then et∆u L∞([0, );H˙ s ) and 0 ∈ Lq,r 0 ∈ ∞ Lq,r et∆u u . (cid:13) 0(cid:13)L∞([0,∞);H˙Lsq,r) ≤ (cid:13) 0(cid:13)H˙Lsq,r (cid:13) (cid:13) (cid:13) (cid:13) Proof. We have (cid:13)et∆u0(cid:13)H˙Lsq,r = (cid:13)et∆Λ˙su0(cid:13)Lq,r = (4π1t)d/2(cid:13)ZRd e−|4ξt|2Λ˙su0( .−ξ)dξ(cid:13)Lq,r (cid:13) (cid:13) (cid:13) (cid:13) ≤(cid:13) (4π1t)d/2(cid:13)Z e−4|ξt|2 Λ˙su0(cid:13)( .−ξ) Lq,rdξ (cid:13) Rd (cid:13) (cid:13) 1 −|ξ|2 (cid:13) (cid:13) = (4πt)d/2 ZRd e 4t (cid:13)u0(cid:13)H˙Lsq,rdξ = (cid:13)u0(cid:13)H˙Lsq,r. (cid:13) (cid:13) (cid:13) (cid:13) Let us recall following result on solutions of a quadratic equation in Banach spaces (Theorem 22.4 in [26], p. 227). Theorem 1. Let E be a Banach space, and B : E E E be a continuous × → bilinear map such that there exists η > 0 so that B(x,y) η x y , k k ≤ k kk k for all x and y in E. Then for any fixed y E such that y 1 , the ∈ k k ≤ 4η equation x = y B(x,x) has a unique solution x E satisfying x 1 . − ∈ k k ≤ 2η 3. Main results § Now, for T > 0, we say that u is a mild solution of NSE on [0,T] cor- responding to a divergence-free initial datum u when u solves the integral 0 equation t u = et∆u e(t−τ)∆P . u(τ,.) u(τ,.) dτ. 0 −Z ∇ ⊗ 0 (cid:0) (cid:1) Above we have used the following notation: For a tensor F = (F ) we define ij thevector .F by( .F) = d ∂ F andfortwovectorsuandv,wedefine ∇ ∇ i j=1 j ij their tensor product (u v) P= u v . The operator P is the Helmholtz-Leray ij i j ⊗ projection onto the divergence-free fields (Pf) = f + R R f , (3) j j j k k X 1≤k≤d 7 where R is the Riesz transforms defined as j ∂ iξ j j R = , i. e. R g(ξ) = gˆ(ξ) j j √ ∆ ξ − d | | withˆdenoting the Fourier transform. The heat kernel et∆ is defined as et∆u(x) = ((4πt)−d/2e−|.|2/4t u)(x). ∗ If X is a normed space and u = (u ,u ,...,u ),u X,1 i d, then we 1 2 d i ∈ ≤ ≤ write d 1/2 u X, u = u 2 . ∈ k kX (cid:16)Xk ikX(cid:17) i=1 We define the auxiliary space s,q˜ which is made up by the functions u(t,x) Kq,r,T such that α u Ks,q˜ := sup t2 u(t,.) H˙s < ∞, (cid:13) (cid:13) q,r,T 0<t<T (cid:13) (cid:13) Lq˜,r (cid:13) (cid:13) (cid:13) (cid:13) and α lt→im0t2(cid:13)u(t,.)(cid:13)H˙Lsq˜,r = 0, (4) (cid:13) (cid:13) where r,q,q˜,s being fixed constants satisfying s 1 1 s+1 q,q˜ (1,+ ),r 1,s 0, < , ∈ ∞ ≥ ≥ d q˜ ≤ q ≤ d and 1 1 α = α(q,q˜) = d . (cid:16)q − q˜(cid:17) In thecase q˜= q, it is also convenient to define the space s,q˜ as thenatural Kq,r,T space L∞([0,T];H˙ s (Rd)) with the additional condition that its elements Lq,r u(t,x) satisfy lim u(t,.) = 0. (5) t→0(cid:13) (cid:13)H˙Lsq,r (cid:13) (cid:13) Remark 1. The auxiliary space := 0,q˜ (q˜ d) was introduced by Kq˜ Kd,q˜,T ≥ Weissler and systematically used by Kato [20] and Cannone [5]. Lemma 8. Let 1 r r˜ . Then we have the following imbedding maps ≤ ≤ ≤ ∞ s,q˜ ֒ s,q˜ ֒ s,q˜ ֒ s,q˜ . Kq,1,T → Kq,r,T → Kq,r˜,T → Kq,∞,T Proof. It is easily deduced from Lemma 1 (a) and the definition of s,q˜ . Kq,r,T 8 Lemma 9. If u H˙ s (Rd) with q > 1,r 1,s 0, and s < 1 s+1 0 ∈ Lq,r ≥ ≥ d q ≤ d then for all q˜ satisfying s 1 1 < < , d q˜ q we have et∆u s,q˜ , 0 ∈ Kq,1,∞ and the following imbedding map H˙ s (Rd) ֒ B˙s−(dq−qd˜),∞(Rd). (6) Lq,r → q˜ Proof. Beforeproving thislemma, we need toprove thefollowing lemma. Lemma 10. Suppose that u Lq,r(Rd) with 1 q and 1 r < . 0 ∈ ≤ ≤ ∞ ≤ ∞ Then lim u = 0, where n N, (x) = 0 for x x : x < n→∞ Xn 0 Lq,r ∈ Xn ∈ { | | (cid:13) (cid:13) n x : u(cid:13) (x) (cid:13)< n and (x) = 1 otherwise. 0 n }∩{ } X (cid:12) (cid:12) (cid:12) (cid:12) Proof. With δ > 0 being fixed, we have x : u (x) > δ x : u (x) > δ , (7) n 0 n+1 0 |X | ⊇ |X | (cid:8) (cid:9) (cid:8) (cid:9) and ∞ x : u (x) > δ = x : u (x) = + . (8) n 0 0 n∩=0{ |X | } { | | ∞} We prove that d( x : u (x) = + ) = 0, (9) 0 M { | | ∞} with d being the Lebesgue measure in Rd, assuming on the contrary M d( x : u (x) = + ) > 0. 0 M { | | ∞} We have u∗(t) := inf τ : d x : u (x) > τ t = + for all t 0 M { | 0 | } ≤ ∞ such that 0 < t < (cid:8)d( x : u(cid:0)(x) = + ) and(cid:1)then (cid:9)u = + , a M { | 0 | ∞} 0 Lq,r ∞ contradiction. (cid:13) (cid:13) (cid:13) (cid:13) Note that d x : u (x) > δ = d x : u (x) > δ . 0 0 0 M { |X | } M { | | } (cid:0) (cid:1) (cid:0) (cid:1) We prove that d x : u (x) > δ < , (10) 0 M { | | } ∞ (cid:0) (cid:1) assuming on the contrary d x : u (x) > δ = . 0 M { | | } ∞ (cid:0) (cid:1) 9 We have u∗(t) δ for all t > 0, from the definition of the Lorentz space, we 0 ≥ get ∞ dt 1 ∞ dt 1 ∞ 1 u = (t1qu∗(t))r r (t1qδ)r r = δ tqr−1dt r = , 0 Lq,r (cid:16)Z 0 t (cid:17) ≥ (cid:16)Z t (cid:17) (cid:16)Z (cid:17) ∞ (cid:13) (cid:13) 0 0 0 (cid:13) (cid:13) a contradiction. From (7), (8), (9), and (10), we infer that lim d x : u (x) > δ = d( x : u (x) = + ) = 0. (11) n 0 0 n→∞M { |X | } M { | | ∞} (cid:0) (cid:1) Set u∗(t) = inf τ : d x : u (x) > τ t . n M { |Xn 0 | } ≤ (cid:8) (cid:0) (cid:1) (cid:9) We have u∗(t) u∗ (t). (12) n ≥ n+1 Fixed t > 0. For any ǫ > 0, from (11) it follows that there exists a number n = n (t,ǫ) large enough such that 0 0 d x : u (x) > ǫ t, n n . n 0 0 M { |X | } ≤ ∀ ≥ (cid:0) (cid:1) From this we deduce that u∗(t) ǫ, n n , n ≤ ∀ ≥ 0 therefore lim u∗(t) = 0. (13) n n→∞ From (12) and (13), we apply Lebesgue’s monotone convergence theorem to get ∞ dt 1 nl→im∞ Xnu0 Lq,r = nl→im∞(cid:16)Z (tq1u∗n(t))r t (cid:17)r = 0. (cid:13) (cid:13) 0 (cid:13) (cid:13) Now we return to prove Lemma 9. We prove that 0<sut<p∞tα2(cid:13)et∆u0(cid:13)H˙Lsq˜,1 . (cid:13)u0(cid:13)H˙Lsq,r. (14) (cid:13) (cid:13) (cid:13) (cid:13) Set 1 1 1 = 1+ . h q˜− q Applying Proposition 2.4 (c) in ([26], pp. 20) for convolution in the Lorentz spaces, we have (cid:13)et∆u0(cid:13)H˙Lsq˜,1 = (cid:13)et∆Λ˙su0(cid:13)Lq˜,1 = (4π1t)d/2(cid:13)e−|.4|t2 ∗Λ˙su0(cid:13)Lq˜,1 . (cid:13) (cid:13) (cid:13) (cid:13) td1/2(cid:13)(cid:13)e−|4.|t2(cid:13)L(cid:13)h,1(cid:13)Λ˙su0(cid:13)(cid:13)Lq,∞ = t(cid:13)−α2(cid:13)e−|.4|2(cid:13)Lh,1(cid:13)u(cid:13)0(cid:13)H˙Lsq,∞ . t−(cid:13)α2(cid:13)u0(cid:13)H˙Lsq,r. (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.