ebook img

Weighted omega-Restricted One Counter Automata PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weighted omega-Restricted One Counter Automata

Weighted ω-Restricted One Counter Automata⋆ ManfredDroste1andWernerKuich2 1 Universita¨tLeipzig,Institutfu¨rInformatik, [email protected] 7 2 TechnischeUniversita¨tWien,Institutfu¨rDiskreteMathematikundGeometrie 1 [email protected] 0 2 n Abstract. LetSbeacompletestar-omegasemiringandΣbeanalphabet.Fora a weightedω-restrictedonecounterautomatonC withstateset{1,...,n},n≥ 1, J we show that there exists a mixed algebraic system over a complete semiring- 1 semimodule pair ((S ≪Σ∗ ≫)n×n,(S ≪Σω ≫)n) such that the behavior 3 kCk of C is a component of a solution of this system. In case the basic semir- ing is B or N∞ we show that there exists a mixed context-free grammar that ] L generates kCk. The construction of the mixed context-free grammar from C is F a generalization of the well known tripleconstruction in case of restricted one . counter automataandiscallednowtriple-pairconstructionforω-restrictedone s counterautomata. c [ 2 1 Introduction v 3 RestrictedonecounterpushdownautomataandlanguageswereintroducedbyGreibach 0 [12] and considered in Berstel [1], Chapter VII 4. These restricted one counter push- 7 8 down automata are pushdown automata having just one pushdown symbol accepting 0 byemptytape,andthefamilyofrestrictedonecounterlanguagesisthefamilyoflan- 1. guagesacceptedbythem. 0 LetLbetheLukasiewiczlanguage,i.e.,theformallanguageoverthealphabetΣ = 7 {a,b} generated by the context-free grammar with productions S → aSS,S → b. 1 Thenthefamilyofrestrictedonecounterlanguagesistheprincipalconegeneratedby : v L. i Alltheseresultscanbetransferredtoformalpowerseriesandrestrictedonecounter X automataoverthem(seeKuich,Salomaa[15],Example11.5).Restricted onecounter r a automatacanalsobeusedtoacceptinfinitewordsanditisthisaspectwegeneralizein ourpaper. Weconsiderweightedω-restrictedonecounterautomataandtheirrelationtoalge- braic systemsoverthe completesemiring-semimodulepair (Sn×n,Sn), where S is a completestar-omegasemiring.Itturnsoutthatthe wellknowntriple constructionfor pushdownautomataincaseofunweightedrestrictedonecounterautomatacanbegen- eralizedtoatriple-pairconstructionforweightedω-restrictedonecounterautomata. The paper consists of this and three more sections. In Section 2, we refer the necessary preliminaries. In Section 3, restricted one counter matrices are introduced ⋆Thisworkwaspartiallysupported byDFGGraduiertenkolleg 1763 (QuantLA).Thesecond authorwaspartiallysupportedbyAustrianScienceFund(FWF):grantno.I1661 N25. and their properties are studied. The main result is that, for such a matrix M, the p-entry of the infinite column vector Mω,k is a solution of the linear equation z = (M (M∗) +M +M )z.InSection4,weightedω-restrictedonecounterau- p,p2 p,ε p,p p,p2 tomata are introducedas a special case of weighted ω-pushdownautomata.We show thatforaweightedω-restrictedonecounterautomatonCthereexistsamixedalgebraic systemsuchthatthebehaviorkCkofC isacomponentofasolutionofthissystem.In Section5weconsiderthecasethatthecompletestar-omegasemiringSisequaltoBor N∞.Thenforagivenweightedω-restrictedonecounterautomatonC amixedcontext- free grammar is constructed that generates kCk. This construction is a generalization ofthewellknowntripleconstructionincaseofrestrictedonecounterautomataandis calledtriple-pairconstructionforω-restrictedonecounterautomata. 2 Preliminaries Fortheconvenienceofthereader,wequotedefinitionsandresultsofE´sik,Kuich[6,7,9] from E´sik, Kuich [10]. The reader should be familiar with Sections 5.1-5.6 of E´sik, Kuich[10]. A semiring S is called complete if it is possible to define sums for all families (a | i ∈ I)ofelementsofS,whereI isanarbitraryindexset,suchthatthefollowing i conditionsaresatisfied(seeConway[4],Eilenberg[5],Kuich[14]): (i) a =0, a =a , a =a +a forj 6=k, X i X i j X i j k i∈∅ i∈{j} i∈{j,k} (ii) X(cid:0)Xai(cid:1)=Xai, if [Ij =I and Ij ∩Ij′ =∅ for j 6=j′, j∈J i∈Ij i∈I j∈J (iii) (c·a )=c· a , (a ·c)= a ·c. X i (cid:0)X i(cid:1) X i (cid:0)X i(cid:1) i∈I i∈I i∈I i∈I ThismeansthatasemiringS is completeifit ispossibletodefine“infinitesums” (i)thatareanextensionofthefinitesums,(ii)thatareassociativeandcommutativeand (iii)thatsatisfythedistributionlaws. AsemiringSequippedwithanadditionalunarystaroperation∗ : S →S iscalled astarsemiring.Incompletesemiringsforeachelementa,thestara∗ ofaisdefinedby a∗ = aj. X j≥0 Hence, each complete semiring is a starsemiring, called a complete starsemiring. A Conwaysemiring(seeConway[4],Bloom,E´sik[2])isastarsemiringS satisfyingthe sumstaridentity (a+b)∗ =a∗(ba∗)∗ andtheproductstaridentity (ab)∗ =1+a(ba)∗b for all a,b ∈ S. Observe that by E´sik, Kuich [2], Theorem 1.2.24, each complete starsemiringisaConwaysemiring. LetS beastarsemiring.BySn×n wedenotethesemiringofn×n-matricesover S. SupposethatSisasemiringandV isacommutativemonoidwrittenadditively.We callV a(left)S-semimoduleifV isequippedwitha(left)action S×V → V (s,v) 7→ sv subjecttothefollowingrules: s(s′v)=(ss′)v 1v =v (s+s′)v =sv+s′v 0v =0 s(v+v′)=sv+sv′ s0=0, foralls,s′ ∈Sandv,v′ ∈V.WhenVisanS-semimodule,wecall(S,V)asemiring- semimodulepair. Suppose that (S,V) is a semiring-semimodule pair such that S is a starsemiring and S and V are equipped with an omega operation ω : S → V. Then we call (S,V) a starsemiring-omegasemimodule pair. Following Bloom, E´sik [2], we call a starsemiring-omegasemimodulepair(S,V)aConwaysemiring-semimodulepairifS isaConwaysemiringandiftheomegaoperationsatisfiesthesumomegaidentityand theproductomegaidentity: (a+b)ω =(a∗b)ω +(a∗b)∗aω (ab)ω =a(ba)ω, foralla,b∈S.Itthenfollowsthattheomegafixed-pointequationholds,i.e. aaω =aω, foralla∈S. E´sik, Kuich [8] define a complete semiring-semimodule pair to be a semiring- semimodulepair(S,V)suchthatSisacompletesemiringandVisacompletemonoid with s v = sv (cid:0)X i(cid:1) X i i∈I i∈I s v = s v, (cid:0)X i(cid:1) X i i∈I i∈I foralls ∈S,v ∈V,andforallfamilies(s ) overS and(v ) overV;moreover, i i∈I i i∈I itisrequiredthataninfiniteproductoperation (s ,s ,...) 7→ s 1 2 Y j j≥1 is given mappinginfinite sequencesoverS to V subject to the followingthree condi- tions: s = (s ·····s ) Y i Y ni−1+1 ni i≥1 i≥1 s · s = s 1 Y i+1 Y i i≥1 i≥1 s = s , Y X ij X Y ij j≥1ij∈Ij (i1,i2,...)∈I1×I2×...j≥1 whereinthefirstequation0=n ≤n ≤n ≤... andI ,I ,... arearbitraryindex 0 1 2 1 2 sets.Supposethat(S,V)iscomplete.Thenwedefine s∗ = si X i≥0 sω = s, Y i≥1 for all s ∈ S. This turns (S,V) into a starsemiring-omegasemimodulepair. By E´sik, Kuich[8],eachcompletesemiring-semimodulepairisaConwaysemiring-semimodule pair.Observethat,if(S,V)isacompletesemiring-semimodulepair,then0ω =0. A star-omega semiring is a semiring S equipped with unary operations∗ and ω : S → S. A star-omegasemiringS is calledcompleteif (S,S)is a completesemiring semimodulepair,i.e.,ifSiscompleteandisequippedwithaninfiniteproductoperation thatsatisfiesthethreeconditionsstatedabove.Forthetheoryofinfinitewordsandfinite automataacceptinginfinitewordsbytheBu¨chiconditionconsultPerrin,Pin[16]. 3 Restricted one counter matrices Inthissectionweintroducerestrictedonecounter(roc)matricesandstudytheirprop- erties.OurfirsttheoremanditscorollarygeneralizeTheorem10.5ofKuich,Salomaa [15]incasethepushdowntransitionmatrixM isarestrictedonecountermatrix.Then we show that, for a roc matrix M, (Mω) and (Mω,k) , 0 ≤ k ≤ n, introducedbe- p p lowsatisfythesamespecificlinearequation.InTheorem1andCorollary1,S denotes a complete starsemiring; afterwards in this section, S denotes a complete star-omega semiring. Arestrictedonecounter(abbreviatedroc)matrix(withcountersymbolp)isamatrix M in (Sn×n)p∗×p∗, for some n ≥ 1, subject to the following condition:There exist matricesA,B,C ∈Sn×nsuchthat,forallk ≥1, Mpk,pk+1 =A, Mpk,pk =C Mpk,pk−1 =B, andtheseblocksofM aretheonlyoneswhichmaybeunequalto0. Observethat,fork ≥1, M = M = A, pk,pk+1 p,p2 M = M = C, pk,pk p,p Mpk,pk−1 = Mp,ε = B, M = M = 0. ε,pk ε,ε AlsonotethatthematrixA(respB,C)inSn×ndescribestheweightoftransitions whenpushing(resp.,popping,notchanging)anadditionalsymbolpto(resp.,from)the pushdowncounter. Theorem1. Let S be a complete starsemiring and M be a roc-matrix. Then, for all i≥0, (M∗) = (M∗) (M∗) . pi+1,ε p,ε pi,ε Proof. Firstobservethat (M∗) = (Mm+1) = M M ...M M , pi+1,ε X pi+1,ε X X pi+1,pi1 pi1,pi2 pim-1,pim pim,ε m≥0 m≥0i1,...,im≥1 where,form=0,theproductequalsM .Nowweobtain pi+1,ε (M∗) = M ...M M pi+1,ε X X pi+1,pi1 pim−1,pim pim,ε m≥0i1,...,im≥1 = M ...M M · X (cid:0) X pi+1,pi+j1 pi+jm1−1,pi+jm1 pi+jm1,pi(cid:1) m1≥0 j1,...,jm1≥1 M ...M M X (cid:0) X pi,pi1 pim2−1,pim2 pim2,ε(cid:1) m2≥0 i1,...,im2≥1 = M ...M M (M∗) X (cid:0) X p,pj1 pjm1−1,pjm1 pjm1,ε(cid:1) pi,ε m1≥0 j1,...,jm1≥1 =(M∗) (M∗) . p,ε pi,ε Here in the second line the pushdown contents pi+j1,...,pi+jm1, m1 ≥ 0 are alwaysnonempty,i.e.,thetoppisreducedtoεforthefirsttimeinthelastmove. Corollary1. Foralli≥0, (M∗) = ((M∗) )i. pi,ε p,ε Lemma1. Let S be a complete star-omega semiring. Let M ∈ (Sn×n)p∗×p∗ be a roc-matrix.Then (Mω) = (Mω) +(M∗) (Mω) . p2 p p,ε p Proof. Subsequently in the first equation we split the summation so that in the first summandthereis nofactor M , while in thesecondsummandthere isat leastone p2,p factor M ; since k ,...,k ≥ 2, M is the first such factor. In the second p2,p 1 m pkm,p equalityweusethepropertyofM beingaroc-matrix:Mpi,pj =Mpi−1,pj−1 fori ≥2, j ≥1.Wecompute: (Mω) = M M ···+ p2 X p2,pi1 pi1,pi2 i1,i2,···≥2 M M ...M M M ... X X p2,pk1 pk1,pk2 pkm,p X p,pj1 pj1,pj2 m≥0k1,k2,...,km≥2 j1,j2,···≥1 = X Mp,pi1−1Mpi1−1,pi2−1···+ i1,i2,···≥2 X X Mp,pk1−1Mpk1−1,pk2−1...Mpkm−1,ε(Mω)p m≥0k1,k2,...,km≥2 =(Mω) + (Mm+1) (Mω) p X p,ε p m≥0 =(Mω) +(M∗) (Mω) . p p,ε p Theorem2. LetS beacompletestar-omegasemiringandletM ∈(Sn×n)p∗×p∗ bea roc-matrix.Then (Mω) = (M +M (M∗) +M )(Mω) . p p,p2 p,p2 p,ε p,p p Proof. Weobtain,byLemma1 (M +M (M∗) +M )(Mω) p,p2 p,p2 p,ε p,p p = M ((Mω) +(M∗) (Mω) )+M (Mω) p,p2 p p,ε p p,p p = M (Mω) +M (Mω) = (MMω) = (Mω) . p,p2 p2 p,p p p p Corollary2. LetM ∈(Sn×n)p∗×p∗ bearoc-matrix.Then(Mω) isasolutionof p z =(M +M (M∗) +M )z. p,p2 p,p2 p,ε p,p When we say “G is the graph with adjacencymatrix M ∈ (Sn×n)p∗×p∗” then it means that G is the graph with adjacency matrix M′ ∈ S(p∗×n)×(p∗×n), where M′ corresponds to M with respect to the canonical isomorphism between (Sn×n)p∗×p∗ andS(p∗×n)(p∗×n). Let now M be a roc-matrixand 0 ≤ k ≤ n. Then Mω,k is the column vectorin (Sn)p∗ definedasfollows:Fori≥1and1≤j ≤n,let((Mω,k) ) bethesumofall pi j weightsof pathsin the graphwith adjacencymatrix M that have initial vertex(pi,j) andvisitvertices(pi′,j′),i′ ≥ 1,1 ≤j′ ≤ k,infinitelyoften.ObservethatMω,0 =0 andMω,n =Mω. LetP ={(j ,j ,...)∈{1,...,n}ω |j ≤kforinfinitelymanyt≥1}. k 1 2 t Thenfor1≤j ≤n,weobtain ((Mω,k) ) = (M ) (M ) (M ) ... . p j X X p,pi1 j,j1 pi1,pi2 j1,j2 pi2,pi3 j2,j3 i1,i2,···≥1(j1,j2,...)∈Pk ByTheorem5.4.1ofE´sik,Kuich[10],weobtainforafinitematrixA∈Sn×nand for0≤k ≤n,1≤j ≤n, (Aω,k) = A A A ... . j X j,j1 j1,j2 j2,j3 (j1,j2,...)∈Pk ObservethatagainAω,0 =0andAω,n =Aω. In the next lemma, we use the following summation identity: Assume that A ,A ,... arematricesinSn×n.Thenfor0≤k ≤n,1≤j ≤n,andm≥1, 1 2 (A ) (A ) = X 1 j,j1 2 j1,j2... (j1,j2,...)∈Pk (A ) ...(A ) (A ) ... . X 1 j,j1 m jm−1,jm X m+1 jm,jm+1 1≤j1,...,jm≤n (jm+1,jm+2,...)∈Pk Lemma2. LetM ∈(Sn×n)Γ∗×Γ∗ bearoc-matrixand0≤k ≤n.Then (Mω,k) = (Mω,k) +(M∗) (Mω,k) . p2 p p,ε p Proof. We use the proof of Lemma 1, i.e., the proof for the case Mω,n = Mω. For 1≤j ≤n,weobtain((Mω,k) ) = p2 j X X (Mp,pi1−1)j,j1(Mpi1−1,pi2−1)j1,j2···+ i1,i2,···≥2(j1,j2,...)∈Pk (cid:16) X X X X (Mp,pk1−1)j,j1...(Mpkm−1,ε)jm,j′(cid:17)· 1≤j′≤nm≥0k1,k2,...,km≥21≤j1,...,jm≤n (cid:16) X X (Mp,pkm+2)j′,jm+2(Mpkm+2,pkm+3)jm+2,jm+3...(cid:17)= km+2,km+3,···≥1(jm+2,jm+3,...)∈Pk ((Mω,k)p)j + X ((M∗)p,ε)j,j′((Mω,k)p)j′ = 1≤j′≤n ((Mω,k) ) +((M∗) (Mω,k) ) = p j p,ε p j ((Mω,k) +(M∗) (Mω,k) ) . p p,ε p j Theorem3. LetS beacompletestar-omegasemiringandletM ∈(Sn×n)p∗×p∗ bea roc-matrix.Then (Mω,k) = (M +M (M∗) +M )(Mω,k) , p p,p2 p,p2 p,ε p,p p forall0≤k ≤n. Proof. Weobtain,byLemma2,forall0≤k≤n, (M +M (M∗) +M )(Mω,k) p,p2 p,p2 p,ε p,p p = M ((Mω,k) +(M∗) (Mω,k) )+M (Mω,k) p,p2 p p,ε p p,p p = M (Mω,k) +M (Mω,k) = (MMω,k) = (Mω,k) . p,p2 p2 p,p p p p Corollary3. Let M ∈ (Sn×n)p∗×p∗ be a roc-matrix. Then, for all 0 ≤ k ≤ n, (Mω,k) isasolutionof p z =(M +M (M∗) +M )z. p,p2 p,p2 p,ε p,p 4 ω-restricted one counter automata Inthissection,wedefineω-rocautomataasaspecialcaseofω-pushdownautomata.We show thatfor an ω-roc automatonC there exists an algebraicsystem overa complete star-omega semiring such that the behavior kCk of C is a componentof a solution of thissystem. Throughoutthissection,S denotesa completestar-omegasemiring.Hence(S,S) is a complete semiring-semimodule pair. By Proposition 4.1 of E´sik, Kuich [11], (Sn×n,Sn) is again a complete semiring-semimodulepair (just omit Axiom 4 in the proof).LetS′ ⊆S with0,1∈S′.AnS′-ω-pushdownautomaton P =(n,Γ,I,M,P,p ,k) 0 isgivenby (i) afinitesetofstates{1,...,n},n≥1, (ii) analphabetΓ ofpushdownsymbols, (iii) apushdowntransitionmatrixM ∈(S′n×n)Γ∗×Γ∗, (iv) aninitialstatevectorI ∈S′1×n, (v) afinalstatevectorP ∈S′n×1, (vi) aninitialpushdownsymbolp ∈Γ, 0 (vii) asetofrepeatedstates{1,...,k},0≤k ≤n. The definition of a pushdown(transition) matrix is given in Kuich, Salomaa [15], Kuich[14]andE´sik,Kuich[10].Clearly,anyroc-matrixisapushdowntransitionma- trix. ThebehaviorofP isanelementofS×S andisdefinedby kPk=(I(M∗) P,I(Mω,k) ). p0,ε p0 Here I(M∗) P is the behavior of the S′-ω-pushdown automaton P = p0,ε 1 (n,Γ,I,M,P,p ,0)andI(Mω,k) isthebehavioroftheS′-ω-pushdownautomaton 0 p0 P =(n,Γ,I,M,0,p ,k).ObservethatP isanautomatonwiththeBu¨chiacceptance 2 0 2 condition:ifGisthegraphwithadjacencymatrixM,thenonlypathsthatvisitthere- peatedstates1,...,kinfinitelyoftencontributetokP k.Furthermore,P containsno 2 1 repeatedstatesandbehaveslikeanordinaryS′-pushdownautomaton. An S′-ω-roc automaton is an S′-ω-pushdownautomaton with just one pushdown symbolsuchthatitspushdownmatrixisaroc-matrix. Remark1. ConsideranS′-ω-pushdownautomatonP withjustonepushdownsymbol. BytheconstructionintheproofofTheorem13.28ofKuich,Salomaa[15],anS′-ω-roc automatonC canbeconstructedsuchthatkCk=kPk. In the sequel, an S′-ω-roc automaton P = (n,{p},I,M,P,p,k) is denoted by C =(n,I,M,P,k)withbehavior kCk=(I(M∗) P,I(Mω,k) ). p,ε p ThenextdefinitionsandresultsaretakenfromE´sik,Kuich[10,Section5.6] ForthedefinitionofanS′-algebraicsystem overa quemiringS ×V we referthe readerto [10], page136,andforthe definitionof quemiringsto [10], page110.Here we note that a quemiring T is isomorphic to a quemiring S × V determined by the semiring-semimodulepair(S,V),cf.[10],page110. Observethattheforthcomingsystem(1)isasystemoverthequemiringSn×n×Sn. Comparetheforthcomingalgebraicsystem(2)withthealgebraicsystemsoccurringin the proofsof Theorem14.15ofKuich,Salomaa[15] andTheorem6.4ofKuich[14], bothinthecaseofaroc-matrix. Let M be a roc-matrix. Consider the S′n×n-algebraic system over the complete semiring-semimodulepair(Sn×n,Sn) y = M yy+M y+M . (1) p,p2 p,p p,ε ThenbyTheorem5.6.1ofE´sik,Kuich[10](A,U) ∈ (Sn×n,Sn)isa solutionof(1) iffAisasolutionoftheS′n×n-algebraicsystemoverSn×n x=M xx+M x+M (2) p,p2 p,p p,ε andU isasolutionoftheSn×n-linearsystemoverSn z =M z+M Az+M z. (3) p,p2 p,p2 p,p Theorem4. LetS beacompletestarsemiringandM bearoc-matrix.Then(M∗) p,ε isasolutionoftheS′n×n-algebraicsystem(2).IfS isacontinuousstarsemiring,then (M∗) istheleastsolutionof (2). p,ε Proof. Weobtain,byTheorem1 M (M∗) (M∗) +M (M∗) +M p,p2 p,ε p,ε p,p p,ε p,ε =M (M∗) +M (M∗) +M p,p2 p2,ε p,p p,ε p,ε =(MM∗) =(M+) =(M∗) . p,ε p,ε p,ε This proves the first sentence of our theorem. The second sentence of Theorem 4 is provedbyTheorem6.4ofKuich[14]. Theorem5. LetS beacompletestar-omegasemiringandM bearoc-matrix.Then ((M∗) ,(Mω,k) ), p,ε p isasolutionoftheS′n×n-algebraicsystem(1),foreach 0≤k ≤n. Proof. Let0≤k ≤n,andconsidertheSn×n-linearsystem z =(M +M (M∗) +M )z. p,p2 p,p2 p,ε p,p ByCorollary3,(Mω,k) isasolutionofthissystem.Hence,byTheorem5.6.1ofE´sik, p Kuich[10](seetheremarkabove)andTheorem4,((M∗) ,(Mω,k) )isasolutionof p,ε p thesystem(1). Observethat,ifSisacontinuousstar-omegasemiring,thentheSn×n-linearsystem in the proof of Theorem 5 is in fact an Alg(S′)n×n-linear system (see Kuich [14, p. 623]). Theorem6. LetS beacompletestar-omegasemiringandletC = (n,I,M,P,k)be an S′-ω-roc-automaton.Then (kCk,((M∗) ,(Mω,k) )) is a solution of the S′n×n- p,ε p algebraicsystem y =IyP , y =M yy+M y+M (4) 0 p,p2 p,p p,ε overthecompletesemiring-semimodulepair(Sn×n,Sn). Proof. ByTheorem5,((M∗) ,(Mω,k) )isasolutionofthesecondequation.Since p,ε p I((M∗) ,(Mω,k) )P =(I(M∗) P,I(Mω,k) )=kCk, p,ε p p,ε p (kCk,((M∗) ,(Mω,k) ))isasolutionofthegivenS′n×n-algebraicsystem. p,ε p LetnowS beacompletestar-omegasemiringandΣ beanalphabet.ThenbyThe- orem 5.5.5 of E´sik, Kuich [10], (S ≪ Σ∗ ≫,S ≪Σω ≫) is a complete semiring- semimodulepair. Let C = (n,I,M,P,k) be an ShΣ ∪ {ε}i-ω-roc automaton. Consider the al- gebraic system (4) over the complete semiring-semimodule pair ((S ≪Σ∗≫)n×n, (S ≪Σω≫)n) and the mixed algebraic system (5) over ((S ≪Σ∗ ≫)n×n, (S ≪Σω ≫)n)inducedby(4) x =IxP, x=M xx+M x+M , 0 p,p2 p,p p,ε (5) z =Iz, z =M z+M xz+M z. 0 p,p2 p,p2 p,p Then,byTheorem6, (I(M∗) P,(M∗) ,I(Mω,k) ,(Mω,k) ), 0≤k ≤n, p,ε p,ε p p is a solution of (5). It is called solution of order k. Hence, we have proved the next theorem. Theorem7. LetS beacompletestar-omegasemiringandC = (n,I,M,P,k)bean ShΣ∪{ε}i-ω-rocautomaton.Then(I(M∗) P,(M∗) ,I(Mω,k) ,(Mω,k) ), 0≤ p,ε p,ε p p k ≤n,isasolutionofthemixedalgebraicsystem(5). ⊓⊔

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.