Weighted ω-Restricted One Counter Automata⋆ ManfredDroste1andWernerKuich2 1 Universita¨tLeipzig,Institutfu¨rInformatik, [email protected] 7 2 TechnischeUniversita¨tWien,Institutfu¨rDiskreteMathematikundGeometrie 1 [email protected] 0 2 n Abstract. LetSbeacompletestar-omegasemiringandΣbeanalphabet.Fora a weightedω-restrictedonecounterautomatonC withstateset{1,...,n},n≥ 1, J we show that there exists a mixed algebraic system over a complete semiring- 1 semimodule pair ((S ≪Σ∗ ≫)n×n,(S ≪Σω ≫)n) such that the behavior 3 kCk of C is a component of a solution of this system. In case the basic semir- ing is B or N∞ we show that there exists a mixed context-free grammar that ] L generates kCk. The construction of the mixed context-free grammar from C is F a generalization of the well known tripleconstruction in case of restricted one . counter automataandiscallednowtriple-pairconstructionforω-restrictedone s counterautomata. c [ 2 1 Introduction v 3 RestrictedonecounterpushdownautomataandlanguageswereintroducedbyGreibach 0 [12] and considered in Berstel [1], Chapter VII 4. These restricted one counter push- 7 8 down automata are pushdown automata having just one pushdown symbol accepting 0 byemptytape,andthefamilyofrestrictedonecounterlanguagesisthefamilyoflan- 1. guagesacceptedbythem. 0 LetLbetheLukasiewiczlanguage,i.e.,theformallanguageoverthealphabetΣ = 7 {a,b} generated by the context-free grammar with productions S → aSS,S → b. 1 Thenthefamilyofrestrictedonecounterlanguagesistheprincipalconegeneratedby : v L. i Alltheseresultscanbetransferredtoformalpowerseriesandrestrictedonecounter X automataoverthem(seeKuich,Salomaa[15],Example11.5).Restricted onecounter r a automatacanalsobeusedtoacceptinfinitewordsanditisthisaspectwegeneralizein ourpaper. Weconsiderweightedω-restrictedonecounterautomataandtheirrelationtoalge- braic systemsoverthe completesemiring-semimodulepair (Sn×n,Sn), where S is a completestar-omegasemiring.Itturnsoutthatthe wellknowntriple constructionfor pushdownautomataincaseofunweightedrestrictedonecounterautomatacanbegen- eralizedtoatriple-pairconstructionforweightedω-restrictedonecounterautomata. The paper consists of this and three more sections. In Section 2, we refer the necessary preliminaries. In Section 3, restricted one counter matrices are introduced ⋆Thisworkwaspartiallysupported byDFGGraduiertenkolleg 1763 (QuantLA).Thesecond authorwaspartiallysupportedbyAustrianScienceFund(FWF):grantno.I1661 N25. and their properties are studied. The main result is that, for such a matrix M, the p-entry of the infinite column vector Mω,k is a solution of the linear equation z = (M (M∗) +M +M )z.InSection4,weightedω-restrictedonecounterau- p,p2 p,ε p,p p,p2 tomata are introducedas a special case of weighted ω-pushdownautomata.We show thatforaweightedω-restrictedonecounterautomatonCthereexistsamixedalgebraic systemsuchthatthebehaviorkCkofC isacomponentofasolutionofthissystem.In Section5weconsiderthecasethatthecompletestar-omegasemiringSisequaltoBor N∞.Thenforagivenweightedω-restrictedonecounterautomatonC amixedcontext- free grammar is constructed that generates kCk. This construction is a generalization ofthewellknowntripleconstructionincaseofrestrictedonecounterautomataandis calledtriple-pairconstructionforω-restrictedonecounterautomata. 2 Preliminaries Fortheconvenienceofthereader,wequotedefinitionsandresultsofE´sik,Kuich[6,7,9] from E´sik, Kuich [10]. The reader should be familiar with Sections 5.1-5.6 of E´sik, Kuich[10]. A semiring S is called complete if it is possible to define sums for all families (a | i ∈ I)ofelementsofS,whereI isanarbitraryindexset,suchthatthefollowing i conditionsaresatisfied(seeConway[4],Eilenberg[5],Kuich[14]): (i) a =0, a =a , a =a +a forj 6=k, X i X i j X i j k i∈∅ i∈{j} i∈{j,k} (ii) X(cid:0)Xai(cid:1)=Xai, if [Ij =I and Ij ∩Ij′ =∅ for j 6=j′, j∈J i∈Ij i∈I j∈J (iii) (c·a )=c· a , (a ·c)= a ·c. X i (cid:0)X i(cid:1) X i (cid:0)X i(cid:1) i∈I i∈I i∈I i∈I ThismeansthatasemiringS is completeifit ispossibletodefine“infinitesums” (i)thatareanextensionofthefinitesums,(ii)thatareassociativeandcommutativeand (iii)thatsatisfythedistributionlaws. AsemiringSequippedwithanadditionalunarystaroperation∗ : S →S iscalled astarsemiring.Incompletesemiringsforeachelementa,thestara∗ ofaisdefinedby a∗ = aj. X j≥0 Hence, each complete semiring is a starsemiring, called a complete starsemiring. A Conwaysemiring(seeConway[4],Bloom,E´sik[2])isastarsemiringS satisfyingthe sumstaridentity (a+b)∗ =a∗(ba∗)∗ andtheproductstaridentity (ab)∗ =1+a(ba)∗b for all a,b ∈ S. Observe that by E´sik, Kuich [2], Theorem 1.2.24, each complete starsemiringisaConwaysemiring. LetS beastarsemiring.BySn×n wedenotethesemiringofn×n-matricesover S. SupposethatSisasemiringandV isacommutativemonoidwrittenadditively.We callV a(left)S-semimoduleifV isequippedwitha(left)action S×V → V (s,v) 7→ sv subjecttothefollowingrules: s(s′v)=(ss′)v 1v =v (s+s′)v =sv+s′v 0v =0 s(v+v′)=sv+sv′ s0=0, foralls,s′ ∈Sandv,v′ ∈V.WhenVisanS-semimodule,wecall(S,V)asemiring- semimodulepair. Suppose that (S,V) is a semiring-semimodule pair such that S is a starsemiring and S and V are equipped with an omega operation ω : S → V. Then we call (S,V) a starsemiring-omegasemimodule pair. Following Bloom, E´sik [2], we call a starsemiring-omegasemimodulepair(S,V)aConwaysemiring-semimodulepairifS isaConwaysemiringandiftheomegaoperationsatisfiesthesumomegaidentityand theproductomegaidentity: (a+b)ω =(a∗b)ω +(a∗b)∗aω (ab)ω =a(ba)ω, foralla,b∈S.Itthenfollowsthattheomegafixed-pointequationholds,i.e. aaω =aω, foralla∈S. E´sik, Kuich [8] define a complete semiring-semimodule pair to be a semiring- semimodulepair(S,V)suchthatSisacompletesemiringandVisacompletemonoid with s v = sv (cid:0)X i(cid:1) X i i∈I i∈I s v = s v, (cid:0)X i(cid:1) X i i∈I i∈I foralls ∈S,v ∈V,andforallfamilies(s ) overS and(v ) overV;moreover, i i∈I i i∈I itisrequiredthataninfiniteproductoperation (s ,s ,...) 7→ s 1 2 Y j j≥1 is given mappinginfinite sequencesoverS to V subject to the followingthree condi- tions: s = (s ·····s ) Y i Y ni−1+1 ni i≥1 i≥1 s · s = s 1 Y i+1 Y i i≥1 i≥1 s = s , Y X ij X Y ij j≥1ij∈Ij (i1,i2,...)∈I1×I2×...j≥1 whereinthefirstequation0=n ≤n ≤n ≤... andI ,I ,... arearbitraryindex 0 1 2 1 2 sets.Supposethat(S,V)iscomplete.Thenwedefine s∗ = si X i≥0 sω = s, Y i≥1 for all s ∈ S. This turns (S,V) into a starsemiring-omegasemimodulepair. By E´sik, Kuich[8],eachcompletesemiring-semimodulepairisaConwaysemiring-semimodule pair.Observethat,if(S,V)isacompletesemiring-semimodulepair,then0ω =0. A star-omega semiring is a semiring S equipped with unary operations∗ and ω : S → S. A star-omegasemiringS is calledcompleteif (S,S)is a completesemiring semimodulepair,i.e.,ifSiscompleteandisequippedwithaninfiniteproductoperation thatsatisfiesthethreeconditionsstatedabove.Forthetheoryofinfinitewordsandfinite automataacceptinginfinitewordsbytheBu¨chiconditionconsultPerrin,Pin[16]. 3 Restricted one counter matrices Inthissectionweintroducerestrictedonecounter(roc)matricesandstudytheirprop- erties.OurfirsttheoremanditscorollarygeneralizeTheorem10.5ofKuich,Salomaa [15]incasethepushdowntransitionmatrixM isarestrictedonecountermatrix.Then we show that, for a roc matrix M, (Mω) and (Mω,k) , 0 ≤ k ≤ n, introducedbe- p p lowsatisfythesamespecificlinearequation.InTheorem1andCorollary1,S denotes a complete starsemiring; afterwards in this section, S denotes a complete star-omega semiring. Arestrictedonecounter(abbreviatedroc)matrix(withcountersymbolp)isamatrix M in (Sn×n)p∗×p∗, for some n ≥ 1, subject to the following condition:There exist matricesA,B,C ∈Sn×nsuchthat,forallk ≥1, Mpk,pk+1 =A, Mpk,pk =C Mpk,pk−1 =B, andtheseblocksofM aretheonlyoneswhichmaybeunequalto0. Observethat,fork ≥1, M = M = A, pk,pk+1 p,p2 M = M = C, pk,pk p,p Mpk,pk−1 = Mp,ε = B, M = M = 0. ε,pk ε,ε AlsonotethatthematrixA(respB,C)inSn×ndescribestheweightoftransitions whenpushing(resp.,popping,notchanging)anadditionalsymbolpto(resp.,from)the pushdowncounter. Theorem1. Let S be a complete starsemiring and M be a roc-matrix. Then, for all i≥0, (M∗) = (M∗) (M∗) . pi+1,ε p,ε pi,ε Proof. Firstobservethat (M∗) = (Mm+1) = M M ...M M , pi+1,ε X pi+1,ε X X pi+1,pi1 pi1,pi2 pim-1,pim pim,ε m≥0 m≥0i1,...,im≥1 where,form=0,theproductequalsM .Nowweobtain pi+1,ε (M∗) = M ...M M pi+1,ε X X pi+1,pi1 pim−1,pim pim,ε m≥0i1,...,im≥1 = M ...M M · X (cid:0) X pi+1,pi+j1 pi+jm1−1,pi+jm1 pi+jm1,pi(cid:1) m1≥0 j1,...,jm1≥1 M ...M M X (cid:0) X pi,pi1 pim2−1,pim2 pim2,ε(cid:1) m2≥0 i1,...,im2≥1 = M ...M M (M∗) X (cid:0) X p,pj1 pjm1−1,pjm1 pjm1,ε(cid:1) pi,ε m1≥0 j1,...,jm1≥1 =(M∗) (M∗) . p,ε pi,ε Here in the second line the pushdown contents pi+j1,...,pi+jm1, m1 ≥ 0 are alwaysnonempty,i.e.,thetoppisreducedtoεforthefirsttimeinthelastmove. Corollary1. Foralli≥0, (M∗) = ((M∗) )i. pi,ε p,ε Lemma1. Let S be a complete star-omega semiring. Let M ∈ (Sn×n)p∗×p∗ be a roc-matrix.Then (Mω) = (Mω) +(M∗) (Mω) . p2 p p,ε p Proof. Subsequently in the first equation we split the summation so that in the first summandthereis nofactor M , while in thesecondsummandthere isat leastone p2,p factor M ; since k ,...,k ≥ 2, M is the first such factor. In the second p2,p 1 m pkm,p equalityweusethepropertyofM beingaroc-matrix:Mpi,pj =Mpi−1,pj−1 fori ≥2, j ≥1.Wecompute: (Mω) = M M ···+ p2 X p2,pi1 pi1,pi2 i1,i2,···≥2 M M ...M M M ... X X p2,pk1 pk1,pk2 pkm,p X p,pj1 pj1,pj2 m≥0k1,k2,...,km≥2 j1,j2,···≥1 = X Mp,pi1−1Mpi1−1,pi2−1···+ i1,i2,···≥2 X X Mp,pk1−1Mpk1−1,pk2−1...Mpkm−1,ε(Mω)p m≥0k1,k2,...,km≥2 =(Mω) + (Mm+1) (Mω) p X p,ε p m≥0 =(Mω) +(M∗) (Mω) . p p,ε p Theorem2. LetS beacompletestar-omegasemiringandletM ∈(Sn×n)p∗×p∗ bea roc-matrix.Then (Mω) = (M +M (M∗) +M )(Mω) . p p,p2 p,p2 p,ε p,p p Proof. Weobtain,byLemma1 (M +M (M∗) +M )(Mω) p,p2 p,p2 p,ε p,p p = M ((Mω) +(M∗) (Mω) )+M (Mω) p,p2 p p,ε p p,p p = M (Mω) +M (Mω) = (MMω) = (Mω) . p,p2 p2 p,p p p p Corollary2. LetM ∈(Sn×n)p∗×p∗ bearoc-matrix.Then(Mω) isasolutionof p z =(M +M (M∗) +M )z. p,p2 p,p2 p,ε p,p When we say “G is the graph with adjacencymatrix M ∈ (Sn×n)p∗×p∗” then it means that G is the graph with adjacency matrix M′ ∈ S(p∗×n)×(p∗×n), where M′ corresponds to M with respect to the canonical isomorphism between (Sn×n)p∗×p∗ andS(p∗×n)(p∗×n). Let now M be a roc-matrixand 0 ≤ k ≤ n. Then Mω,k is the column vectorin (Sn)p∗ definedasfollows:Fori≥1and1≤j ≤n,let((Mω,k) ) bethesumofall pi j weightsof pathsin the graphwith adjacencymatrix M that have initial vertex(pi,j) andvisitvertices(pi′,j′),i′ ≥ 1,1 ≤j′ ≤ k,infinitelyoften.ObservethatMω,0 =0 andMω,n =Mω. LetP ={(j ,j ,...)∈{1,...,n}ω |j ≤kforinfinitelymanyt≥1}. k 1 2 t Thenfor1≤j ≤n,weobtain ((Mω,k) ) = (M ) (M ) (M ) ... . p j X X p,pi1 j,j1 pi1,pi2 j1,j2 pi2,pi3 j2,j3 i1,i2,···≥1(j1,j2,...)∈Pk ByTheorem5.4.1ofE´sik,Kuich[10],weobtainforafinitematrixA∈Sn×nand for0≤k ≤n,1≤j ≤n, (Aω,k) = A A A ... . j X j,j1 j1,j2 j2,j3 (j1,j2,...)∈Pk ObservethatagainAω,0 =0andAω,n =Aω. In the next lemma, we use the following summation identity: Assume that A ,A ,... arematricesinSn×n.Thenfor0≤k ≤n,1≤j ≤n,andm≥1, 1 2 (A ) (A ) = X 1 j,j1 2 j1,j2... (j1,j2,...)∈Pk (A ) ...(A ) (A ) ... . X 1 j,j1 m jm−1,jm X m+1 jm,jm+1 1≤j1,...,jm≤n (jm+1,jm+2,...)∈Pk Lemma2. LetM ∈(Sn×n)Γ∗×Γ∗ bearoc-matrixand0≤k ≤n.Then (Mω,k) = (Mω,k) +(M∗) (Mω,k) . p2 p p,ε p Proof. We use the proof of Lemma 1, i.e., the proof for the case Mω,n = Mω. For 1≤j ≤n,weobtain((Mω,k) ) = p2 j X X (Mp,pi1−1)j,j1(Mpi1−1,pi2−1)j1,j2···+ i1,i2,···≥2(j1,j2,...)∈Pk (cid:16) X X X X (Mp,pk1−1)j,j1...(Mpkm−1,ε)jm,j′(cid:17)· 1≤j′≤nm≥0k1,k2,...,km≥21≤j1,...,jm≤n (cid:16) X X (Mp,pkm+2)j′,jm+2(Mpkm+2,pkm+3)jm+2,jm+3...(cid:17)= km+2,km+3,···≥1(jm+2,jm+3,...)∈Pk ((Mω,k)p)j + X ((M∗)p,ε)j,j′((Mω,k)p)j′ = 1≤j′≤n ((Mω,k) ) +((M∗) (Mω,k) ) = p j p,ε p j ((Mω,k) +(M∗) (Mω,k) ) . p p,ε p j Theorem3. LetS beacompletestar-omegasemiringandletM ∈(Sn×n)p∗×p∗ bea roc-matrix.Then (Mω,k) = (M +M (M∗) +M )(Mω,k) , p p,p2 p,p2 p,ε p,p p forall0≤k ≤n. Proof. Weobtain,byLemma2,forall0≤k≤n, (M +M (M∗) +M )(Mω,k) p,p2 p,p2 p,ε p,p p = M ((Mω,k) +(M∗) (Mω,k) )+M (Mω,k) p,p2 p p,ε p p,p p = M (Mω,k) +M (Mω,k) = (MMω,k) = (Mω,k) . p,p2 p2 p,p p p p Corollary3. Let M ∈ (Sn×n)p∗×p∗ be a roc-matrix. Then, for all 0 ≤ k ≤ n, (Mω,k) isasolutionof p z =(M +M (M∗) +M )z. p,p2 p,p2 p,ε p,p 4 ω-restricted one counter automata Inthissection,wedefineω-rocautomataasaspecialcaseofω-pushdownautomata.We show thatfor an ω-roc automatonC there exists an algebraicsystem overa complete star-omega semiring such that the behavior kCk of C is a componentof a solution of thissystem. Throughoutthissection,S denotesa completestar-omegasemiring.Hence(S,S) is a complete semiring-semimodule pair. By Proposition 4.1 of E´sik, Kuich [11], (Sn×n,Sn) is again a complete semiring-semimodulepair (just omit Axiom 4 in the proof).LetS′ ⊆S with0,1∈S′.AnS′-ω-pushdownautomaton P =(n,Γ,I,M,P,p ,k) 0 isgivenby (i) afinitesetofstates{1,...,n},n≥1, (ii) analphabetΓ ofpushdownsymbols, (iii) apushdowntransitionmatrixM ∈(S′n×n)Γ∗×Γ∗, (iv) aninitialstatevectorI ∈S′1×n, (v) afinalstatevectorP ∈S′n×1, (vi) aninitialpushdownsymbolp ∈Γ, 0 (vii) asetofrepeatedstates{1,...,k},0≤k ≤n. The definition of a pushdown(transition) matrix is given in Kuich, Salomaa [15], Kuich[14]andE´sik,Kuich[10].Clearly,anyroc-matrixisapushdowntransitionma- trix. ThebehaviorofP isanelementofS×S andisdefinedby kPk=(I(M∗) P,I(Mω,k) ). p0,ε p0 Here I(M∗) P is the behavior of the S′-ω-pushdown automaton P = p0,ε 1 (n,Γ,I,M,P,p ,0)andI(Mω,k) isthebehavioroftheS′-ω-pushdownautomaton 0 p0 P =(n,Γ,I,M,0,p ,k).ObservethatP isanautomatonwiththeBu¨chiacceptance 2 0 2 condition:ifGisthegraphwithadjacencymatrixM,thenonlypathsthatvisitthere- peatedstates1,...,kinfinitelyoftencontributetokP k.Furthermore,P containsno 2 1 repeatedstatesandbehaveslikeanordinaryS′-pushdownautomaton. An S′-ω-roc automaton is an S′-ω-pushdownautomaton with just one pushdown symbolsuchthatitspushdownmatrixisaroc-matrix. Remark1. ConsideranS′-ω-pushdownautomatonP withjustonepushdownsymbol. BytheconstructionintheproofofTheorem13.28ofKuich,Salomaa[15],anS′-ω-roc automatonC canbeconstructedsuchthatkCk=kPk. In the sequel, an S′-ω-roc automaton P = (n,{p},I,M,P,p,k) is denoted by C =(n,I,M,P,k)withbehavior kCk=(I(M∗) P,I(Mω,k) ). p,ε p ThenextdefinitionsandresultsaretakenfromE´sik,Kuich[10,Section5.6] ForthedefinitionofanS′-algebraicsystem overa quemiringS ×V we referthe readerto [10], page136,andforthe definitionof quemiringsto [10], page110.Here we note that a quemiring T is isomorphic to a quemiring S × V determined by the semiring-semimodulepair(S,V),cf.[10],page110. Observethattheforthcomingsystem(1)isasystemoverthequemiringSn×n×Sn. Comparetheforthcomingalgebraicsystem(2)withthealgebraicsystemsoccurringin the proofsof Theorem14.15ofKuich,Salomaa[15] andTheorem6.4ofKuich[14], bothinthecaseofaroc-matrix. Let M be a roc-matrix. Consider the S′n×n-algebraic system over the complete semiring-semimodulepair(Sn×n,Sn) y = M yy+M y+M . (1) p,p2 p,p p,ε ThenbyTheorem5.6.1ofE´sik,Kuich[10](A,U) ∈ (Sn×n,Sn)isa solutionof(1) iffAisasolutionoftheS′n×n-algebraicsystemoverSn×n x=M xx+M x+M (2) p,p2 p,p p,ε andU isasolutionoftheSn×n-linearsystemoverSn z =M z+M Az+M z. (3) p,p2 p,p2 p,p Theorem4. LetS beacompletestarsemiringandM bearoc-matrix.Then(M∗) p,ε isasolutionoftheS′n×n-algebraicsystem(2).IfS isacontinuousstarsemiring,then (M∗) istheleastsolutionof (2). p,ε Proof. Weobtain,byTheorem1 M (M∗) (M∗) +M (M∗) +M p,p2 p,ε p,ε p,p p,ε p,ε =M (M∗) +M (M∗) +M p,p2 p2,ε p,p p,ε p,ε =(MM∗) =(M+) =(M∗) . p,ε p,ε p,ε This proves the first sentence of our theorem. The second sentence of Theorem 4 is provedbyTheorem6.4ofKuich[14]. Theorem5. LetS beacompletestar-omegasemiringandM bearoc-matrix.Then ((M∗) ,(Mω,k) ), p,ε p isasolutionoftheS′n×n-algebraicsystem(1),foreach 0≤k ≤n. Proof. Let0≤k ≤n,andconsidertheSn×n-linearsystem z =(M +M (M∗) +M )z. p,p2 p,p2 p,ε p,p ByCorollary3,(Mω,k) isasolutionofthissystem.Hence,byTheorem5.6.1ofE´sik, p Kuich[10](seetheremarkabove)andTheorem4,((M∗) ,(Mω,k) )isasolutionof p,ε p thesystem(1). Observethat,ifSisacontinuousstar-omegasemiring,thentheSn×n-linearsystem in the proof of Theorem 5 is in fact an Alg(S′)n×n-linear system (see Kuich [14, p. 623]). Theorem6. LetS beacompletestar-omegasemiringandletC = (n,I,M,P,k)be an S′-ω-roc-automaton.Then (kCk,((M∗) ,(Mω,k) )) is a solution of the S′n×n- p,ε p algebraicsystem y =IyP , y =M yy+M y+M (4) 0 p,p2 p,p p,ε overthecompletesemiring-semimodulepair(Sn×n,Sn). Proof. ByTheorem5,((M∗) ,(Mω,k) )isasolutionofthesecondequation.Since p,ε p I((M∗) ,(Mω,k) )P =(I(M∗) P,I(Mω,k) )=kCk, p,ε p p,ε p (kCk,((M∗) ,(Mω,k) ))isasolutionofthegivenS′n×n-algebraicsystem. p,ε p LetnowS beacompletestar-omegasemiringandΣ beanalphabet.ThenbyThe- orem 5.5.5 of E´sik, Kuich [10], (S ≪ Σ∗ ≫,S ≪Σω ≫) is a complete semiring- semimodulepair. Let C = (n,I,M,P,k) be an ShΣ ∪ {ε}i-ω-roc automaton. Consider the al- gebraic system (4) over the complete semiring-semimodule pair ((S ≪Σ∗≫)n×n, (S ≪Σω≫)n) and the mixed algebraic system (5) over ((S ≪Σ∗ ≫)n×n, (S ≪Σω ≫)n)inducedby(4) x =IxP, x=M xx+M x+M , 0 p,p2 p,p p,ε (5) z =Iz, z =M z+M xz+M z. 0 p,p2 p,p2 p,p Then,byTheorem6, (I(M∗) P,(M∗) ,I(Mω,k) ,(Mω,k) ), 0≤k ≤n, p,ε p,ε p p is a solution of (5). It is called solution of order k. Hence, we have proved the next theorem. Theorem7. LetS beacompletestar-omegasemiringandC = (n,I,M,P,k)bean ShΣ∪{ε}i-ω-rocautomaton.Then(I(M∗) P,(M∗) ,I(Mω,k) ,(Mω,k) ), 0≤ p,ε p,ε p p k ≤n,isasolutionofthemixedalgebraicsystem(5). ⊓⊔