ebook img

Weighted Automata, Formal Power Series and Weighted Logic PDF

191 Pages·2022·1.896 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weighted Automata, Formal Power Series and Weighted Logic

BestMasters Mit “BestMasters” zeichnet Springer die besten Masterarbeiten aus, die an renommi- erten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachterinnen und Gutachter zur Veröffentlichung empfohlen und behandeln aktuelle Themen aus unterschiedlichen Fachgebieten der Naturwissenschaften, Psychologie, Technik und Wirtschaftswis- senschaften. Die Reihe wendet sich an Personen aus Praxis und Wissenschaft gleicherma- ßen und soll insbesondere auch dem wissenschaftlichen Nachwuchs Orientierung geben. Springer awards “BestMasters” to the best master’s theses which have been com- pleted at renowned Universities in Germany, Austria, and Switzerland. The studies received highest marks and were recommended for publication by supervisors. They address current issues from various fields of research in natural sciences, psychology, technology, and economics. The series addresses practitioners as well as scientists and, in particular, offers guidance for early stage researchers. Laura Wirth Weighted Automata, Formal Power Series and Weighted Logic Laura Wirth University of Konstanz Konstanz, Germany ISSN 2625-3577 ISSN 2625-3615 (electronic) BestMasters ISBN 978-3-658-39322-9 ISBN 978-3-658-39323-6 (eBook) https://doi.org/10.1007/978-3-658-39323-6 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachme- dien Wiesbaden GmbH, part of Springer Nature 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Responsible Editor: Marija Kojic This Springer Spektrum imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH, part of Springer Nature. The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany Tomymom,foralwaysbeingbymyside, andinlovingmemoryofOpaHelmut,thebiggestfanofmystudies. Acknowledgements IwouldliketoexpressmydeepestgratitudetomysupervisorProf.Dr.SalmaKuhl- mann for her patient guidance throughout my studies. Special thanks shall also go to my second supervisor Prof. Dr. Sven Kosub, whom I could always ask to clarify computer-scienti(cid:28)caspectsofanykind. Ihadtheadvantageofbeingabletoaskboth of them for advice and answers to resolve di(cid:30)culties at all times. Theirremarks and commentshavebeenavaluablehelpandpowerfulencouragement. Furthermore,IwouldliketothankProf.Dr.ManfredDrosteforourexchangeregarding Section 2.5. I could ask him to obtain references, and he gave me a hint that (cid:28)nally resulted in a proof of Theorem 2.5.19, which generalizes the classical result of B(cid:252)chi, ElgotandTrakhtenbrot. I owe a particular debt to Dr. Lothar Sebastian Krapp, who calmly supported me in overcoming all problems that arose during this work. His deep mathematical insight has given rise to many invaluable remarks and comments, which have essentially im- provedthepresentationinmanyrespects. Inparticular,Iwishtothankhimfortaking thetroubletoattentivelyproofreadseveraliterationsofthiswork. Beyondthat,Iam luckyenoughtohavehimasafriend. Most warmly, I thank my family (cid:21) my sister Anna-Lena, my parents Bernd and Manuela, as well as Oma Anne and Oma Ria (cid:21) for their less mathematical but more loving and emotional support, while I was studying and writing obscure theses that noneofthemislikelytoeverread. Finally,IwishtothankmyfellowstudentsCarlEggen,MoritzLink,PatrickMichalski, including Philipp Huber, with whom I could share my enthusiasm for the subject of thiswork. vii Abstract A basic concept from Theoretical Computer Science for the speci(cid:28)cation of formal languagesare(cid:28)niteautomata. Byequippingthestatesandtransitionsofthese(cid:28)nite automatawithweights,oneobtainsthequantitativemodelofweightedautomata. The includedweightsmaymodele.g.theamountofresourcesneededfortheexecutionof atransition,theinvolvedcosts,orthereliabilityofitssuccessfulexecution. Toobtain a uniform model, the underlying weight structure is usually modeled by an abstract semiring. Thebehaviorofaweightedautomatonisthenrepresentedbyaformalpower series. Aformalpowerseriesisde(cid:28)nedasamapassigningtoeachwordoveragiven alphabet an element of the semiring, i.e. some weight associated with the respective word. In this work, we put emphasis on the expressive power of weighted automata. More precisely, the main objective is to represent the behaviors of weighted automata by expressively equivalent formalisms. These formalisms include rational operations on formalpowerseries,linearrepresentationsbymeansofmatrices,andweightedmonadic second-orderlogic. To this end, we (cid:28)rst exhibit the classical language-theoretic results of Kleene, B(cid:252)chi, ElgotandTrakhtenbrot,whichconcentrateontheexpressivepowerof(cid:28)niteautomata. We further derive a generalized version of the B(cid:252)chi(cid:21)Elgot(cid:21)Trakhtenbrot Theorem addressing formulas, which may have free variables, whereas the original statement concernsonlysentences. Thenweusethelanguage-theoreticapproachesandmethods asstartingpointforourinvestigationswithregardtoformalpowerseries. Weestablish Sch(cid:252)tzenberger’sextensionofKleene’sTheorem,referredtoasKleene(cid:21)Sch(cid:252)tzenberger Theorem. Moreover, we introduce a weighted version of monadic second-order logic, which is due to Droste and Gastin, and analyze its expressive power. By means of thisweightedlogic,wederiveanextensionoftheB(cid:252)chi(cid:21)Elgot(cid:21)TrakhtenbrotTheorem. Thus, we point out relations among the di(cid:27)erent speci(cid:28)cation approaches for formal powerseries. Further,werelatethenotionsandresultsconcerningformalpowerseries totheirrespectivecounterpartsinLanguageTheory. Overall, our investigations shed light on the interplay between languages, classical as wellasweightedautomata,formalpowerseriesandmonadicsecond-orderlogic. Hence, the topic of this work lies at the interface between Theoretical Computer Science, AlgebraandLogicor,moregenerally,ModelTheory. ix Contents 1. Introduction 1 2. Languages, Automata and Monadic Second-Order Logic 7 2.1. WordsandFormalLanguages . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. FiniteAutomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3. Kleene’sTheorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4. MonadicSecond-OrderLogicforWords . . . . . . . . . . . . . . . . . . 26 2.5. TheB(cid:252)chi(cid:21)Elgot(cid:21)TrakhtenbrotTheorem. . . . . . . . . . . . . . . . . . 33 3. Weighted Automata 55 3.1. SemiringsandFormalPowerSeries . . . . . . . . . . . . . . . . . . . . . 56 3.2. WeightedAutomataandTheirBehavior . . . . . . . . . . . . . . . . . . 62 3.3. LinearRepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4. The Kleene(cid:21)Sch(cid:252)tzenberger Theorem 85 4.1. OperationsonFormalPowerSeries . . . . . . . . . . . . . . . . . . . . . 85 4.2. RationalFormalPowerSeries . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3. TheKleene(cid:21)Sch(cid:252)tzenbergerTheorem. . . . . . . . . . . . . . . . . . . . 99 ClosurePropertiesofRecognizableFormalPowerSeries . . . . . . . . . 99 WeightedAutomataandLinearSystemsofEquations . . . . . . . . . . 108 5. Weighted Monadic Second-Order Logic and Weighted Automata 119 5.1. SyntaxandSemantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2. ResultsofDrosteandGastin . . . . . . . . . . . . . . . . . . . . . . . . 136 FromWeightedFormulastoWeightedAutomata . . . . . . . . . . . . . 139 FromWeightedAutomatatoWeightedFormulas . . . . . . . . . . . . . 146 LocallyFiniteSemirings . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6. Summary and Further Research 157 6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.2. FurtherResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 A. Appendix 167 A.1. ModelTheoryandMonadicSecond-OrderLogic . . . . . . . . . . . . . 167 A.2. MonadicSecond-OrderLogicforWords . . . . . . . . . . . . . . . . . . 176 References 181 Index 185 xi 1. Introduction AfundamentalconcernofComputerScienceisthestudyandprocessingofinformation anddata. Anyinformationrequirestobespeci(cid:28)ed,anddependingontheapplication context, a suitable representation or speci(cid:28)cation is chosen in order to interpret the information in a targeted manner. More precisely, the processing of data, and in particular the amount of resources required for this, depends on the chosen method or formal model for the representation of the conveyed information. Especially when workingwithin(cid:28)niteobjectsorstructures,itisessentialtohavea(cid:28)nitespeci(cid:28)cationof theconveyedinformation. Inthiswork,wefocusonthedescription-orientedresearch inTheoreticalComputerScience,ratherthanonalgorithm-orientedresults. However, thetworesearchareasreallyarehighly,eveninseparably,connected. Theinformationconveyingstructuresthatareconsideredinthisworkareformallan- guages and formal power series. Formal languages are sets of words over a given al- phabet,andtheformalpowerseries,whichconcernus,aremapsassociatingelements ofanabstractsemiringtowordsoveragivenalphabet. Thus,languagesmodelqual- itativeinformationconcerningthemembershipofwords,whereasformalpowerseries provide quantitative data about words. In fact, formal power series can be regarded asquantitativeextensionsoflanguages. In Theoretical Computer Science, the basic tool for the speci(cid:28)cation of languages are (cid:28)nite automata. Historically, (cid:28)nite automata originate in the mid-1950s in the work of Kleene [18]. In his fundamental result, which is commonly referred to as Kleene’sTheorem, Kleenecharacterizedthelanguagesthatarerecognizableby(cid:28)nite automata as rational languages1. Mainly motivated by decidability questions, the expressiveequivalenceof(cid:28)niteautomataandmonadicsecond-orderlogicwasderived independentlybyB(cid:252)chi[4],Elgot[15]andTrakhtenbrot2[43]intheearly1960s. Their equivalence result, referred to as B(cid:252)chi(cid:21)Elgot(cid:21)Trakhtenbrot Theorem, establishes a veryearlyconnectionbetweenthetheoryof(cid:28)niteautomataandMathematicalLogic. Thetwoapproachesoftencomplementeachotherinasynergeticway,andtheirrelation ishighlyrelevantformultipleapplicationdomains,e.g.inveri(cid:28)cationandknowledge representation, for the design of combinatorial and sequential circuits, as well as in natural language processing. In Theorem 2.5.19, we further present an extension of theB(cid:252)chi(cid:21)Elgot(cid:21)TrakhtenbrotTheoremtomonadicsecond-orderformulas,whichmay havefreevariables,whereastheoriginalresultaddressesonlysentences. Theproofof 1Alanguageiscalledrationalifitcanbeconstructedfrom(cid:28)nitelymany(cid:28)nitelanguagesbyapplying therationaloperationsunion,concatenationandKleenestar. 2Duetodi(cid:27)erenttransliterationfromtheCyrillic,variousspellingsofthisnamearecommoninLatin script. © The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2022 L. Wirth, Weighted Automata, Formal Power Series and Weighted Logic, BestMasters, https://doi.org/10.1007/978-3-658-39323-6_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.