ebook img

Weibel, Firehose and Mirror mode Relations PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weibel, Firehose and Mirror mode Relations

ManuscriptpreparedforAnnalesGeophysicæ withversion3.2oftheLATEXclasscopernicus.cls. Date:14January2014 4 1 0 2 n a J Weibel, Firehose and Mirror mode Relations 1 1 R.A.Treumann1,2andW.Baumjohann3 ] h 1DepartmentofGeophysicsandEnvironmentalSciences,MunichUniversity,Munich,Germany p 2InternationalSpaceScienceInstitute,Bern,Switzerland - e 3SpaceResearchInstitute,AustrianAcademyofSciences,Graz,Austria c a p s Abstract.ExcitationofWeibelmagneticfieldsinaninitially modesincludingverylowfrequencyandnon-oscillatingape- s. non-magnetizedthoughanisotropicplasmamaytriggerother riodicmodes. c low-frequency instabilities fed by pressure anisotropy. It is Ofthehistoricalmodes,thefirstisageneralbulkplasma i s shown that under Weibel-like-stable conditionsthe Weibel- mode excited in an external magnetic field by a thermal y like thermal fluctuation magnetic field allows for restricted anisotropywithlargermagneticallyparallelthanperpendic- h p Firehose-modegrowth.Inaddition,lowfrequencyWhistlers ulartemperature,T⊥>Tk,resultinginAlfve´nwaveswhich [ can also propagate in the plasma under certain anisotropic radiate along the magnetic field. At the contrary, the lat- conditions. When the Weibel-like mode becomes unstable, terWeibel-likemodeactsinnon-magnetizedplasmaswhen, 1 v FirehoseinstabilityceasesbutMirrormodestakeover.This by some not further specified reason, the plasma exhibits a 2 willcausebubblestructuresintheWeibel-likefieldinaddi- thermal (pressure) anisotropy with higher temperature (ki- 2 tiontofilamentation. netic energy) in one than in the two other directions. In 5 boththefirehoseandWeibel-likecasesthecauseofahigher Keywords. Wavesandinstabilities 2 equivalent temperature in one direction (and thus a tem- . 1 perature anisotropy) can also be a fast (relative) stream- 0 ing (for physical mechanism of the Weibel-like streaming 4 1 1 Introduction mode see Fried, 1959) of the plasma with kinetic energy : exceeding the transverse thermal energy. This can be pro- v Historically, there are just three celebrated fundamen- vided by beam or counter-streaming beam configurations i X tal very low frequency (electro-)magnetic instabilities in (cf.,e.g.,Achterberg&Wiersma, 2007) and hasbeenmade r hot anisotropic plasmas, the well known firehose mode responsibleforthegenerationofmagneticfieldsundervari- a (Vedenovetal., 1961; Treumann&Baumjohann, 1997, for ousnon-dynamoconditionsoccurring,forinstance,inshock a plasma physics textbook), its complementary equiva- waves(forareviewsee,e.g.,Treumann,2009),preferentially lent, the Mirror mode, and the Weibel instability (Weibel, in relativistic shocks (for relativistic shocks see the review 1959; Yoon&Davidson, 1987, and others). Recently, by Bykov&Treumann, 2011). The physical differences in Schlickeiseretal. (2011) and Schlickeiser&Skoda (2011), the two modes are large. While Weibel-like modes provide applying a substantially more rigorousrelativistic approach a non-dynamo mechanism to produce quasi-stationary and basedonthetheoryofanalyticalfunctions,identifiedamuch thus non-propagating magnetic fields in an otherwise non- larger number of different electromagnetic low-frequency magnetizedplasma,thefirehosemodegrowsonanexisting modes, weakly and strongly damped/unstable ones, which field and propagates along the field at Alfve´n velocity VA add additionaldispersion channelsto a magnetizedplasma. thustransportingenergyawayfromtheregionwhereitisex- Felten&Schlickeiser (2013a,b,c) and Feltenetal. (2013) cited, filling a large volume with magnetic fluctuations and extended these calculations to relativistic Weibel-like (non- contributingtoturbulenceandothereffects.However,since magnetic)conditions,againfindingalargenumberofdiffer- bothmodesaregeneratedbysimilarmechanismsthoughbe- entdispersionchannelswhichbelongtodampedorunstable ingdifferent,havingcompletelydifferentproperties,oneex- pectsthattheywillcompeteandpossiblyevenactintandem Correspondenceto:R.A.Treumann to generate magnetic fields and propagate them away from ([email protected]) thesourceregion. 2 R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes The remaining Mirror mode, at the contrary, is an about TreumannandBaumjohann, 2012) of spectral energy den- stationary feature of the plasma with wave vector k almost sity1 perpendicular to the ambient magnetic field. It generates hb2(k)i (A+1)2kλ plasmainhomogeneityatthelowestfrequencyofplasmatur- = e (2) bulence.Itiseasilyderivedfromanisotropicfluidtheory,but b20 (A+2)[k2λ2e−A−µ]2 its physicalmechanism is attributed to trappingof particles writtenherefortheelectron-Weibelmodewithskindepthλ e indepletedmagneticfieldregionsalongthefield.Thismech- andmassratioµ=m /m .Itsspectraldensityamplitudeis e i anismismorecomplexandstillnotcompletelyresolved(for givenby arecentmorecompleteaccountoftheelectronmirrormode which concerns us here, see, e.g., Pokhotelovetal., 2008, b20 = µ0 πT⊥ (3) 2010,2013,andreferencestherein). m c2 m m c2 e er e In the present note we briefly examine this situation at The thermal fluctuation level has a distinct dependence on the example of the classical Weibel instability, showing wave number k. For short wavelengths k≫λ−1 it decays e that there indeed exists such a competition which may be- like∝(kλ )−3(confirmingtheresultofYoon,2007).Dueto e come important in limiting the growth of the Weibel-like thepresenceoftheinertioncomponentitvanishesatk→0, modes,allowingotherfluctuationstopropagateonthemag- maximizingbelowkλ <1, i.e. comparedwith the electron e netic Weibel-like background field which may contribute skin depth the fluctuationfield is of longerscale, providing to distribution of magnetic fields in a larger volume. A aweakly-oscillatorymoderate-wavelengthbackgroundmag- similar analysisexaminingthenewlyidentifiedelectromag- neticfield.Onemaynotethatthewavenumberisperpendicu- neticmodes(Schlickeiseretal.,2011;Schlickeiser&Skoda, lartoboth,zˆ.i.e.thedirectionofthermalpressureanisotropy, 2011; Feltenetal., 2013; Felten&Schlickeiser, 2013a,b,c), andtheWeibel-likemagneticfluctuationfield. thoughbeinghighlydesirable,liesoutsidethisbriefcommu- The magnetic fluctuation field is quasi-stationary in the nication. sensethatin thefinalstep ofcalculationtherealpartofthe frequencyω ≈0wasputtozero,whichisequivalenttothe– r notentirelycorrect–assumptionofpurelygrowing/damped ω(k)=iγ(k) wave modeswith growth/dampingrate γ(k). 2 Thermalfluctuationeffects Infact,ω 6=0forWeibel-likemodes.Hence,withk2λ2=A r 0 e the requirementthat |γ(k)|<ω (k) implies a condition on r In order to demonstrate the role of thermal magnetic fluc- thewavenumber tuations as a pathway for other modes, we restrict to the π 2 2 conventionalWeibel-likethermal-anisotropymodeonly.The 1>k λe>A 1− 4A(A+1)3 (4) followinganalysiscould be made morecompleteby apply- (cid:18) r (cid:19) ing the expressions for the many dispersion channels iden- Under damped conditions A=−|A|, and from Eq. (2) one tified in the above given references on the non-magnetized requires 1<|A|<2 fixing the range of applicability of the plasma modes. Here we refrain from such an extension of following analysis. There is a sufficiently wide range of thepresentcommunication,notatleastforthereasonofthe wavelengths longer than λ in the damped case. In the un- e wealthofnewlyfoundmodesbutalsoforthecomplexityof stable case, shorterwavelengthsaroundk∼λ are favored. e themorepreciseexpressionsgiventhere(Feltenetal.,2013; The more precise analysis (Felten&Schlickeiser, 2013a,b) Felten&Schlickeiser, 2013a,b,c) which would obscure our isnotrestrictedtothecondition|γ|<ω butincludesaperi- r intendedlyfocusseddiscussion. odicallygrowing/dampedwaves. The mean magnetic fluctuation field amplitude ¯b = The thermal anisotropy-excited Weibel-like mode grows 1 underthe conditionthatthe anisotropyis alongdirectionz. b0 dkhb2(k)i 2 thatresults fromthe abovethermalspec- WritingT =T ,T =T theconditionforgrowthis,inits traldensitywhenintegratingoverk-space,becomes z k x,y ⊥ (cid:2)R (cid:3) simplestform,givenby ¯b (A+1)2(A+1+µ) 21 = (5) b0 (A+2)(A+µ)(1−A−µ) T (cid:20) (cid:21) k A≡ −1>0 (1) T 1Clearly, under the opposite condition the direction of ⊥ anisotropyswitchesandtheWeibelinstabilityworksintheorthogo- naldirection.Itisthusuniversal,workingatanythermalanisotropy In this case it generates a magnetic field BW in the innonmagneticplasmaanddisappearsonlyforA≡0.Justforthis perpendicular direction, i.e. transverse to the direction reasonitalsomakessensetowritethethermalWeibellevelinclud- of anisotropy. Under the opposite condition the Weibel inganon-vanishinganisotropy,forthethermallevelbecomesitself mode is stable but still generates a zero-frequency per- anisotropic:itisthermalalongtheanisotropyandthermallyexcited pendicular magnetic thermal fluctuation field (Yoon, 2007; transversetoit. R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes 3 Itservesasbackgroundmagnetizationonwhichelectromag- CheckingfortheelectronMirrormode(notincludingany netic waves at low frequency, much less than the electron moresophisticatedeffects)yieldsinstabilityaslongas plasma frequencyω≪ω , can propagatein a nonmagnetic e 2 β −β >β β and A=β /β −1<0 (8) plasma.Propagationwouldbeinhibitedotherwise,allowing k ⊥ ⊥ k k ⊥ only for evanescent modes in the spatial range of the elec- Thisimpliesacontradictionthusexcludingthemirrormode. tron skin depth λ . Actually, for the same reason the un- e Weibel-stableplasmasarestableagainstMirrorbutallowfor stableWeibel-likemodecanpenetratejustovertheelectron Firehosemodes.Thesepropagateonthethermallevelofthe skindepthonlyfromitsgenerationsiteintothecollisionless magneticfield in the direction perpendicularto the Weibel- plasmaperpendiculartothedirectionofanisotropy.Thisre- stabledirectionofanisotropy.Thisisinterestingtoknowas strictionnecessarilycausesapronouncedmagneticfilamen- itshowsthatinanotherwisenon-magneticplasmawhichin tationoftheWeibel-likeunstableplasma.Ontheotherhand, onedirection(thistimethe⊥-direction)theplasmaisWeibel once Weibel-like thermal fluctuations providea weak mag- unstable the existence of thermal magnetic fluctuations in neticbackgroundfield,spreadingacrosstheplasmabecomes theWeibel-stabledirectioncausesFirehosemodestoradiate possibleforotherelectromagneticmodes. awayfromthis regionif onlythe aboveFirehosecondition, basedonthesmallthermalfluctuationlevelofthemagnetic field,issatisfied.Sincethethermallevelissmallthiswill,in 3 Secondaryinstability praxis,alwaysbethecaseifonlyT >T . ⊥ k Once the thermal fluctuation spectrum of the Weibel mode Inaddition,iftheplasmaconsistsofathermalbackground is established, the plasma behavesweakly magnetized with and a warm anisotropic component, the low-frequency the Weibel-like thermal fluctuation background field being Whistler(orAlfve´n)modecanbedestabilizedasitonlyre- structured at about the electron skin depth in the direction quires that for the anisotropic component A<0 and hence perpendiculartotheanisotropy.Thisimpliesthatthethermal β⊥<βk which is given by the stability condition of the magneticbackgroundorganizesintolongmagneticfilaments Weibel mode (note again that the indices k,⊥ refer to the of typical transverse size of few electron skin depths with anisotropy frame, not to the magnetic frame!). The spec- consequencesfor the propagationofany secondaryelectro- tral density of the magnetic fluctuations in this range with magneticmodes. βk/β⊥<1inthelongwavelengthrangekλe<1isestimated as 3.1 Weibel-stablecase hb2(k)i T 2 k ≈ kλ (9) LetusassumethattheWeibelmodehasbeenstable(seefoot- b20 (cid:18)T⊥(cid:19) e note),whichimpliesthatA.0,1<|A|<2.Underthiscon- UsingtheWhistlerdispersionrelationforelectronsinthelow dition we have T⊥>Tk, with T⊥ being directed along the frequencyrange,i.e.k2λ2≈ω/(Ω −ω), withΩ =e¯b/m Weibelmagneticfield,i.e.playingtheroleofamagnetically e e e e the electron cyclotron frequency in the quasi-stationary parallel anisotropy, while T is a perpendicularanisotropy. k Weibelthermalfluctuationfield,yieldstherelation UnderthisconditiontheFirehosemodecouldgrowonlyun- derthecondition hb2(k)i T 2 ν ω k ≈ , ν= (10) ββ⊥−1>β2 , βk,⊥=2µ0N¯b2Tk,⊥ (6) b20 (cid:18)T⊥(cid:19) r1−ν Ωe k k betweentheWhistlerfrequencyrangeω(k)andthemagnetic with¯b2= dkhb2(k)i the thermal rms magnetic field (note spectral energy density. Since we know that the magnetic that indexing is with respect to the direction of the initial spectral density vanishes at k=0, and using the dispersion R thermal anisotropy where the directions with respect to the relationforkλ =1,wefindthatthefrequencyofWhistlers e magnetic field are inverted!) existing in the otherwise non- isintherange magnetic plasma. The plasma-βs refer to it in the present 0≤ν<1, for 0≤kλ <1 (11) case. The left-hand side is positive in the Weibel-stable 2 e caseand,hence,theFirehoseinstabilitycangrowunderthe propagating along the Weibel thermal fluctuation field per- rewrittencondition pendicular to the Weibel anisotropy, i.e. in ⊥-direction. β⊥−βk>2, |A|<2 (7) These are indeed very low frequency Whistlers since Ωe basedonthethermalfluctuationlevelissmall. where the second conditionis imposed bythe thermalfluc- tuationlevelrequirement.Thefirehosemodecanalsoprop- 3.2 Weibel-unstablecase agate,becauseitspropagationdirectionisalongthethermal Weibel-like magnetic field which is along the direction of The interesting domain is that of unstable Weibel modes the Weibel-like magnetic channelsand thereforeallowed to (forinstanceinviewofapplicationtorelativisticshocks)in propagateforaparallelmodeliketheFirehose-Alfve´nwave. whichcasethemagneticfieldgrowsandmaybecomequite 4 R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes strong.Severalmechanismsofsaturationorlimitinggrowth filamentsof perpendicularscale ofthe orderofthe electron have been proposed (for energy arguments, quasilinear skindepth.InadditionthemagneticWeibel-likefieldsevolve andothernonlinearmechanismsseeAchterberg&Wiersma, intoasequenceofmirrorstructuresasthelowestfrequency 2007; Pokhotelov&Amariutei, 2011; Pokhotelovetal., magnetically turbulent modes which can evolve according 2010, respectively,andreferencestherein).Herewe arenot totheirownnonlineardynamics(cf.,e.g.,Pokhotelovetal., interestedinsaturationbutintheexcitationoflow-frequency 2008,2010,2013,andreferencestherein). plasma modeswhich maytransportthe field away fromthe regionofexcitation. SinceA>0forunstableWeibel-likemodesgrowingfrom 4 Conclusions thermalbackgroundfluctuations,whilegeneratingasubstan- tialmagneticfieldinthedirectionperpendiculartothedirec- TheWeibel-likeinstabilityhasfrequentlybeenmaderespon- tionofanisotropy,weimmediatelyconcludethatinthepres- sible for the excitation of magnetic fields in otherwise ini- enceofanisotropicbackgroundplasmatheWhistlermodeis tiallynon-magnetizedplasmas.Actually,ashasbeenknown naturallyunstableundertheconditionthatsufficientlymany since long time (Landau&Lifschitz, 1959, 1960; Sitenko, resonant particles exist with large enough resonant energy. 1967; Akhiezeretal., 1975, and followers), thermal fluctu- This is certainly the case when Weibel-like modes are ex- ations in the plasma readily lead to the spontaneous emis- citedbyastreamingpopulation.Inthiscaseoneexpectsthat sionofmagneticfluctuations.Atthelowestfrequenciesthese WhistlerswillberadiatedalongtheWeibel-likefieldperpen- formquasi-stationarymagneticfields(see,e.g.,Yoon,2007; diculartotheexcitinganisotropydirection. TreumannandBaumjohann, 2012) with wavelength longer Whataboutthetworemaininglow-frequencyelectromag- thantheelectronskindepthλe. netic modes, the Firehose and Mirror modes? The former Thesefluctuationsprovideaninitialweakmagneticback- is very easy to infer about. From Eq. (7) and the instability ground field which allows the Weibel-like magnetic field conditionA>0weimmediatelyconstructthecontradiction to penetrate over some distance into the otherwise magnet- 2<0thusexcludingtheFirehosemodefromgrowinginthis ically nontransparent plasma which would inhibit penetra- case.TheFirehosemodewillnotexciteanyAlfve´nwaveson tionofanymagneticfieldoverdistanceslongerthanλ ,ef- e theexpenseoftheWeibelmodeinthisunstablecase.How- fectivelyexponentiallyscreeningthe plasmafrommagnetic ever, the situation is different for the mirror mode. Clearly fields outside the Weibel-like mode source region. In the Eq. (8) can be satisfied when the Weibel mode grows with presenceofanpressureanisotropy,however,Firehose,Mir- A>0(insteadofA<0asintheformerWeibel-stablecase). rorandWhistlermodescangrowintheplasmaandcompete Thecorrespondingconditioncanbewritten with the Weibel-like mode. A Weibel-stable plasma allows for Firehose and Whistler modesto grow,both propagating β 1 β k −1> and A= k −1>0 (12) along the magnetic thermal fluctuation field. In a Weibel- β⊥ βk β⊥ unstable plasma the Firehose instability is stable. However, WhistlerandMirrormodescangrow.Thelatterstructurethe whichyieldsβ >1/Aformirrorinstabilityandcanclearly k unstablygeneratedWeibel-likemagneticfieldintochainsof besatisfied.Thesolutionis magneticbubblesorholesandtraplowfrequencyWhistlers 4 (Baumjohannetal., 1999; Treumann&Baumjohann, 2000; β &1β 1± 1+ (13) k 2 ⊥ s β⊥2 ! Treumannetal., 2000) thus contributing to magnetic struc- tureandturbulenceinadditiontotheknownWeibelfilamen- Of the two solutions one is trivially satisfied. The other re- tation effect. This will have a profound effect on the self- quiresthattheanisotropyA>1/β .Itisinterestingtonote consistent generation of magnetic plasma turbulence in re- ⊥ that since the βs depend inversely on the growing mag- gionsofpressureanisotropy(orrelativestreaming)inanoth- netic field, starting from thermal level, they will decrease erwise initially non-magnetized plasma. Not only may one with Weibel-like mode growth, thereby ultimately stabiliz- expectthatanisotropicorstreamingplasmaswillthusnatu- ing the second Mirrormode branchwhen A∼1/β , while rallybeweaklymagnetized,theywillalsobenaturallyturbu- ⊥ thebranchwiththenegativesignofthesquarerootremains lentthusprovidingplentyofscatteringcentersforenergetic unaffected. particles as required in all stochastic particle acceleration Hence, any growing Weibel-like mode will readily self- scenarios(fora recentreviewcf., e.g., Bykov&Treumann, consistently evolve into a chain of Mirror structures which 2011;Schureetal.,2012,andreferencestherein). ontheirownarefilledwithlow-frequencyWhistlers(forthe The present investigation has been forcefully restricted observational evidence and theoretical arguments see, e.g., to the investigation of one quite simple low-frequency Baumjohannetal., 1999; Treumannetal., 2000) bouncing electromagnetic mode only, the conventional thermally back and force in the mirrors with some of them possibly anisotropic Weibel instability. This instability belongs escapingtotheenvironment.Asaconsequence,theWeibel- to a much wider class of low frequency electromag- like instability does not only lead to magnetic and current netic modes which have been investigated in depth only R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes 5 recently (Schlickeiseretal., 2011; Schlickeiser&Skoda, Baumjohann, W.,Treumann,R.A.,Georgescu,E.,Haerendel,G., 2011; Feltenetal., 2013; Felten&Schlickeiser, 2013a,b). Fornacon,K.-H.&Auster,U.:Waveformandpacketstructureof Several of these modes generate quasi-stationary magnetic lionroars, Ann. Geophys. 17, 1528-1534, doi:10.1007/s00585- fieldsinasimilarwayastheWeibelinstabilityweweredeal- 999-1528-9,1999. Bykov, A. M. & Treumann, R. A.: Fundamentals of collisionless ing with. It will be most interesting to investigate their ef- shocksforastrophysical application,2.Relativisticshocks, As- fect on the excitation of other electromagnetic instabilities, tron. Astrophys. Rev. 19, 42, doi: 10.1007/s00159-011-0042-8, thepropagationofAlfve´nandWhistlerwavesintheplasma arXiv:1105.3221,2011. that has become weakly re-magnetized by them. It should Felten T., Schlickeiser R., Yoon P. H. & Lazar M.: Spontaneous also be noted at this occasion that Sim˜oesetal. (2013) in a electromagneticfluctuationsinunmagnetizedplasmas.II.Rela- veryrecentpaperperformedparticle-in-cellsimulationsofa tivisticformfactorsofaperiodicthermalmodes,Phys.Plasmas thermallyisotropic,quiescentandstableplasmatodetermine 20,052113,doi:10.1063/1.4804402,2013. the electric and magnetic thermal fluctuation levels. As ex- Felten T. & Schlickeiser R.: Spontaneous electromagnetic fluc- pected,bothlevelsaredifferentfromzero.Theelectricfluc- tuations in unmagnetized plasmas. IV. Relativistic form fac- tuations naturally map the Langmuir fluctuation branch for torsofaperiodicLorentzianmodes,Phys.Plasmas20, 082116, wavelength exceeding the Debye length, for shorter wave- doi:10.1063/1.4817804,2013a. Felten T. & Schlickeiser R.: Spontaneous electromagnetic fluc- lengthstheyshowawiderangeofweakfluctuationsextend- tuations in unmagnetized plasmas. V. Relativistic form factors ing even down below the plasma frequency. This result is ofweaklydamped/amplifiedthermalmodes,Phys.Plasmas20, verywellknownsincelong(cf.,e.g.,Lundetal.,1996,with 082117,doi:10.1063/1.4817805,2013b. and without a beam) and is nicely confirmed by these sim- FeltenT.&SchlickeiserR.:Spontaneouselectromagneticfluctua- ulations. The magnetic fluctuations found in this case are tionsinunmagnetizedplasmas.VI.Transverse,collectivemode alsoexpectedinthewholefrequencyrangefromfluctuation for arbitrary distribution functions, Phys. Plasmas 20, 104502, theory of any thermal system (Landau&Lifschitz, 1960; doi:10.1063/1.4824114,2013c. Sitenko,1967).Theirabsencewouldhavebeenverysurpris- FriedB.D.:Mechanismforinstabilityoftransverseplasmawaves, ing. As they should, magnetic fluctuation amplitudes max- Phys.Fluids2,337-,doi:10.1063/1.1705933,1959. imize at lowest frequencies and longest wavelengths. This LandauL.D.&LifshitzE.M.,FluidMechanics,PergamonPress, was noted by Yoon (2007) and, for vanishing anisotropy, CourseofTheoreticalPhysics,vol.6,NewYork,1959. LandauL.D.&LifshitzE.M.,ElectrodynamicsofContinuousMe- alsoin(TreumannandBaumjohann,2012).Boththelasttwo dia,PergamonPress,Oxford,1960. papers became in this respect completely independent of Lund,E.J.,Treumann, R.A.&Labelle, J.:Quasi-thermalfluctu- the Weibel mode indicating the general presence of mag- ations in a beam-plasma system, Phys. Plasmas 3, 1234-1240, neticfluctuationsinthermallyanisotropicandalsothermally 1996,doi:10.1063/1.871747 isotropic plasmas therby ver softly magnetizing an initially Pokhotelov, O. A. & Amariutei, O. A.: Quasi-linear dynam- non-magneticplasmaandpermittingforpropagationoflow- ics of Weibel instability, Ann. Geophys. 29, 1997-2001, frequencyelectromagnetic(mhd)modes. doi:10.5194/angeo-29-1997-2011, 2011. Pokhotelov, O.A.,Sagdeev R.Z.,BalikhinM. A.,Fedun V. N.& DudnikovaG.I.:NonlinearmirrorandWeibelmodes:peculiar- Acknowledgements. ThisresearchwaspartofanoccasionalVisit- ities of quasi-linear dynamics, Ann. Geophys. 28, 2161-2167, ingScientistProgrammein2006/2007atISSI,Bern.RTthankfully doi:10.5194/angeo-28-2161-2010, 2010. recognizestheassistanceoftheISSIlibrarians,AndreaFischerand Pokhotelov, O. A., Onishchenko. O. G. & Stenflo, L.: Physical IrmelaSchweizer.RTalsothanksthetworeferees,P.H.Yoonand mechanismsforelectronmirrorandfieldswellingmodes,Phys. anotheranonymousreferee,fortheirintriguingremarksonthepa- Scripta 87, ID 065303, doi:10.1088/0031-8949/87/06/065303, per. One of the referees has brought to our attention the series of 2013. papersonthenewlowfrequencyrelativisticelectromagneticmodes Pokhotelov,O.A.,Sagdeev,R.Z.,Balikhin,M.A.,Onishchenko. whichisthankfullyacknowledged. O. G. & Fedun, V. N.: Nonlinear mirror waves in non- Maxwellian space plasma, J. Geophys. Res. 113, ID A04225, doi:10.1029/2007JA012642,2008. References Schlickeiser R., Lazar M. & Skoda T.: Spontaneously grow- ing, weakly propagating, transverse fluctuations in anisotropic Achterberg,A.&Wiersma,J.:TheWeibelinstabilityinrelativistic magnetized thermal plasmas., Phys. Plasmas 18, 012103, doi: plasmas. I.Lineartheory, II.Nonlineartheoryandstabilization 10.1063/1.3532787,2011. mechanism, Astron. Astrophys. 475, 1-18, doi: 10.1051/0004- SchlickeiserR.&SkodaT.:Lineartheoryofweaklyamplified,par- 6361:20065365,2007. allelpropagating,transversetemperature-anisotropyinstabilities Akhiezer,A.I.,Akhiezer,I.A.,Sitenko,R.V.&Stepanov,K.N.: in magnetized thermal plasmas, Astrophys. J. 716, 1596-1606, NonlinearTheoryandFluctuations,inPlasmaElectrodynamics, doi:10.108870004-637X/716/2/1596, 2011. vol2,pp.116-142,PregamonPress,Oxford,1975. Schure,K.M.,Bell,A.R.,O’CDrury,L.&Bykov,A.M.:Diffusive Baumjohann,W.&Treumann,R.A.:BasicSpacePlasmaPhysics, shockaccelerationandmagneticfieldamplification,SpaceSci. RevisedEdition,ImperialCollegePressatWorldScientific,Lon- Rev.173,491-519,doi:10.1007/s11214-012-9871-7, 2012. don&Singapore,2012. 6 R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes Sim˜oes, F. J. R., Jr., Pavan, J., Gaelzer, R., Ziebell, L. F. & Yoon, P. H.: Particle-in-cell simulations on spontaneous ther- malmagneticfieldfluctuations,Phys.Plasmas20,100702,doi: 10.1063/1.4825249,2013. Sitenko,A.G.:ElectromagneticFluctuationsinPlasma,Academic Press,NewYork,1967. Treumann, R. A.: Fundamentals of collisionless shocks for astro- physical application, 1. Non-relativistic shocks, Astron. Astro- phys.Rev.17,409-535,doi:10.1007/s00159-009-0024-2,2009. Treumann, R. A. & Baumjohann, W.: Collisionless mirror mode trapping,Nonlin.Process.Geophys.7,179-184,2000. Treumann, R. A. and Baumjohann, W.: Advanced Space Plasma Physics,ImperialCollegePress,London,1997. Treumann, R. A. and Baumjohann, W.: A note on the Weibel in- stability and thermal fluctuations, Ann. Geophys. 30, 427-431, doi:10.5194/angeo-30-427-2012,2012. Treumann, R. A., Georgescu, E. & Baumjohann, W.: Lion roar trapping in mirror modes, Geophys. Res. Lett. 27, 1843-1846, doi:10.1029/2000GL003767,2000. Vedenov A. A., Velikhov E. P. & Sagdeev, R. Z. : Sta- bility of plasma. Sov. Phys. Uspekhi. 4, 332–369, doi: 10.1070/PU1961v004n02ABEH003341,1961. WeibelE.S.:Spontaneouslygrowingtransversewavesinaplasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83–84,doi:10.1103/PhysRevLett.2.83,1959. YoonP.H.:Spontaneousthermalmagneticfieldfluctuations.Phys. Plasmas14,83–84,doi:10.1063/1.2741388,2007. YoonP.H.&DavidsonR.C.:Exactanalyticalmodeloftheclassical Weibelinstabilityinarelativisticanisotropicplasma.Phys.Rev. A35,2718–2721,doi:10.1103/PhysRevA.35.2718,1987.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.