ManuscriptpreparedforAnnalesGeophysicæ withversion3.2oftheLATEXclasscopernicus.cls. Date:14January2014 4 1 0 2 n a J Weibel, Firehose and Mirror mode Relations 1 1 R.A.Treumann1,2andW.Baumjohann3 ] h 1DepartmentofGeophysicsandEnvironmentalSciences,MunichUniversity,Munich,Germany p 2InternationalSpaceScienceInstitute,Bern,Switzerland - e 3SpaceResearchInstitute,AustrianAcademyofSciences,Graz,Austria c a p s Abstract.ExcitationofWeibelmagneticfieldsinaninitially modesincludingverylowfrequencyandnon-oscillatingape- s. non-magnetizedthoughanisotropicplasmamaytriggerother riodicmodes. c low-frequency instabilities fed by pressure anisotropy. It is Ofthehistoricalmodes,thefirstisageneralbulkplasma i s shown that under Weibel-like-stable conditionsthe Weibel- mode excited in an external magnetic field by a thermal y like thermal fluctuation magnetic field allows for restricted anisotropywithlargermagneticallyparallelthanperpendic- h p Firehose-modegrowth.Inaddition,lowfrequencyWhistlers ulartemperature,T⊥>Tk,resultinginAlfve´nwaveswhich [ can also propagate in the plasma under certain anisotropic radiate along the magnetic field. At the contrary, the lat- conditions. When the Weibel-like mode becomes unstable, terWeibel-likemodeactsinnon-magnetizedplasmaswhen, 1 v FirehoseinstabilityceasesbutMirrormodestakeover.This by some not further specified reason, the plasma exhibits a 2 willcausebubblestructuresintheWeibel-likefieldinaddi- thermal (pressure) anisotropy with higher temperature (ki- 2 tiontofilamentation. netic energy) in one than in the two other directions. In 5 boththefirehoseandWeibel-likecasesthecauseofahigher Keywords. Wavesandinstabilities 2 equivalent temperature in one direction (and thus a tem- . 1 perature anisotropy) can also be a fast (relative) stream- 0 ing (for physical mechanism of the Weibel-like streaming 4 1 1 Introduction mode see Fried, 1959) of the plasma with kinetic energy : exceeding the transverse thermal energy. This can be pro- v Historically, there are just three celebrated fundamen- vided by beam or counter-streaming beam configurations i X tal very low frequency (electro-)magnetic instabilities in (cf.,e.g.,Achterberg&Wiersma, 2007) and hasbeenmade r hot anisotropic plasmas, the well known firehose mode responsibleforthegenerationofmagneticfieldsundervari- a (Vedenovetal., 1961; Treumann&Baumjohann, 1997, for ousnon-dynamoconditionsoccurring,forinstance,inshock a plasma physics textbook), its complementary equiva- waves(forareviewsee,e.g.,Treumann,2009),preferentially lent, the Mirror mode, and the Weibel instability (Weibel, in relativistic shocks (for relativistic shocks see the review 1959; Yoon&Davidson, 1987, and others). Recently, by Bykov&Treumann, 2011). The physical differences in Schlickeiseretal. (2011) and Schlickeiser&Skoda (2011), the two modes are large. While Weibel-like modes provide applying a substantially more rigorousrelativistic approach a non-dynamo mechanism to produce quasi-stationary and basedonthetheoryofanalyticalfunctions,identifiedamuch thus non-propagating magnetic fields in an otherwise non- larger number of different electromagnetic low-frequency magnetizedplasma,thefirehosemodegrowsonanexisting modes, weakly and strongly damped/unstable ones, which field and propagates along the field at Alfve´n velocity VA add additionaldispersion channelsto a magnetizedplasma. thustransportingenergyawayfromtheregionwhereitisex- Felten&Schlickeiser (2013a,b,c) and Feltenetal. (2013) cited, filling a large volume with magnetic fluctuations and extended these calculations to relativistic Weibel-like (non- contributingtoturbulenceandothereffects.However,since magnetic)conditions,againfindingalargenumberofdiffer- bothmodesaregeneratedbysimilarmechanismsthoughbe- entdispersionchannelswhichbelongtodampedorunstable ingdifferent,havingcompletelydifferentproperties,oneex- pectsthattheywillcompeteandpossiblyevenactintandem Correspondenceto:R.A.Treumann to generate magnetic fields and propagate them away from ([email protected]) thesourceregion. 2 R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes The remaining Mirror mode, at the contrary, is an about TreumannandBaumjohann, 2012) of spectral energy den- stationary feature of the plasma with wave vector k almost sity1 perpendicular to the ambient magnetic field. It generates hb2(k)i (A+1)2kλ plasmainhomogeneityatthelowestfrequencyofplasmatur- = e (2) bulence.Itiseasilyderivedfromanisotropicfluidtheory,but b20 (A+2)[k2λ2e−A−µ]2 its physicalmechanism is attributed to trappingof particles writtenherefortheelectron-Weibelmodewithskindepthλ e indepletedmagneticfieldregionsalongthefield.Thismech- andmassratioµ=m /m .Itsspectraldensityamplitudeis e i anismismorecomplexandstillnotcompletelyresolved(for givenby arecentmorecompleteaccountoftheelectronmirrormode which concerns us here, see, e.g., Pokhotelovetal., 2008, b20 = µ0 πT⊥ (3) 2010,2013,andreferencestherein). m c2 m m c2 e er e In the present note we briefly examine this situation at The thermal fluctuation level has a distinct dependence on the example of the classical Weibel instability, showing wave number k. For short wavelengths k≫λ−1 it decays e that there indeed exists such a competition which may be- like∝(kλ )−3(confirmingtheresultofYoon,2007).Dueto e come important in limiting the growth of the Weibel-like thepresenceoftheinertioncomponentitvanishesatk→0, modes,allowingotherfluctuationstopropagateonthemag- maximizingbelowkλ <1, i.e. comparedwith the electron e netic Weibel-like background field which may contribute skin depth the fluctuationfield is of longerscale, providing to distribution of magnetic fields in a larger volume. A aweakly-oscillatorymoderate-wavelengthbackgroundmag- similar analysisexaminingthenewlyidentifiedelectromag- neticfield.Onemaynotethatthewavenumberisperpendicu- neticmodes(Schlickeiseretal.,2011;Schlickeiser&Skoda, lartoboth,zˆ.i.e.thedirectionofthermalpressureanisotropy, 2011; Feltenetal., 2013; Felten&Schlickeiser, 2013a,b,c), andtheWeibel-likemagneticfluctuationfield. thoughbeinghighlydesirable,liesoutsidethisbriefcommu- The magnetic fluctuation field is quasi-stationary in the nication. sensethatin thefinalstep ofcalculationtherealpartofthe frequencyω ≈0wasputtozero,whichisequivalenttothe– r notentirelycorrect–assumptionofpurelygrowing/damped ω(k)=iγ(k) wave modeswith growth/dampingrate γ(k). 2 Thermalfluctuationeffects Infact,ω 6=0forWeibel-likemodes.Hence,withk2λ2=A r 0 e the requirementthat |γ(k)|<ω (k) implies a condition on r In order to demonstrate the role of thermal magnetic fluc- thewavenumber tuations as a pathway for other modes, we restrict to the π 2 2 conventionalWeibel-likethermal-anisotropymodeonly.The 1>k λe>A 1− 4A(A+1)3 (4) followinganalysiscould be made morecompleteby apply- (cid:18) r (cid:19) ing the expressions for the many dispersion channels iden- Under damped conditions A=−|A|, and from Eq. (2) one tified in the above given references on the non-magnetized requires 1<|A|<2 fixing the range of applicability of the plasma modes. Here we refrain from such an extension of following analysis. There is a sufficiently wide range of thepresentcommunication,notatleastforthereasonofthe wavelengths longer than λ in the damped case. In the un- e wealthofnewlyfoundmodesbutalsoforthecomplexityof stable case, shorterwavelengthsaroundk∼λ are favored. e themorepreciseexpressionsgiventhere(Feltenetal.,2013; The more precise analysis (Felten&Schlickeiser, 2013a,b) Felten&Schlickeiser, 2013a,b,c) which would obscure our isnotrestrictedtothecondition|γ|<ω butincludesaperi- r intendedlyfocusseddiscussion. odicallygrowing/dampedwaves. The mean magnetic fluctuation field amplitude ¯b = The thermal anisotropy-excited Weibel-like mode grows 1 underthe conditionthatthe anisotropyis alongdirectionz. b0 dkhb2(k)i 2 thatresults fromthe abovethermalspec- WritingT =T ,T =T theconditionforgrowthis,inits traldensitywhenintegratingoverk-space,becomes z k x,y ⊥ (cid:2)R (cid:3) simplestform,givenby ¯b (A+1)2(A+1+µ) 21 = (5) b0 (A+2)(A+µ)(1−A−µ) T (cid:20) (cid:21) k A≡ −1>0 (1) T 1Clearly, under the opposite condition the direction of ⊥ anisotropyswitchesandtheWeibelinstabilityworksintheorthogo- naldirection.Itisthusuniversal,workingatanythermalanisotropy In this case it generates a magnetic field BW in the innonmagneticplasmaanddisappearsonlyforA≡0.Justforthis perpendicular direction, i.e. transverse to the direction reasonitalsomakessensetowritethethermalWeibellevelinclud- of anisotropy. Under the opposite condition the Weibel inganon-vanishinganisotropy,forthethermallevelbecomesitself mode is stable but still generates a zero-frequency per- anisotropic:itisthermalalongtheanisotropyandthermallyexcited pendicular magnetic thermal fluctuation field (Yoon, 2007; transversetoit. R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes 3 Itservesasbackgroundmagnetizationonwhichelectromag- CheckingfortheelectronMirrormode(notincludingany netic waves at low frequency, much less than the electron moresophisticatedeffects)yieldsinstabilityaslongas plasma frequencyω≪ω , can propagatein a nonmagnetic e 2 β −β >β β and A=β /β −1<0 (8) plasma.Propagationwouldbeinhibitedotherwise,allowing k ⊥ ⊥ k k ⊥ only for evanescent modes in the spatial range of the elec- Thisimpliesacontradictionthusexcludingthemirrormode. tron skin depth λ . Actually, for the same reason the un- e Weibel-stableplasmasarestableagainstMirrorbutallowfor stableWeibel-likemodecanpenetratejustovertheelectron Firehosemodes.Thesepropagateonthethermallevelofthe skindepthonlyfromitsgenerationsiteintothecollisionless magneticfield in the direction perpendicularto the Weibel- plasmaperpendiculartothedirectionofanisotropy.Thisre- stabledirectionofanisotropy.Thisisinterestingtoknowas strictionnecessarilycausesapronouncedmagneticfilamen- itshowsthatinanotherwisenon-magneticplasmawhichin tationoftheWeibel-likeunstableplasma.Ontheotherhand, onedirection(thistimethe⊥-direction)theplasmaisWeibel once Weibel-like thermal fluctuations providea weak mag- unstable the existence of thermal magnetic fluctuations in neticbackgroundfield,spreadingacrosstheplasmabecomes theWeibel-stabledirectioncausesFirehosemodestoradiate possibleforotherelectromagneticmodes. awayfromthis regionif onlythe aboveFirehosecondition, basedonthesmallthermalfluctuationlevelofthemagnetic field,issatisfied.Sincethethermallevelissmallthiswill,in 3 Secondaryinstability praxis,alwaysbethecaseifonlyT >T . ⊥ k Once the thermal fluctuation spectrum of the Weibel mode Inaddition,iftheplasmaconsistsofathermalbackground is established, the plasma behavesweakly magnetized with and a warm anisotropic component, the low-frequency the Weibel-like thermal fluctuation background field being Whistler(orAlfve´n)modecanbedestabilizedasitonlyre- structured at about the electron skin depth in the direction quires that for the anisotropic component A<0 and hence perpendiculartotheanisotropy.Thisimpliesthatthethermal β⊥<βk which is given by the stability condition of the magneticbackgroundorganizesintolongmagneticfilaments Weibel mode (note again that the indices k,⊥ refer to the of typical transverse size of few electron skin depths with anisotropy frame, not to the magnetic frame!). The spec- consequencesfor the propagationofany secondaryelectro- tral density of the magnetic fluctuations in this range with magneticmodes. βk/β⊥<1inthelongwavelengthrangekλe<1isestimated as 3.1 Weibel-stablecase hb2(k)i T 2 k ≈ kλ (9) LetusassumethattheWeibelmodehasbeenstable(seefoot- b20 (cid:18)T⊥(cid:19) e note),whichimpliesthatA.0,1<|A|<2.Underthiscon- UsingtheWhistlerdispersionrelationforelectronsinthelow dition we have T⊥>Tk, with T⊥ being directed along the frequencyrange,i.e.k2λ2≈ω/(Ω −ω), withΩ =e¯b/m Weibelmagneticfield,i.e.playingtheroleofamagnetically e e e e the electron cyclotron frequency in the quasi-stationary parallel anisotropy, while T is a perpendicularanisotropy. k Weibelthermalfluctuationfield,yieldstherelation UnderthisconditiontheFirehosemodecouldgrowonlyun- derthecondition hb2(k)i T 2 ν ω k ≈ , ν= (10) ββ⊥−1>β2 , βk,⊥=2µ0N¯b2Tk,⊥ (6) b20 (cid:18)T⊥(cid:19) r1−ν Ωe k k betweentheWhistlerfrequencyrangeω(k)andthemagnetic with¯b2= dkhb2(k)i the thermal rms magnetic field (note spectral energy density. Since we know that the magnetic that indexing is with respect to the direction of the initial spectral density vanishes at k=0, and using the dispersion R thermal anisotropy where the directions with respect to the relationforkλ =1,wefindthatthefrequencyofWhistlers e magnetic field are inverted!) existing in the otherwise non- isintherange magnetic plasma. The plasma-βs refer to it in the present 0≤ν<1, for 0≤kλ <1 (11) case. The left-hand side is positive in the Weibel-stable 2 e caseand,hence,theFirehoseinstabilitycangrowunderthe propagating along the Weibel thermal fluctuation field per- rewrittencondition pendicular to the Weibel anisotropy, i.e. in ⊥-direction. β⊥−βk>2, |A|<2 (7) These are indeed very low frequency Whistlers since Ωe basedonthethermalfluctuationlevelissmall. where the second conditionis imposed bythe thermalfluc- tuationlevelrequirement.Thefirehosemodecanalsoprop- 3.2 Weibel-unstablecase agate,becauseitspropagationdirectionisalongthethermal Weibel-like magnetic field which is along the direction of The interesting domain is that of unstable Weibel modes the Weibel-like magnetic channelsand thereforeallowed to (forinstanceinviewofapplicationtorelativisticshocks)in propagateforaparallelmodeliketheFirehose-Alfve´nwave. whichcasethemagneticfieldgrowsandmaybecomequite 4 R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes strong.Severalmechanismsofsaturationorlimitinggrowth filamentsof perpendicularscale ofthe orderofthe electron have been proposed (for energy arguments, quasilinear skindepth.InadditionthemagneticWeibel-likefieldsevolve andothernonlinearmechanismsseeAchterberg&Wiersma, intoasequenceofmirrorstructuresasthelowestfrequency 2007; Pokhotelov&Amariutei, 2011; Pokhotelovetal., magnetically turbulent modes which can evolve according 2010, respectively,andreferencestherein).Herewe arenot totheirownnonlineardynamics(cf.,e.g.,Pokhotelovetal., interestedinsaturationbutintheexcitationoflow-frequency 2008,2010,2013,andreferencestherein). plasma modeswhich maytransportthe field away fromthe regionofexcitation. SinceA>0forunstableWeibel-likemodesgrowingfrom 4 Conclusions thermalbackgroundfluctuations,whilegeneratingasubstan- tialmagneticfieldinthedirectionperpendiculartothedirec- TheWeibel-likeinstabilityhasfrequentlybeenmaderespon- tionofanisotropy,weimmediatelyconcludethatinthepres- sible for the excitation of magnetic fields in otherwise ini- enceofanisotropicbackgroundplasmatheWhistlermodeis tiallynon-magnetizedplasmas.Actually,ashasbeenknown naturallyunstableundertheconditionthatsufficientlymany since long time (Landau&Lifschitz, 1959, 1960; Sitenko, resonant particles exist with large enough resonant energy. 1967; Akhiezeretal., 1975, and followers), thermal fluctu- This is certainly the case when Weibel-like modes are ex- ations in the plasma readily lead to the spontaneous emis- citedbyastreamingpopulation.Inthiscaseoneexpectsthat sionofmagneticfluctuations.Atthelowestfrequenciesthese WhistlerswillberadiatedalongtheWeibel-likefieldperpen- formquasi-stationarymagneticfields(see,e.g.,Yoon,2007; diculartotheexcitinganisotropydirection. TreumannandBaumjohann, 2012) with wavelength longer Whataboutthetworemaininglow-frequencyelectromag- thantheelectronskindepthλe. netic modes, the Firehose and Mirror modes? The former Thesefluctuationsprovideaninitialweakmagneticback- is very easy to infer about. From Eq. (7) and the instability ground field which allows the Weibel-like magnetic field conditionA>0weimmediatelyconstructthecontradiction to penetrate over some distance into the otherwise magnet- 2<0thusexcludingtheFirehosemodefromgrowinginthis ically nontransparent plasma which would inhibit penetra- case.TheFirehosemodewillnotexciteanyAlfve´nwaveson tionofanymagneticfieldoverdistanceslongerthanλ ,ef- e theexpenseoftheWeibelmodeinthisunstablecase.How- fectivelyexponentiallyscreeningthe plasmafrommagnetic ever, the situation is different for the mirror mode. Clearly fields outside the Weibel-like mode source region. In the Eq. (8) can be satisfied when the Weibel mode grows with presenceofanpressureanisotropy,however,Firehose,Mir- A>0(insteadofA<0asintheformerWeibel-stablecase). rorandWhistlermodescangrowintheplasmaandcompete Thecorrespondingconditioncanbewritten with the Weibel-like mode. A Weibel-stable plasma allows for Firehose and Whistler modesto grow,both propagating β 1 β k −1> and A= k −1>0 (12) along the magnetic thermal fluctuation field. In a Weibel- β⊥ βk β⊥ unstable plasma the Firehose instability is stable. However, WhistlerandMirrormodescangrow.Thelatterstructurethe whichyieldsβ >1/Aformirrorinstabilityandcanclearly k unstablygeneratedWeibel-likemagneticfieldintochainsof besatisfied.Thesolutionis magneticbubblesorholesandtraplowfrequencyWhistlers 4 (Baumjohannetal., 1999; Treumann&Baumjohann, 2000; β &1β 1± 1+ (13) k 2 ⊥ s β⊥2 ! Treumannetal., 2000) thus contributing to magnetic struc- tureandturbulenceinadditiontotheknownWeibelfilamen- Of the two solutions one is trivially satisfied. The other re- tation effect. This will have a profound effect on the self- quiresthattheanisotropyA>1/β .Itisinterestingtonote consistent generation of magnetic plasma turbulence in re- ⊥ that since the βs depend inversely on the growing mag- gionsofpressureanisotropy(orrelativestreaming)inanoth- netic field, starting from thermal level, they will decrease erwise initially non-magnetized plasma. Not only may one with Weibel-like mode growth, thereby ultimately stabiliz- expectthatanisotropicorstreamingplasmaswillthusnatu- ing the second Mirrormode branchwhen A∼1/β , while rallybeweaklymagnetized,theywillalsobenaturallyturbu- ⊥ thebranchwiththenegativesignofthesquarerootremains lentthusprovidingplentyofscatteringcentersforenergetic unaffected. particles as required in all stochastic particle acceleration Hence, any growing Weibel-like mode will readily self- scenarios(fora recentreviewcf., e.g., Bykov&Treumann, consistently evolve into a chain of Mirror structures which 2011;Schureetal.,2012,andreferencestherein). ontheirownarefilledwithlow-frequencyWhistlers(forthe The present investigation has been forcefully restricted observational evidence and theoretical arguments see, e.g., to the investigation of one quite simple low-frequency Baumjohannetal., 1999; Treumannetal., 2000) bouncing electromagnetic mode only, the conventional thermally back and force in the mirrors with some of them possibly anisotropic Weibel instability. This instability belongs escapingtotheenvironment.Asaconsequence,theWeibel- to a much wider class of low frequency electromag- like instability does not only lead to magnetic and current netic modes which have been investigated in depth only R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes 5 recently (Schlickeiseretal., 2011; Schlickeiser&Skoda, Baumjohann, W.,Treumann,R.A.,Georgescu,E.,Haerendel,G., 2011; Feltenetal., 2013; Felten&Schlickeiser, 2013a,b). Fornacon,K.-H.&Auster,U.:Waveformandpacketstructureof Several of these modes generate quasi-stationary magnetic lionroars, Ann. Geophys. 17, 1528-1534, doi:10.1007/s00585- fieldsinasimilarwayastheWeibelinstabilityweweredeal- 999-1528-9,1999. Bykov, A. M. & Treumann, R. A.: Fundamentals of collisionless ing with. It will be most interesting to investigate their ef- shocksforastrophysical application,2.Relativisticshocks, As- fect on the excitation of other electromagnetic instabilities, tron. Astrophys. Rev. 19, 42, doi: 10.1007/s00159-011-0042-8, thepropagationofAlfve´nandWhistlerwavesintheplasma arXiv:1105.3221,2011. that has become weakly re-magnetized by them. It should Felten T., Schlickeiser R., Yoon P. H. & Lazar M.: Spontaneous also be noted at this occasion that Sim˜oesetal. (2013) in a electromagneticfluctuationsinunmagnetizedplasmas.II.Rela- veryrecentpaperperformedparticle-in-cellsimulationsofa tivisticformfactorsofaperiodicthermalmodes,Phys.Plasmas thermallyisotropic,quiescentandstableplasmatodetermine 20,052113,doi:10.1063/1.4804402,2013. the electric and magnetic thermal fluctuation levels. As ex- Felten T. & Schlickeiser R.: Spontaneous electromagnetic fluc- pected,bothlevelsaredifferentfromzero.Theelectricfluc- tuations in unmagnetized plasmas. IV. Relativistic form fac- tuations naturally map the Langmuir fluctuation branch for torsofaperiodicLorentzianmodes,Phys.Plasmas20, 082116, wavelength exceeding the Debye length, for shorter wave- doi:10.1063/1.4817804,2013a. Felten T. & Schlickeiser R.: Spontaneous electromagnetic fluc- lengthstheyshowawiderangeofweakfluctuationsextend- tuations in unmagnetized plasmas. V. Relativistic form factors ing even down below the plasma frequency. This result is ofweaklydamped/amplifiedthermalmodes,Phys.Plasmas20, verywellknownsincelong(cf.,e.g.,Lundetal.,1996,with 082117,doi:10.1063/1.4817805,2013b. and without a beam) and is nicely confirmed by these sim- FeltenT.&SchlickeiserR.:Spontaneouselectromagneticfluctua- ulations. The magnetic fluctuations found in this case are tionsinunmagnetizedplasmas.VI.Transverse,collectivemode alsoexpectedinthewholefrequencyrangefromfluctuation for arbitrary distribution functions, Phys. Plasmas 20, 104502, theory of any thermal system (Landau&Lifschitz, 1960; doi:10.1063/1.4824114,2013c. Sitenko,1967).Theirabsencewouldhavebeenverysurpris- FriedB.D.:Mechanismforinstabilityoftransverseplasmawaves, ing. As they should, magnetic fluctuation amplitudes max- Phys.Fluids2,337-,doi:10.1063/1.1705933,1959. imize at lowest frequencies and longest wavelengths. This LandauL.D.&LifshitzE.M.,FluidMechanics,PergamonPress, was noted by Yoon (2007) and, for vanishing anisotropy, CourseofTheoreticalPhysics,vol.6,NewYork,1959. LandauL.D.&LifshitzE.M.,ElectrodynamicsofContinuousMe- alsoin(TreumannandBaumjohann,2012).Boththelasttwo dia,PergamonPress,Oxford,1960. papers became in this respect completely independent of Lund,E.J.,Treumann, R.A.&Labelle, J.:Quasi-thermalfluctu- the Weibel mode indicating the general presence of mag- ations in a beam-plasma system, Phys. Plasmas 3, 1234-1240, neticfluctuationsinthermallyanisotropicandalsothermally 1996,doi:10.1063/1.871747 isotropic plasmas therby ver softly magnetizing an initially Pokhotelov, O. A. & Amariutei, O. A.: Quasi-linear dynam- non-magneticplasmaandpermittingforpropagationoflow- ics of Weibel instability, Ann. Geophys. 29, 1997-2001, frequencyelectromagnetic(mhd)modes. doi:10.5194/angeo-29-1997-2011, 2011. Pokhotelov, O.A.,Sagdeev R.Z.,BalikhinM. A.,Fedun V. N.& DudnikovaG.I.:NonlinearmirrorandWeibelmodes:peculiar- Acknowledgements. ThisresearchwaspartofanoccasionalVisit- ities of quasi-linear dynamics, Ann. Geophys. 28, 2161-2167, ingScientistProgrammein2006/2007atISSI,Bern.RTthankfully doi:10.5194/angeo-28-2161-2010, 2010. recognizestheassistanceoftheISSIlibrarians,AndreaFischerand Pokhotelov, O. A., Onishchenko. O. G. & Stenflo, L.: Physical IrmelaSchweizer.RTalsothanksthetworeferees,P.H.Yoonand mechanismsforelectronmirrorandfieldswellingmodes,Phys. anotheranonymousreferee,fortheirintriguingremarksonthepa- Scripta 87, ID 065303, doi:10.1088/0031-8949/87/06/065303, per. One of the referees has brought to our attention the series of 2013. papersonthenewlowfrequencyrelativisticelectromagneticmodes Pokhotelov,O.A.,Sagdeev,R.Z.,Balikhin,M.A.,Onishchenko. whichisthankfullyacknowledged. O. G. & Fedun, V. N.: Nonlinear mirror waves in non- Maxwellian space plasma, J. Geophys. Res. 113, ID A04225, doi:10.1029/2007JA012642,2008. References Schlickeiser R., Lazar M. & Skoda T.: Spontaneously grow- ing, weakly propagating, transverse fluctuations in anisotropic Achterberg,A.&Wiersma,J.:TheWeibelinstabilityinrelativistic magnetized thermal plasmas., Phys. Plasmas 18, 012103, doi: plasmas. I.Lineartheory, II.Nonlineartheoryandstabilization 10.1063/1.3532787,2011. mechanism, Astron. Astrophys. 475, 1-18, doi: 10.1051/0004- SchlickeiserR.&SkodaT.:Lineartheoryofweaklyamplified,par- 6361:20065365,2007. allelpropagating,transversetemperature-anisotropyinstabilities Akhiezer,A.I.,Akhiezer,I.A.,Sitenko,R.V.&Stepanov,K.N.: in magnetized thermal plasmas, Astrophys. J. 716, 1596-1606, NonlinearTheoryandFluctuations,inPlasmaElectrodynamics, doi:10.108870004-637X/716/2/1596, 2011. vol2,pp.116-142,PregamonPress,Oxford,1975. Schure,K.M.,Bell,A.R.,O’CDrury,L.&Bykov,A.M.:Diffusive Baumjohann,W.&Treumann,R.A.:BasicSpacePlasmaPhysics, shockaccelerationandmagneticfieldamplification,SpaceSci. RevisedEdition,ImperialCollegePressatWorldScientific,Lon- Rev.173,491-519,doi:10.1007/s11214-012-9871-7, 2012. don&Singapore,2012. 6 R.A.TreumannandW.Baumjohann:Weibel,Firehose,Mirrormodes Sim˜oes, F. J. R., Jr., Pavan, J., Gaelzer, R., Ziebell, L. F. & Yoon, P. H.: Particle-in-cell simulations on spontaneous ther- malmagneticfieldfluctuations,Phys.Plasmas20,100702,doi: 10.1063/1.4825249,2013. Sitenko,A.G.:ElectromagneticFluctuationsinPlasma,Academic Press,NewYork,1967. Treumann, R. A.: Fundamentals of collisionless shocks for astro- physical application, 1. Non-relativistic shocks, Astron. Astro- phys.Rev.17,409-535,doi:10.1007/s00159-009-0024-2,2009. Treumann, R. A. & Baumjohann, W.: Collisionless mirror mode trapping,Nonlin.Process.Geophys.7,179-184,2000. Treumann, R. A. and Baumjohann, W.: Advanced Space Plasma Physics,ImperialCollegePress,London,1997. Treumann, R. A. and Baumjohann, W.: A note on the Weibel in- stability and thermal fluctuations, Ann. Geophys. 30, 427-431, doi:10.5194/angeo-30-427-2012,2012. Treumann, R. A., Georgescu, E. & Baumjohann, W.: Lion roar trapping in mirror modes, Geophys. Res. Lett. 27, 1843-1846, doi:10.1029/2000GL003767,2000. Vedenov A. A., Velikhov E. P. & Sagdeev, R. Z. : Sta- bility of plasma. Sov. Phys. Uspekhi. 4, 332–369, doi: 10.1070/PU1961v004n02ABEH003341,1961. WeibelE.S.:Spontaneouslygrowingtransversewavesinaplasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83–84,doi:10.1103/PhysRevLett.2.83,1959. YoonP.H.:Spontaneousthermalmagneticfieldfluctuations.Phys. Plasmas14,83–84,doi:10.1063/1.2741388,2007. YoonP.H.&DavidsonR.C.:Exactanalyticalmodeloftheclassical Weibelinstabilityinarelativisticanisotropicplasma.Phys.Rev. A35,2718–2721,doi:10.1103/PhysRevA.35.2718,1987.