WEDNESDAYMORNING,30NOVEMBER2016 LEHUA,8:00A.M.TO9:05A.M. Session3aAAa ArchitecturalAcousticsandSpeechCommunication:AttheIntersectionofSpeechandArchitectureII KennethW.Good,Cochair Armstrong,2500ColumbiaAve.,Lancaster,PA17601 TakashiYamakawa,Cochair YamahaCorporation,10-1Nakazawa-cho,Naka-ku,Hamamatsu430-8650,Japan CatherineL.Rogers,Cochair Dept.ofCommunicationSciencesandDisorders,UniversityofSouthFlorida,USF,4202E.FowlerAve.,PCD1017, Tampa,FL33620 Chair’sIntroduction—8:00 InvitedPapers 8:05 3aAAa1.Vocaleffortandfatigueinvirtualroomacoustics.PasqualeBottalico,LadyC.CantorCutiva,andEricJ.Hunter(Commu- nicativeSci.andDisord.,MichiganStateUniv.,1026RedCedarRd.,Lansing,MI48910,[email protected]) Vocaleffortisaphysiologicalentitythataccountsforchangesinvoiceproductionasvocalloadingincreases,whichcanbequanti- fiedintermsofSoundPressureLevel(SPL).Itmayhaveimplicationsonpotentialvocalfatigueriskfactors.Thisstudyinvestigates howvocaleffortisaffectedbyroomacoustics.Thechangesintheacousticconditionswereartificiallymanipulated.Thirty-ninesubjects wererecordedwhilereadingatext,15outofthemusedaconversationalstylewhile24wereinstructedtoreadasiftheywereinaclass- roomfullofchildren.EachsubjectwasaskedtoreadinthreedifferentreverberationtimeRT(0.4s,0.8s,and1.2s),intwonoisecondi- tions(backgroundnoiseat25dBAandBabblenoiseat61dBA),inthreedifferentauditoryfeedbacklevels(-5dB,0dB,and5dB),for atotalof18taskspersubjectpresentedinarandomorder.Thesubjectsansweredquestionsaddressingtheirperceptionofvocalfatigue onavisualanalogscale.BabblenoiseandtheorderoftaskpresentationincreasedSPLandself-reportedfatigue.TheSPLincreased whentheRTandtheauditoryfeedbackleveldecreasedfurtherclarifyinghowvocaleffortchangeswithinvariousconditions. 8:25 3aAAa2.Relationshipofthedifferenceofthespeechrateofanannouncementattherailwaystationandthelisteningimpression. Sohei Tsujimura (Structures Technol. Div., Railway Tech. Res. Inst., 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan, [email protected]) Thepurposeofthisstudyistocleartheinfluenceofthespeechrateofanannouncementonthelisteningimpression.Inthisstudy,a subjectiveexperimentinwhichtheelderlyandtheyoungadultsparticipatedwasconductedinthesimulatedstation.Inthisexperiment, the speech rate of an announcement was varied from 4.5 to 9.5 mora/s at 1 mora/s interval, and subjective evaluations (“Listening difficulty,”“Loudness,”and“Strangeness”)oftheannouncementsweremadeunderthreetypesofbackgroundnoiseconditions(L 65 A dB, 70 dB, and 75 dB). The relationships of the speech rate of an announcement and the subjective evaluation such as “Listening difficulty,”“Loudness,”and“Strangeness”wereinvestigated,andtheoptimumspeechrateofanannouncementattherailwaystation wasdiscussed.Asaresult,itwassuggestedthat“Listeningdifficulty”hasthelowestevaluationvaluewhenthespeechrateis6.5mora/s or7.5mora/s.Furthermore,inthisspeechraterange,“Strangeness”asanannouncementattherailwaystationwasnotfelt.Itwasdem- onstratedthattheoptimumspeechrateofanannouncementattherailwaystationisintherangefrom6.5mora/sto7.5mora/s. 8:45 3aAAa3.Roomacousticsandspeechperception:Considerationsforthedevelopingchild.LoriLeibold(Ctr.forHearingRes.,Boys TownNationalRes.Hospital,555North30thSt.,Omaha,NE68124,[email protected]) Whatchildrenhearinnoisyroomsisnotthesamethingthatadultshear.Despiteprecociousmaturationoftheperipheralauditory system,theabilitytohearandunderstandspeechinthepresenceofcompetingbackgroundssoundsisnotfullydevelopeduntiladoles- cence.Thistalkwillreviewresultsofbehavioralstudiesofauditorymaskinginchildren,withafocusonthedevelopmentspeechper- ceptionincomplexacousticalenvironments.Datawillbepresentedthatsupportthehypothesisthatchildren’sincreasedsusceptibilityto auditorymaskingrelativetoadultsisrelatedtoimmatureperceptualprocessingsuchassoundsourcesegregationandselectiveattention. Findingsfromstudiesinvestigatingtheextenttowhichchildrenbenefitfromacousticcuesthoughttofacilitatesoundsourcesegregation willbehighlighted. 3126 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3126 WEDNESDAYMORNING,30NOVEMBER2016 LEHUA,9:20A.M.TO12:00NOON Session3aAAb ArchitecturalAcousticsandSignalProcessinginAcoustics:AdvancedAnalysis,Simulation,and AuralizationinRoomAcousticsI MichaelVorl€ander,Cochair ITA,RWTHAachenUniversity,Kopernikusstr.5,Aachen52056,Germany TetsuyaSakuma,Cochair TheUniversityofTokyo,5-1-5Kashiwanoha,Kashiwa277-8563,Japan ToshikiHanyu,Cochair JuniorCollege,DepartmentofArchitectureandLivingDesign,NihonUniversity,7-24-1,Narashinodai,Funabashi 274-8501,Japan Chair’sIntroduction—9:20 InvitedPapers 9:25 3aAAb1.Canyoutrustyournumericsimulations—Howtoverifyyourcodeandvalidateyourmodel.LauriSavioja(Dept.of M Comput.Sci.,AaltoUniv.,POBox15500,AaltoFI-00076,Finland,Lauri.Savioja@aalto.fi),SebastianPrepelit(cid:2)a,PierreChobeau(Dept. A ofComput.Sci.,AaltoUniv.,Espoo,Finland),andJonathanBotts(ARiA,Culpeper,VA) D. E Inmanyfieldswherenumericsimulationsareutilized,therearestandardpracticesonhowtomakesurethatthesimulationresults W areofhighquality.Inroomacousticsimulationsthisseemstobequiterarealthoughthereareseveralfactorsthataffecttheaccuracyof a thesimulations.Firstofall,thereshouldbeguaranteesthatthemathematicalmodel,typicallypartialdifferentialequations,actually 3 modelthephysicalphenomenaunderinvestigation.Thiscanbemadesurebyvalidationanditcantakeplace,forexample,bycompar- ingthesimulationresultstosomereferencesolutionortomeasurementdata.Thisistypicallynotaconcernforthelinearizedwave equationalthoughaddingrealisticboundaryconditionsmakesitmorechallenging.Anotheressentialfactoraffectingthecorrectnessand reproducibilityoftheresultsisthequalityoftheimplementation.Codeverificationisaprocedurethataimstoguaranteethatanimple- mentationisfreeoferrors.Inthispaper,wereviewsomecommonpracticesofcodeverification.Asapracticalexample,weshowverifi- cationstudiesconductedwithourfinite-differencetime-domainsolver.Inaddition,weshowconvergenceratesobtainedwiththesame solvertodemonstratetheorderoftheaccuracyoftheunderlyingmodels. 9:45 3aAAb2.Crowdnoisesimulationsystemforsoundenvironmentevaluationofpublicspaces.TetsuyaSakuma(GraduateSchoolof FrontierSci., The Univ.of Tokyo,5-1-5 Kashiwanoha, Kashiwa 277-8563,Japan, [email protected]) and YukikoNishimura (Inst.ofTechnol.,ShimizuCorp.,Tokyo,Japan) Aimingatthepredictionandevaluationofsoundenvironmentofpublicspaces,asimulation-basedauralizationsystemisdeveloped forreproducingbackgroundcrowdnoise.Thesystemcombinesroomacousticsmodelingusingaraytracingmethodwithasix-channel soundfieldreproductionsysteminananechoicroom.Assoundsources,footstepsandvoicesofpedestriansmovingonafloor,and HVACnoisefromaceilingaremodeled.Inapreliminaryexaminationsimulatingseveralexistingpublicspaces,ageneralcorrespon- dencetorealsoundfieldareconfirmedinnoiselevelandauditoryimpressionssuchasnoisiness,liveness,andsoon.Next,simulatinga varietyofimaginaryroomswithchangingroomdimensions,absorptionandpedestriandensity,asubjectiveexperimentofauditorypair- wisecomparisonsiscarriedout.Theresultsshowthatthenoisinessfairlycorrespondswiththenoiselevel,whereasthefeelingofrever- berationdoesnotclearlyrelatedtothereverberationtime,whichmaybeduetothecontinuousoverlapofsounds. 10:05–10:20Break 10:20 3aAAb3.Binauralsimulationusingsixchannelreproductionbasedonthefinitedifferencetimedomainroomacousticanalysis. Shinichi Sakamoto (5th Dept., Inst. of Industrial Sci., The Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan, [email protected]),TakatoshiYokota,andSakaeYokoyama(KobayasiInst.ofPhysicalRes.,Tokyo,Japan) Forauralizationofroomacoustics,varioussimulation-reproductionsystems,suchasraytracing,conetracing,imagesourcemeth- ods,andwave-basednumericalanalysisforsoundfieldsimulation,andtransauralsystem,multi-channelloudspeakersystemforsound field reproduction, have been developed. As a sound recording-reproduction system, the six channel system has been developed, in 3127 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3127 whichasoundsignalisrecordedbyorthogonallylocatedsixdirectionalmicrophoneshavingacardioidcharacteristicsandtherecorded signalsarereproducedbyorthogonallyarrangedsixloudspeakers.Toobtainbinauralsignalsforauralizationwithheadphones,thesix channelreproductionwascombinedwithbinauralrecordingusingdummyheadmicrophones.Theproposedconceptcanbeefficiently appliedtoroomacousticsimulation.Asaroomacousticcalculationmethod,finite-differencetime-domainmethodwasemployedinthis study. The calculated room impulse responses were reproduced by six channel reproduction system, and the binaural signals are recordedusingdummyheadmicrophones.Inthispresentation,theconceptofthereproductionsystemisfirststatedandsomeexamples onroomacousticproblemsareintroduced. 10:40 3aAAb4.Evaluationofspatialimpressionofsoundfieldinaconcerthallbasedonthesoundintensityusingmusicalsounds. Toshiki Hanyu (Dept. of Architecture and Living Design, Junior College, Nihon Univ., 7-24-1, Narashinodai, Funabashi, Chiba 274-8501,Japan, [email protected]), Akiho Matsuo (Graduate Schoolof Sci. and Technol.,Dept. of Architecture, Nihon Univ.,Funabashi,Chiba,Japan),andKazumaHoshi(Dept.ofArchitectureandLivingDesign,JuniorCollege,NihonUniv.,Funabashi, Chiba,Japan) Spatialimpressionisoneofthemostimportantfactorforevaluatingsoundfieldsinconcerthalls.Objectiveindices,suchasthelat- eralenergymeasures,forevaluatingthespatialimpressionarestandardizedintheISO-3382.Theseindicescanbemeasuredbyusinga figure-of-eightpatternmicrophone.Ontheotherhand,detailsofspatialinformationofsoundfieldcanbedepictedbymeasuringinstan- taneoussoundintensityinthesoundfield.However,thusfar,thereisnoindexusingthesoundintensity.Inthisstudy,firsttherelation- shipbetweentheexistingobjectiveindicesandthesoundintensityisexamined.Inparticular,theexistingobjectiveindicesareredefined basedonthesoundintensity.Secondarily,someobjectiveindicesarenewlydefinedbyusingthesoundintensity.Theseintensity-based indicescanbasicallybecalculatedbyusingthesoundintensityofimpulseresponsesinaroom.Third,potentialofmeasuringtheinten- sity-basedindicesbyusingmusicalsoundsisexamined.Weinvestigatedtheintensity-basedindicesinseveralsoundfieldsbyusing both impulse responses and musical sounds. Especially, the dependence of signals used in the measurements on the indices was examined. 11:00 3aAAb5.Acousticfeedbackconsiderationsinsimulationsofsoundsystemsinrooms.WolfgangAhnertandStefanFeistel(Ahnert FeistelMediaGroup,Arkonastr.45-49,BerlinD-13189,Germany,[email protected]) Computersareemployedsinceabout30yearsinthesimulationofroom-andelectro-acoustics.Simulationtoolshavealwaysconsid- eredsources,usuallyloudspeakers,butnotmicrophones,whichisthereasonthatacousticfeedbackhasnotbeenconsideredbyanysimula- tiontoolyet.Asanewfeature,adatabaseformicrophonesisintroducedanalogoustothedatabaseofloudspeakersandothergeneral sources.Itispossibleinthiswaytosimulatetheregenerationofsoundovertheclosesystemloop,andestimatethemaximumgainbefore feedback,andrelatedinfluenceonmaximumsoundpressurelevelandspeechintelligibility.Thepaperbrieflydescribestheimportantfea- turesofthenewmicrophonedatabase.Afterwards,thebasicmechanismofacousticfeedbackisexplained,andthedependenceofthefeed- back threshold of different sound sources and receivers as well as the acoustic properties of the room. By calculating the feedback thresholdtheheadroomoftheacousticgainbeforefeedbackmaybepredicted.Thesethresholdvaluesarecalculatedbysimulationand comparedwithmeasurements.Thiswillbedonefordifferentloudspeaker-microphonearrangementsinaselectedconferencehall. 11:20 3aAAb6.Samplingthesoundfieldinauditoriausingalargescalemicrophonearray.IngoB.WitewandMichaelVorl€ander(Inst. ofTech.Acoust.,RWTHAachenUniv.,Kopernikusstrasse5,Aachen52074,Germany,[email protected]) Acousticalmeasurementsinauditoriacanbelaboriouswithmicrophonestobeplacedinlargesamplingareasthataredividedby rowsofseatingandseparatedbybalconies.Asaresult,practicalstudiesareoftenbasedonmeasurementsofarelativelysmallnumber ofselectedsource-receivercombinations.Thegoalofthispaperistopresentanewmeasurement,visualization,andanalysisapproach forcomplexwavefields.Themeasurementapparatus,capableofautomaticallysamplingthesoundfieldinauditoriaoverasurfaceof 5.30mx8.00minhighresolution,isdescribed.Basedondatacollectedwiththemicrophonearray,a casestudyofhowsoundis reflectedandscatteredfromaconcerthall’sboundariesisshown.Thecomparisonofrepeatedmeasurementswithandwithoutthepres- enceofchairsallowsanewperspectiveongrazingsoundpropagationovertheatreseating(“seatdipeffect”).Thepresentationwillcon- cludewiththediscussionofspatialfluctuationsofacousticpropertiesasafactorofmeasurementanalysisanduncertainty. 11:40 3aAAb7. Determination of boundary conditions for room acoustics simulation by application of inverse calculation models. LukasAsp€ock,ThomasMaintz,andMichaelVorl€ander(Inst.ofTech.Acoust.,RWTHAachen,Kopernikusstr.5,AachenD-52074, Germany,[email protected]) Simulationmodelsforroomacousticssimulationusuallypromisetodeliverpreciseresultsforacertainfrequencyrange.However, correctresultscanonlybeguaranteedifaccurateinputparametersareprovided.Standardizedmethodsforthedeterminationofbound- aryconditions,theimpedancetubeandthereverberationchamber,includemeasurementuncertaintieswhichmightleadtodifferentsim- ulation results. These measurement methods also only capture valid results for special situations, e.g., normal or random wave incidence.Thisinsufficientdescriptionoftheboundaryconditionsmakesitchallengingtovalidatesimulationmodelsbycomparing themtomeasuredresults.Evenforrathersimpleroomacousticsituations,state-of-the-artsimulationsfailtomatchmeasurementsusing in-situmeasurementsortextbookvaluesfortheboundaryconditions.Ingeometricalacoustics,thesedeviationscannotonlyexplained byinsufficientmeasurementmethodsfortheinputdatabutalsobydifferenthandlingofreflection,scattering,anddiffraction.Toresolve themismatchbetweenmeasuredandsimulatedresults,optimizationconceptshavebeenproposedtodetermineinputparametersetsfor thesimulationmodels.Thisworkdiscussestwoinverseapproaches,evaluatestheirpracticabilityfortypicalroomacousticscenarios, andpresentstheapplicationinacomparisonofroomacousticsimulationsoftware,theinternationalroundrobinofauralization. 3128 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3128 WEDNESDAYMORNING,30NOVEMBER2016 CORAL2,7:50A.M.TO12:00NOON Session3aAB AnimalBioacoustics:SessioninHonorofWhitlowAuI KellyJ.Benoit-Bird,Cochair CollegeofEarth,Ocean,andAtmosphericSciences,OregonStateUniversity,104COEASAdminBldg.,Corvallis,OR97331 MarcLammers,Cochair HawaiiInstituteofMarineBiology,46-007LilipunaRd.,Kaneohe,HI96744 TomonariAkamatsu,Cochair FisheriesResearchAgency,7620-7,Hasaki,Kamisu,Ibaraki314-0408,Japan Chair’sIntroduction—7:50 InvitedPapers 7:55 3aAB1.Somethingjustclicked:WhitlowAuandthesonarofdolphins.RobertC.Gisiner(IAGC,1225NorthLoopWest,Houston, M TX77008,[email protected]) A Isuspectthatnoone,especiallynotWhit,imaginedin1970thathewouldbecometheworld’sauthorityondolphinbiosonar,also D. E knownasactiveecholocation.SincethattimeWhithasamassedanastonishinglistofhundredsofpublicationsonthesubject,including W theseminaltextonmarinemammalecholocation,TheSonarofDolphins,publishedin1993.Itmaysurprisemanyoftheyoungermem- a bersofASAtoknowthattherewasaColdWar“armsrace”forknowledgeaboutdolphinsonarandthatWhitandhisU.S.colleagues 3 carriedonalivelyandmutuallyenrichingcorrespondencewithSovietcolleaguesagainstabackgroundofgovernmentintriguesandlim- itationsontravelandconferenceattendanceoutofconcernsabouta“biosonargap”everybitasworrisometomilitaryleadersasthenu- clear arms race (well, maybe not quite as worrisome). Since then Whit has branched out to many other fields of bioacoustics and mentoredadiversearrayofstudentsattheUniversityofHawaii,butIwillfocusontheyearsattheNavy’smarinemammalfacilityin Kaneohe,Hawaii,whereIhadthegoodfortunetoworkalongsideWhitforseveralyears. 8:15 3aAB2.Theengineerinfieldbiologist’sclothing:WhitlowAu’sacademicyears.MarcLammers(HawaiiInst.ofMarineBiology, 46-007 Lilipuna Rd., Kaneohe, HI 96744, [email protected]) and Kelly Benoit-Bird (Monterey Bay Aquarium Res. Inst., Moss Landing,CA) In1993,thesameyearthatTheSonarofDolphinswaspublished,WhitlowAutransitionedfromtheU.S.Navy’sNavalOceanSys- temsCentertotheHawaiiInstituteofMarineBiology.Thusbeganasecondprofessionalact,sotospeak,offield-basedresearchand mentoringthenextgenerationofmarinebioacousticians.Anelectricalengineerdoingfieldbiologymaynotseemlikethenaturalorder ofthingsatfirst,butthecombinationofWhitlow’sengineeringandacousticprowesscoupledwiththeenthusiasmandenergyofbright youngbiologistsresultedinapowerfulresearchteam.ThankstoWhitlow’singenuityandcommitmenttoadvancingthestateoftheart, Hawaii’scoastlinesandmarinehabitatsaroundtheworldwereexploredlikeneverbefore.Alackoffundingortheavailabilityofappro- priateinstrumentationwereneveranobstacle,butratherbecameopportunitiesforcreativityandinvention.Whitlowandhisstudents’ researchondolphins,theirprey,snappingshrimp,humpbackwhales,andothertaxaledtomanypioneeringbreakthroughsbothinbiol- ogyandtechnology.WhileWhitlow’sscientificlegacycouldbemeasuredbyhismorethan200publications,itisthehundredsoflives heinfluencedthoughhisacademicandprofessionalservicethatwillultimatelybehisgreatestmark. 8:35 3aAB3.BioacousticsresearchinAsia,promotedbyWhitlowW.L.Au.DingWang,KexiongWang(Inst.ofHydrobiology,CAS,7 DonghuSouthRd.,Wuhan,Hubei430072,China,[email protected]),SONGHAILI(Inst.ofDeep-SeaSci.andEng.,Sanya,China), and Tomonari Akamatsu (National Res. Inst. of Fisheries Sci., Fisheries Res. Agency, Japan Fisheries Res. and Education Agency, Kanagawa,Japan) Thesonarofdolphins(1993)writtenbyWhitlowW.L.Auacceleratedunderwaterbioacousticsresearch,especiallyinAsianodon- tocetes.Beforethisbook,verylimitedultrasonicrecordingofodontocetesandbioacousticsresearchofmarinemammalshavebeen doneinAsia.TheYangtzefreshwatercetaceansprovidedopportunitiesforAsianresearcherstostudybiosonarbehavior,passiveacous- ticmonitoringmethods,andauditoryphysiologyofodontocetes.TheaboveworkswereaccomplishedwiththeWhitlowAu’spreceding studiesasbasicreferences.ThepassiveacousticmonitoringmethoddevelopedfromtheYangtzefinlessporpoiseshas beenapplied 3129 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3129 internationallyinrecentyears.WithencouragementandsupportsfromWhitlowAu,biosonarresearch,auditorysensitivitymeasure- ment,andlongtermacousticmonitoringhavebeenextensivelyconductedonChinesewhitedolphinsandoceanicfinlessporpoises, whicharethekeyspeciesincoastalenvironmentalassessment,especiallyforthewindmillfarmconstructionareainAsia.Inthemean- time,WhitlowdispatchedstudentstohelpourresearchesandalsoaccommodatedAsianstudentsinHawaii.Sofar,therearemorethan fivePh.D.studentsfromAsiainunderwaterbioacousticsfieldsupervisedorpartiallysupervisedbyWhitlowAu.Someofthemhaveal- readygrownupasleadingresearchersinmarinemammalbioacousticsinAsia. 8:55 3aAB4.BiosonardetectionrangeofmesopelagicpatchesbyspinnerdolphinsinHawaii.WhitlowAu(Univ.ofHawaii,P.O.Box 1106,Kailua,HI96734,[email protected]),MarcO.Lammers(Univ.ofHawaii,Kaneohe,HI),andJakobJung(BremenUniv.ofAppl. Sci.,Kaneohe,Hawaii) Spinnerdolphins(Stenellalongirostris)inthenear-shorewatersoftheHawaiianislandsforageonthemesopelagicboundarycom- munity(mbc)oforganismsconsistingofmyctophids,mid-watershrimp,andsmallsquids.Theyforageatnightinacoordinatedfashion swimmingparalleltoshorehuntingforpatchesofpreythattheycanencircleandherdintoatightthree-dimensionalpatch.Aprofiler housingabroadbandecho-rangerthatprojecteddolphin-likebiosonarsignalswasusedtomeasurethetargetstrengthofthembc.Echoes consistedofanumberofhighlightsbunchedtogetherwithtargetstrengthbetween-45and-55dBbasedonadolphin’sintegrationwin- dowof264ms.Noisevaluescollectedbyanautonomousacousticrecorderatmidnightinthelocationwheretheprofilerdatawere obtainedwereusedtoestimatethebiosonardetectionrangeofspinnerdolphinsformesopelagicpatches.Thereceivingdirectivityindex andthewidthoftheauditoryfilterforTursiopstruncatuswereusedtoestimatethebiosonardetectionrangesofStenellalongirostris searchingformbcpatches.Usingthesonarequation,thebiosonarthresholddetectionrangeofspinnerdolphinswasestimatedtobe approximately100plusm,morethansufficientrangefortheanimalstoformulatetheirpreyherdingbehavior. ContributedPapers 9:15 white-beaked dolphins were conducted using a vertical linear 16-hydro- phone array in Skjalfandi Bay, Northeastern Iceland during August 2015 3aAB5.Usingacousticstoexamineodontoceteforagingecology:Preda- andJune2016.ThehydrophoneswereconnectedtoNI-Boardsandtoalap- tor-prey dynamics in the mesopelagic. Kelly J. Benoit-Bird (Monterey topcomputeronboardusingasamplerateof1MHzperchannel.Thegroup BayAquariumRes.Inst.,104COEASAdminBldg.,Corvallis,OR97331, sizeofthedolphinsvariedfromthreeindividualsupto30animalsinthe [email protected]), Brandon Southall (Southall Environ. areaduringtherecordings.Thedolphinecholocationclickswererecorded Assoc.,Inc.,Aptos,CA),andMarkA.Moline(Univ.ofDelaware,Lewes, anditwaspossibletotrackindividualsandtoestimatebeam-patternfrom DE) theirclicks.Estimatedbeampatternfrom45regularclicksgave-3dBBW Fromhisexpertiseinbiosonar,WhitlowAubroughtawealthofideas of9.6degreesandmaximumsourcelevelwas208dBre.1mPa.Inaddition onsonaruse,design,andcontexttothestudyofwildcetaceans,resultingin buzzeswithshortinter-click-intervalsdownto2.5mswererecordedonall great contributions to our understanding of odontocete foraging ecology. 16channels. This contribution follows that foundation, using an integrated approach 9:45–10:00Break comprising echosounders deployed in a deep-diving autonomous under- water vehicle, ship based acoustics, visual observations, direct prey sam- 10:00 pling, and animal-borne tags to explore the behavior of Risso’s dolphins foraging inscatteringlayers offCalifornia.Activeacousticmeasurements 3aAB7. Echolocation behavior of endangered fish-eating killer whales demonstratedthatRisso’sdolphinsdovetodiscretepreylayersthroughout (Orcinusorca)recordedfromdigitalacousticrecordingtags(DTAGs): thedayandnight.UsingacousticdatacollectedfromtheAUV,wefound Insightintosubsurfaceforagingactivity.MarlaM.Holt,M.BradleyHan- layersmadeupofdistinct,smallpatchesofanimalsofsimilarsizeandtax- son, Candice K. Emmons (NOAA NMFS NWFSC, 2725 Montlake Blvd onomyadjacenttocontrastingpatches.Preyformedparticularlytightaggre- East,Seattle,WA98112,[email protected]),DeborahA.Giles(Wild- gations whenRisso’s dolphins were present.Squidmade upover 70% of life,Fish,&ConservationBiology,Univ.ofCalifornia,Davis,Davis,CA), thepatchesinwhichdolphinswerefoundandmorethan95%ofthoseatthe Jeffrey T. Hogan (Cascadia Res. Collective, Olympia, WA), and David deepestdepths.Squidtargetedbydolphinsindeepwaterwerealsolarger, Haas(MarineSci.andConservation,DukeUniv.,Durham,NC) indicatingsignificantbenefitfromtheserare,physicallydemandingdives. Careful integration of a suite of traditional and novel tools is providing Killer whales are apex predators with diet specializations that vary insight into the ecology and dynamics of predator and prey in the amongecotypes.Residentkillerwhalesusebroadbandecholocationclicks mesopelagic. todetectandcapturefishpreyintheirunderwaterenvironment.Here,we describetheecholocationbehaviorofendangeredSouthernResidentkiller 9:30 whalesusingDTAGstodeterminesubsurfaceforagingactivityandtoassess the effects of vessel and noise on foraging behavior. We deployed 29 3aAB6.Echolocation behavior of the Icelandicwhite-beaked (Lageno- DTAGs on individually-identified killer whales and collected complimen- rhyncus albirostris) dolphins: Now and then. Marianne H. Rasmussen taryfielddataoverfourseasonsinsummerhabitat.DTAGshadtwohydro- (HusavikRes.Ctr.,Univ.ofIceland,Hafnarstett3,Husavik,Iceland640, phonesthateachrecordedsoundatsamplingratesof192or240kHz,and Iceland, [email protected]), Jens Koblitz (BioAcoust. Network, BioAcoust. Net- othersensorstoreconstructwhalemovement.Preyremainswereopportun- work,Neuss,Germany),andPeterStilz(BioAcoust.Network,BioAcoust. isticallycollectedduringtagdeploymentstovalidatefeeding.Echolocation Network,Hechingen,Germany) signals of the tagged whale were inferred from spectral content and the Firststudiesoftheecholocationbehaviouroffree-rangingwhite-beaked angle of arrival that corresponded to tag placement. Preliminary results dolphins(Lagenorhyncusalbirostris)wereconductedinFaxafloiBayinthe reveal that individuals produced steady click trains during shallow dives SouthwesternpartofIcelandintheyears1997to1999.However,thesight- then dove to deeper depths while clicking at higher repetition rates that ingrateofwhite-beakeddolphinshasdecreasedinthatareasincethenand graded into bottom-associated low-level buzzes before ascent occurred. thecurrentstudieswereconductedintheNortheasternpartofIceland.The Theseresults,togetherwithmovementdata,arereliablesubsurfaceforaging aim of this study was to investigate the difference between normal clicks cuesinthisendangeredpopulationthatcanbeusedtoassessvesseleffects compared to clicks from buzz sequences. The recordings of the Icelandic onforagingbehavior. 3130 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3130 10:15 Bothdepthandrecordinginstrumentationinfluencedtheclickcharacteris- tics observed. However, the click properties of some species varied to a 3aAB8. Echolocation parameters of toothed whales measured at sea. greater degree than others. These results suggest that developing species- JensC.Koblitz(BioAcoust.Network,Eichenallee32a,Neuss41469,Ger- specificclassifiersbasedondolphinclicksshouldbeapproachedwithcau- many,[email protected]),PeterStilz(BioAcoust.Network,Hechingen, tionandcarefullyvalidated. Germany), Lisa Steiner (Whale Watch Azores, Horta, Portugal), and Marianne H. Rassmussen (The Univ. of Iceland’s Res. Ctr. in H(cid:3)usav(cid:3)ık, 11:00 Husavik,Iceland) 3aAB11.Fromdolphinsonartocommercialscientificacousticsystems. Historically,dataontoothedwhaleecholocationparametersandabilities LarsN.Andersen(UnderwaterSci.,Simrad,KongsbergMaritimeAS,P.O. werecollectedfromcaptiveanimals.Acousticparametersunderinvestiga- Box111,Horten3191,Norway,[email protected]) tionwere inter-click-interval, spectralcontent,sourcelevel,directionality, Dolphins have remarkable sonar systems for underwater navigation, emissiondirection,includingcorrelationandvariationofthoseparameters. objectdetection,objectinspection,andgeneralunderstandingoftheenvi- Technologicaladvancesoverthepastdecadehaveallowedcollectingdata ronment.Itiseasytobeinspiredbytheseadvancedbiosonarsystemswhen on those parameters from animals at sea using acoustic recording tags or designing new advanced commercial sonar systems. Similarly, it is also hydrophonearrays.Usingavertical,lineararrayof16hydrophones,echolo- easy to be inspired when discussing bioacoustics with Whitlow Au. His cation clicksfromharbor porpoises,white-beaked dolphins, commondol- workondolphinsonarsystemshasbeenandstillisofsignificantinspiration phins, and bottlenose dolphins were recorded around Iceland and the formanyworkingwithbothbiologicalandmanmadesonarsystems.Perso- Azores. The animal’spositionat click productionwas computed for each nalexamplesonhowWhitlowAuhasinspireddevelopmentofcommercial clickbasedonthetimeofarrivaldifferences.Intensityandspectraldifferen- scientificechosounderswillbegiven.Characteristicsofdolphinsonarand cesatthearrayallowedmeasuringsourcelevels,beamwidth,andspectral commercialscientificacousticsystemswillbediscussed. variation at different angles relative to on-axis. Advancing knowledge on theuseandvariationofecholocationsignalsoftoothedwhalesintheirnatu- 11:15 ralhabitatwillallowwidespreadandeffectiveuseofacousticmonitoring. 3aAB12.Theecholocationbeamofbottlenosedolphins(Tursiopstrunca- 10:30 tus): High-resolution measurements of horizontal beam patterns and 3aAB9.Echolocationdetectionoffishinghooksandimplicationsforthe nearfield/farfield transitions. Jason Mulsow (National Marine Mammal Hawaiian longline fishery. Aude F. Pacini, Paul E. Nachtigall, Adam B. Foundation,2240ShelterIslandDr.,Ste.200,SanDiego,CA92106,jason. Smith, Rock Owens, and Stephanie Vlachos (School of Ocean and Earth [email protected]),JamesJ.Finneran(U.S.NavyMarineMammalPro- Sci. and Technol., Hawaii Inst. of Marine Biology, 46-007 Lilipuna Rd., gram,SanDiego,CA),BrianK.Branstetter,PatrickW. Moore,Cameron Kaneohe,HI96744,[email protected]) Martin,andDorianS.Houser(NationalMarineMammalFoundation,San Diego,CA) Interactions between marine mammals and fisheries have a biological M andeconomicimpactthatisoftendetrimentaltobothfishermenandspecies TheworkofWhitlowAuandcolleagueshasdemonstratedthatdolphin A of concern. False killer whale bycatch in the Hawaii longline fishery has biosonar forms a highly directional, forward-facing beam. In our recent D. exceededthepotentialbiologicalremoval(PBR)triggeringthedesignation studies,wehaveexpandeduponpreviousworkbymakingbiosonarbeam E of a take reduction team under the Marine Mammal Protection Act measurementsusinghigh-resolutionhydrophonearrayswithupto48hydro- W (MMPA).Asanattempttounderstandtheimportanceofacousticcuesin phones.Bottlenosedolphinsweretrainedtoecholocateonbothphysicaltar- a 3 depredationevents,thisstudypresentspreliminarydatalookingattheecho- getsandphantomechogenerators,withclickssimultaneouslyrecordedon location ability of a false killer whale (Pseudorca crassidens) to detect a allhydrophonesatasamplingrateof2MHz.Targetranges(andsimulated longlinefishinghookatvariousdistances.Usingago/no-goparadigm,the target ranges for phantom echoes) were varied in order to examine the whalewastrainedtoreportthepresenceofthehookatdistancesvaryingin resultingeffectsonthespatialcharacteristicsoftheacousticfield.Thedi- 50 cmincrements.Atotal of 28sessionsof 25trials each werecollected rectivity index of the echolocation beam increased with increasing click andecholocationsignalswererecordedusinganineelementacousticarray. levelandcenterfrequency,andrecordingsfromextremeoff-axisazimuths Numberofclicks,acousticparameters,decisiontimeandperformancewere displayed a two-pulse pattern best explained by internal reflections off of recorded.Thesubjectsuccessfullyreportedthepresenceofthehookupto6 thepremaxillarybones.High-densityhydrophonearraysplacednearecholo- m. This work presents evidence that false killer whales can easily detect cating dolphins’ heads demonstrated that a transition from the geometric fishinggearwhichcouldinfluencehowtheyinteractwithlonglinefishery. nearfieldtothefarfieldoccursatapproximately0.3to0.4mfromthemelon. TheresultswereremarkablysimilartotheearlierfindingsofAuandcol- 10:45 leagues,andprovidefurtherinformationonthespatialcharacteristicsofthe acousticfieldassociatedwithdolphinbiosonar.[FundingfromONR] 3aAB10.Thecharacteristicsofdolphinclickscomparedacrossrecord- ingdepthsandinstruments.MarcLammers(HawaiiInst.ofMarineBiol- 11:30 ogy,46-007LilipunaRd.,Kaneohe,HI96744,[email protected]),Julie N.Oswald(Bio-Waves,Inc.,Encinitas,CA),AnkeKuegler(MarineBiol- 3aAB13.Transmissionbeamcharacteristicsofaspinnerdolphin(Sten- ogyGraduateProgram,Univ.ofHawaii,Honolulu,HI),andEvaM.Nosal ella longirostris). AdamB. Smith,Aude F.Pacini (MarineMammalRes. (AbakaiInt.,LLC,Waianae,HI) Program, Hawaii Inst. of Marine Biology, 1933 Iwi Way, Honolulu, HI 96816,[email protected]),PaulE.Nachtigall(MarineMammalRes. Theidentificationofdelphinidspeciesonthebasisofthecharacteristics Program,HawaiiInst.ofMarineBiology,Kailua,HI),LeoSuarez(Philip- of their acoustic signals is an important aspect of many passive acoustic pines Marine Mammal Stranding Network, Subic Bay, Philippines), Lem monitoring efforts. The development of species classifiers relies on the Aragonez (Inst. of Environ. Sci. and Meteorol., Univ. of the Philippines, assumption that species-specific signal characteristics will be consistent SubicBay,Philippines),CarloMagno(OceanAdventure,SubicBay,Philip- across different recording scenarios, including depth and instrumentation. pines),GailLaule(PhilippinesMarineMammalStrandingNetwork,Subic However,thisassumptionhaslargelyremaineduntested.Here,wereporton Bay, Philippines), and Laura N. Kloepper (Biology, St. Mary’s College, anefforttoexaminewhetherandhowthepropertiesofecholocationclicks SouthBend,IN) obtained from different delphinid species vary as a function of recording depth and the instrument employed. Field recordings of seven species of Transmissionbeamcharacteristicshavebeendescribedinasmallnum- dolphinswereobtainedoffKona,Hawaii,andSanDiego,CA,usinga250 berofodontocetespecies,providinginsightintothebiologicalandecologi- mvessel-basedverticalarraycomposedoffivemicroMARSrecorders,two cal factors that have influenced the design of the outgoing echolocation SoundTraprecorders,andfourC75broadbanddippinghydrophones(Ceta- beam.Thecurrentstudymeasuredtheon-axisspectralcharacteristicsand ceanResearchTechnology).Theclicksobtainedwerecharacterizedonthe transmissionbeampatternofecholocationclicksfromasmalloceanicdel- basisoftheirspectralpropertiesanddurationforeachrecordingdepthand phinid,thespinnerdolphin(Stenellalongirostis).Aformerlystrandedindi- also compared among different instruments deployed at the same depth. vidual was rehabilitated in captivity and trained to station underwater in 3131 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3131 frontofa16elementhydrophonearray.Preliminaryanalysisofasubsetof internalanatomicalstructureandthetransmissionbeampattern.Risso’sdol- recordedclicksshowedon-axisspectralcharacteristicswithameancenter phin(Grampusgriseus)isaninterestingspeciesforthisinvestigationdueto frequencyof68kHzanda meanpeakfrequencyof52kHz.Thedolphin thepresenceofauniqueverticalgrooveinthemiddleoftheirforehead.In exhibitedbothacircularbeamshapeandalsovaryingdegreesofadorso- this study, a linear array of six broadband suction cup hydrophones were ventrallycompressedtransmissionbeam.Themeanangularbeamwidthfor attached along the forehead groove of an adult female Risso’s dolphin allclickswas16.6and14.3degreesinthehorizontalandverticalplanes, trainedtocatchfreshlythaweddeadsquidinfrontofaneight-elementfar- respectively,thoughsomeclicksexhibitedhorizontalbeamwidthsthatwere field hydrophone array. The animal’s movement was simultaneously almosttwiceaswideastheverticalbeamwidth.Theoverallbeamwasgen- observedusinganunderwatervideocamera.Atotalofninesuccessfulprey erallybroaderthanthebeamsofpreviouslydescribedspecies,withamean captureswererecorded.Duringeachcatch,theanimalfirstemittedregular directivityindexforallclicksof21.5dB.Theseresultsarethefirstreports echolocationclicks,whichquicklytransitionedintobuzzes(clickswithdis- oftransmissionbeamcharacteristicsfromaspinnerdolphin. tinctivelyhighrepetitionrate)untilpreycapture.Theamplitudeandrelative timeofarrivalofthesesignalsacrossallchannelswereanalyzed.Forasub- 11:45 setoftrials,therelativeamplitudedistributionacrosschannelsvarysignifi- 3aAB14.BiosonarradiationfieldontheforeheadofaRisso’sdolphin cantlybetweenregularclicksandbuzzesinamannerthatmaybeexplained duringpreycapture.Wu-JungLee(Appl.Phys.Lab.,Univ.ofWashing- bybeampatternchanges.Theseobservationswereinvestigatedjointlywith ton, 1013 NE 40th St., Seattle, WA 98105, [email protected]), datafromthehydrophonearrayandinterpretedinlightofanatomicalstruc- Hsin-YiYu(Inst.forEcologyandEvolutionaryBiology,NationalTaiwan tureofthemelon. Univ.,Taipei,Taiwan),WhitlowW.Au,AdamSmith(HawaiiInst.ofMa- rine Biology, Univ. of Hawaii, Kaneohe, HI), I-Fan Jen (Farglory Ocean Park, Hualien, Taiwan), Wei-Cheng Yang (Dept. of Veterinary Medicine, NationalChiayiUniv.,Chiayi,Taiwan),Ying-ChingFan(FargloryOcean Park,Hualien,Taiwan),PaulE.Nachtigall(HawaiiInst.ofMarineBiology, Univ.ofHawaii,Kaneohe,HI),andLien-SiangChou(Inst.forEcologyand EvolutionaryBiology,NationalTaiwanUniv.,Taipei,Taiwan) On-animalsuctioncupswithembeddedhydrophonesallowexamination of how signals on the forehead of echolocating odontocetes relate to the WEDNESDAYMORNING,30NOVEMBER2016 KAHILI,7:50A.M.TO12:00NOON Session3aAO AcousticalOceanography,UnderwaterAcoustics,andSignalProcessinginAcoustics:OceanAcoustic Tomography:ActiveandPassive,TheoryandExperimentII BruceHowe,Cochair OceanandResourcesEngineering,UniversityofHawaii,2540DoleStreet,HolmesHall402,Honolulu,HI96822 ArataKaneko,Cochair GraduateSchoolofEngineering,HiroshimaUniversity,1-4-1Kagamiyama,Higashi-Hiroshima739-8527,Japan HiroyukiHachiya,Cochair TokyoInstituteofTechnology,2-12-1S5-17,Ookayama,Meguro-ku,Tokyo152-8550,Japan InvitedPapers 7:50 3aAO1.Recentprogress incoastalacoustictomographyinChina:Experimentsanddataassimilation.Xiao-HuaZhu, Ze-Nan Zhu,XiaopengFan,Wen-HuLiu,ChuanzhengZhang,MenghongDong,YuLong,andYun-LongMa(SecondInst.ofOceanogr.,State OceanicAdministration,36BaochubeiRd.,Hangzhou310012,China,[email protected]) Wewillreviewthreerecentcoastalacoustictomography(CAT)experimentscarriedoutinChina:(1)A15-daytomographyexperi- mentthatwascarriedoutforthefirsttimeintheQiongzhouStraittomeasurethemajortidalcurrentconstituents,residualcurrents,and volumetransport;(2)AhighprecisionCATexperimentwith11CATsystemsperformedinthewinterof2015intheDalianbay,China. Thenumberofsuccessfulreciprocaltransmissionlinesreached51,whichmaybethehighestnumberinoceanacoustictomographyhis- tory.TheCATresultsshowedaveryhighaccuracyofvelocitymeasurementswitharoot-mean-squaredifferenceof4cm/scompared withmooredADCPmeasurements;(3)RapidsamplingCATmeasurementswereusedtomapthestructureofnonlineartidal(M and 4 3132 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3132 M)currents.TheresultsindicatethatM ispredominantlygeneratedbytheadvectionterms,whilefrictionmechanismsarepredomi- 6 4 nantforgeneratingM .Finally,wewillintroducetheCATdataassimilatedintoanunstructuredtriangulargridoceanmodel(FVCOM) 6 usingtheensembleKalmanfilterscheme.TheassimilatedvelocitiesagreedbetterwithindependentADCPdatathanthoseobtainedby inversionandsimulation,indicatingthatdataassimilationoftheCATdataistheoptimalmethodforreconstructingthecurrentfield. 8:10 3aAO2. Real-time monitoring of coastal current and throughflow by ocean acoustical tomography with a time reversal re- sponder.HongZheng(ZhejiangOceanUniv.,No.1HaidaSouthRd.,LinchengChangzhiIsland,Zhoushan,Zhejiang316022,China, [email protected])andArataKaneko(HiroshimaUniv.,Higashi-Hiroshima,Japan) TheconventionalCoastalAcousticTomography(CAT)systemworksinacontrolledtimingofsoundtransmissionfromacousticsta- tionssurroundinganobservationsite.Datareceivedineachstationaresenttoanintegrateddatacenterviacommunicationnetworkand areal-timemappingofcurrentandsoundspeedisrealized.InanewtimereversalmirrorCATsystem(TRM-CAT)proposed,data receivedatafewlandstationsbytimereversalrespondersgatheralldatatransferredtothedatacenter.TheSNRofreceivedsignalsis increasedandthecostoffieldexperimentisreduced.TheTRM-CATconsistsoftwotypesofstation,landandresponsestations.The landstationisaconventionalCATstationthatsendscodedsignalstotheresponsestationandreceivestimereversalsignalsreleased. Theresponsestationworkasaresponder,whichdoesnottransmitanyacousticsignals,untilasignalscomingfromthelandstationare recordedinamemory,andthenreconstructedasatimereversaldatatotransmittowardthelandstationatapre-determinedtiming. One-waytraveltimeandtraveltimedifferencearedeterminedbyamatchedfilterwithcodes.Asaresults,theaveragesoundspeedand flowvelocitycanbecalculatedinlandstations.TheTRM-CATisdesignedandthesystemsimulationispresented.Applicationtomoni- toringvolumeandheattransportsthroughstraitsandriversinrealtimeisplannednow.Finally,theTRM-CATservesasacosteffective systemforreal-timemappingofvelocitystructuresinthecoastalsea. ContributedPapers 8:30 CIR estimation problem for a single receiver. Second, we add multiple receivers,relaxsourcespectrumknowledge,andstudyprocessorperform- 3aAO3. An acoustic tomography method for imaging ocean structure ance in resolving possibly coherent multipath arrivals across the vertical with reverberated waves. Robert A. Dunn (Univ. of Hawaii at Manoa, linearray.Third,wediscusstheextensiontoincludemultipleVLAsandse- 1680East-WestRd.,Honolulu,HI96822,[email protected]) quential processing for a source with known location. Application of the M Seismicwide-angleimagingusingship-towedacousticsourcesandnet- NoiseCorrelation2009ExperimentandtheSantaBarbaraChannelExperi- A worksofocean-bottomseismographsisacommontechniqueforexploring ment2016arediscussed. D. earthstructurebeneathoceans.Inthesestudies,therecordeddataaredomi- E 9:00 W natedbyacousticwavespropagatingasreverberationsinthewatercolumn. Ignored by the earth scientist, this data offer an alternative approach for 3aAO5.Deducingenvironmental mismatchfrommatched-mode proc- a 3 determining the structure of the oceans and advancing understanding of essingambiguitysurfacesidelobes.AaronThode(SIO,UCSD,9500Gil- ocean heat contentand mixing processes.A method, referred to as ocean man Dr., MC 0238, La Jolla, CA 92093-0238, [email protected]), Julien acousticreverberationtomography,isdevelopedthatusesthetraveltimesof Bonnel(Lab-STICC(UMRCNRS6285),ENSTA,Bretagne,France),Chris reverberatedwavestoimageoceanacousticstructure.Todemonstratethe Verlinden (SIO, UCSD, New London, Connecticut), Margaux Thieury feasibilityofapplyingthismethodtoexistingandfuturedatacollectedas (Lab-STICC(UMR CNRS 6285), ENSTA, Bretagne, France), and Aileen partofmarineseismicstudies,asyntheticexampleisdevisedandthemaxi- Fagan(U.S.CoastGuardAcad.,NewLondon,CT) mumresolutionofthemethodisexploredinthepresenceofdifferentlevels Theapplicationofnon-lineartimesamplingtobroadbandacousticsig- of data noise. Reverberation tomography offers significant improvement nalspropagatinginshallowwaterhasmademodalfilteringpossibleusinga over classical ocean tomography in that it can produce images of ocean single hydrophone. As a result, incoherent matched-mode processing soundspeedovertheentireverticalheightofthewatercolumnandalong (MMP) techniques are now practical using only single-hydrophone data. longsurveyprofiles(100+km),onascalemuchfiner(100sofmeters)than When MMP ambiguity surfaces are constructed from pairs of modes and traditional tomography. Variations in acoustic wave speed of <1 m/s are plottedasafunctionofrangeandfrequency,boththemainlobeandside- possibletodetectwithexistingtechnology. lobesformstriationsthatembedinformationaboutthetypeandamountof 8:45 environmental mismatch present between the modeled and true environ- ment. Thus the degree of symmetry that a two-mode frequency-averaged 3aAO4.Towardunderwaterchannelimpulseresponseestimationusing ambiguitysurfacedisplaysaroundthemainlobeprovidesametricforidenti- sourcesofopportunity.KayL.Gemba,SantoshNannuru,WilliamHodg- fying environmental mismatch. Acoustic invariant theory, combined with kiss,andPeterGerstoft(MPL,ScrippsInst.ofOceanogr.,Univ.ofCalifor- simulations,demonstratehowmismatchedwaveguidereplicascanbeused nia,SanDiego,8820ShellbackWay,SpiessHall,Rm.446,LaJolla,CA to(1)estimatethetruebottominterfacesoundspeed,(2)determinewhether 92037,[email protected]) adownward-refractingwaterborneprofileispresentindata,and(3)estimate Passiveacoustictomographyexploitstheacousticenergygeneratedby waterbornesoundspeedprofileslopes.Thetheoryalsoexplainswhycertain sourceswithunknownspectralcontentsuchassourcesofopportunity(e.g., mismatchedenvironmentscangenerateveryhighMMPcorrelations,even cargoships)tostudytheocean.However,separatingthechannelimpulse withbroadbandsignals.Inashallowwaterenvironmentwithadownward- response(CIR)fromapossiblymoving,randomradiatorisnon-trivialfor refracting sound speed profile, taking full advantage of this approach coherent processing and the amount of unknown variables may leave the requires reformulation of non-linear time-sampling methods to extract re- problem intractable. Using an incremental approach, we study the sparse fractivemodes.[WorksponsoredbytheNorthPacificResearchBoard.] 3133 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3133 InvitedPapers 9:15 3aAO6.CANAPE-2015(CanadaBasinacousticpropagationexperiment):ApilottomographyexperimentintheBeaufortSea. Matthew Dzieciuch (SIO/UCSD, 9500 Gilman Dr., IGPP-0225, La Jolla, CA 92093-0225, [email protected]) and Peter F. Worcester (SIO/UCSD,SanDiego,CA) Duringthesummerof2015,testtransmissionsweremadefromaship-suspendedsourcetoamooredverticallinearrayintheBeau- fortSea.Thesewerecarriedoutatavarietyofrangesinordertoprepareforayear-long(2016-2017)tomographyexperiment.Amajor concernwastheexpectedtransmissionloss(TL)undertheiceforcurrentclimaticconditionsintheArctic.Agreaterproportionof smoothfirstyearice(ratherthanroughmulti-yearice)wasexpectedduetoclimatechange.Thisshouldleadtolessscatteringanda lowerTL.AcousticpropagationintheArticincludespropagationinaweakshallowductaswellasarrivalsofdeeperturningrays.The TLofthesedifferentregimesiscomparedtothatofanexperimentinatropicalocean,thePhilippineSea.Theinitialanalysisshowsthat theArcticTLscaleswithrangetothefourthpower.ThislargeTLcouldbebecausetheactualiceconditionsintheexperimentalarea hadahighproportionofmulti-yearicein2015. 9:35 3aAO7. Capabilities and challenges of ocean acoustic tomography in Fram Strait. Hanne Sagen (Nansen Environ. and Remote SensingCtr.,Thorm(cid:2)hlensgate47,BergenN-5006,Norway,[email protected])andPeterF.Worcester(ScrippsInst.ofOceanogr., Univ.ofCalifornia,SanDiego,LaJolla,CA) TheFramStraitisofgreatimportanceinoceanclimatemonitoring,asitistheonlydeep-waterconnectionbetweentheArcticand AtlanticOceans.EventhoughanextensivearrayofoceanographicmooringshasbeenoperatedinFramStraitsince1996tomonitorthe transportsthroughtheStrait,thesmallspatialscalesoftheflowarepoorlyresolved,leadingtolargeuncertainties.Beginninginthe 2005-2010 DAMOCLES (Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies) project, underwateracousticmethodswereintroducedtoimprovethemonitoringofFramStrait.A2008-2009pilotstudywithasingleacoustic pathwasfollowedduring2010-2012intheACOBAR(ACoustictechnologyforOBservingtheinterioroftheARcticOcean)projectby theimplementationofamultipurposeacousticnetworkwithatriangleofacoustictransceiversforoceanacoustictomography,ambient noise,andglidernavigation.Themeasurementswerecontinuedduring2014-2016inUNDER-ICE(ArcticOceanUnderMeltingIce), witheightacousticpathscrisscrossingtheFramStraitat78-800N.TomographyinFramStraitisdemanding.Thesound-speedfieldhas aweaksoundchannelwithlittlegeometricdispersion,makingitdifficulttoresolveandidentifyindividualarrivals.Thestrongoceano- graphicvariabilityinspaceandtimereducesthecoherenceofthereceivedsignalandthestabilityofthearrivalpattern.Thestatusofto- mographyinFramStraitwillbesummarized,focusingonthecapabilitiesandchallenges. 9:55–10:10Break ContributedPapers 10:10 10:25 3aAO8. Acoustic noise interferometry and ocean dynamics. Oleg A. 3aAO9.Inferringsalinitymicrostructureusinghigh-frequencyrecipro- Godin(Phys.Dept.,NavalPostgrad.School,NPS833DyerRd.,Bldg.232, calacoustictransmission.AndoneC.Lavery(Appl.OceanPhys.andEng., Monterey,CA93943-5216,[email protected]) Woods Hole Oceanographic Inst., 98 Water St., MS 11, Bigelow 211, WoodsHole,MA02536,[email protected]) Noiseinterferometryreliesonaveraginglongtimeseriestorevealthe deterministicfeaturesofthenoisecross-correlationfunction,whichcontain The Connecticut River Estuaryis highlystratified,stronglyinfluenced informationaboutthepropagationmedium.Unlikethesolidearth,theocean byfreshwaterdischargeandtides,andcharacterizedbyhydrographicfea- exhibitsconsiderablevariabilityatthetimescalesthatareshorterthanthe turessuchasdynamicfronts,plumes,internalwaves,shearinstability,and necessarynoiseaveragingtimesofhoursanddays.Thisvariabilityisapri- the incoming salt-wedge. An experiment was conducted to measure the maryfactorthatlimitsusefulnoiseaveragingtimesandunderliesthemore impactofthesehydrographicfeaturesonthepropagationofhigh-frequency limited applicability of acoustic noise interferometry than of the better sound,andtousethepath-averagedacousticfieldstoinferpropertiesofsa- establishedseismicinterferometry.Thispaperaimstoquantifytherestric- linitymicrostructure.Two120kHz,4-elementarrays,eachelementwithre- tions,whichareimposedonthenoiseinterferometrybytheoceanvariabili- ciprocal transmission capabilities, were deployed for 5 days mid-water- ty,andtoidentifypossibleapplicationsofpassiveacousticremotesensing column,spanningmultipletidalcyclesandarangeofdischargeconditions. tocharacterizingoceandynamics.Atheorywillbepresentedthatquantifies Extensive environmental data were collected, including ADCP profiles, the coherence loss of measured noise cross-correlations due to gravity CTD profiles, salinity microstructure at various depths, and broadband wavesontheoceansurface,tidallyinducedchangesinthewaterdepth,and acousticbackscatter(100-600kHz).Resultsfromthisexperimentshowthat internalgravitywaves.Itisfoundthattemporalvariationsoftheoceanpa- 1)shearinstabilitiesdominatedthestructureofthesoundpropagationdur- rametersleadtofrequency-dependentsuppressionofdeterministicfeatures ing the ebb tide and were coherent features across the propagation path inthenoisecross-correlationfunctions.Thecoherencelosslimitsthereso- length,2)salinitystratificationcouldbededucedfromreciprocaltransmis- lutionofdeterministicinversions.Ontheotherhand,thepassivelymeasured sions,3)theslopeoftheshearinstabilitiescouldbeinferredbycombining coherencelosscanbeinvertedtostatisticallycharacterizeoceandynamics theADCPdataandarrivaltimesatdifferentdepths,and4)andtheincom- atunresolvedspatialandtemporalscales. ingsalt-wedgewasthedominanthydrographicfeatureaffectingthesound propagation during the flood tide. [This work was funded by the ONR OceanAcousticsProgram.] 3134 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3134 10:40 11:10 3aAO10. Information content of ocean travel-times in the Philippine 3aAO12. Acoustic mode travel time variability in the Philippine Sea. Sea.BrianPowell,SarahWilliamson,andXiaofengZhao(Oceanogr.,Univ. TarunK.Chandrayadula(OceanEng.,IITMadras,109BOceanEng.,IIT of Hawaii, 1000 Pope Rd., MSB, Honolulu, HI 96822, powellb@hawaii. Madras,Chennai,TamilNadu600036,India,[email protected]),JohnA. edu) Colosi (Naval Postgrad. School, Monterey, CA), Peter F. Worcester, and MatthewA.Dzieciuch(ScrippsInst.ofOceanogr.,SanDiego,CA) ThePhilippineSeaisahighlyenergeticregionofvaryingscalesfrom planetarydowntotidal.Significanteddyactivityispresentthroughoutthe During the 2009 NPAL (North Pacific Acoustic Laboratory) PhilSea region with enhanced mesoscale activity centered around 22N. Tidally deepwateracousticpropagationexperiment,alowfrequencysourcetrans- driven internal waves emit from the Luzon Strait into the Philippine Sea mittedbroadbandchirpstoamid-waterspanninghydrophonearrayatadis- and are the most energetic inthe world. These multiple dynamical scales tanceof185kmeverythreehoursforapproximatelyonemonth.Inaddition, combine to have significant influence on the density structure and sound transmissionstookplaceeveryfiveminutesduringsometimeperiods.The speed in the region. In 2010, a large deep-water acoustic transmission sourceandthereceiverarraycontainedconductivityandtemperaturesen- experiment was conducted to investigate the acoustics in such a dynamic sors.Themotionsofthesourceandreceivermooringsweremeasuredusing environment.Atotalofseventransceiverswereusedforprovidingsignifi- long-baselineacousticnavigationsystems.Theexperimentsitewasoceano- cantcoverageoverthewesternPhilippineSea.Inthistalk,weuseadata- graphically dynamic and contained significant internal tide activity. This assimilative numerical ocean model to investigate how travel-times from work builds a model to compare the acoustic and oceanographic variabil- theacousticarraycovarywiththeocean.Usingbothpredictionsandanaly- ities.Theacousticobservationsareusedtoestimatethemodetraveltimes, sesfromthemodel,weinvestigatehowwellthemodeliscapableofresolv- andthenrelatedtotheinternaltidedisplacementsatthesourceandthere- ing acoustic rays and travel-times without the constraint of the acoustic ceiverarrays.Thispaperpresentstheworkinthreeparts.Thefirstpartuses observations.Wethenworktoquantifyhowtheoceancovarieswithacous- matchedsubspacedetectorstoestimatethemodetraveltimes.Thesecond tictravel-timestohelpustounderstandthevariabilityintheoceanthatcon- uses the environmental observations to build an internal tide model. The trolsthepropagationandwhatthepropagationcantellusabouttheoceanic thirdconstructsalinearperturbationmodeltorelatetheinternaltidestothe variability. adiabaticmodetraveltimes.Thediscrepanciesbetweenthemodelandthe observationsareattributedtofactorssuchaslimitationsoftheperturbation 10:55 modelforthetraveltimes,rangevariabilitynotaccountedforintheadia- 3aAO11.Deblurringacousticsignalsfor statistical characterizationin baticmodepropagation,andsignalprocessingissues. applicationsofoceanacoustictomography.ViktoriaTaroudaki(Biomedi- 11:25 cal Image Computing Group, Dept. of Pediatrics, Univ. of Washington, 1959NEPacificSt.,Seattle,WA98195,[email protected]),CostasSmarag- 3aAO13. Deep water sound sources for ocean acoustic tomography and dakis,andMichaelTaroudakis(Dept.ofMathematicsandAppl.Mathemat- long-rangenavigation.AndreyK.MorozovandDouglasC.Webb(Teledyne, M ics&IACM,Univ.ofCreteandFORTH,Heraklion,Greece) 49EdgertonDr.,NorthFalmouth,MA02556,[email protected]) A The signal characterization method suggested by Taroudakis et al. Thefirsttestofthetunableorgan-pipewassuccessfullyconductedon11 D. (J.Acoust.Soc.Am.119,1396-1405(2006))basedonthestatisticsofits1- Sept. 2001. The sound source was efficient, powerful, and had unlimited E W D wavelet transform coefficients and successfully applied for inverting operationaldepth,aswellasaminimumlevelofhighfrequencyharmonic acousticsignalsinapplicationsofacousticaloceanographyhasbeenproven content.Theprojectorusesanarrow-band,highlyefficientsoundresonator, a 3 to be sensitive to noise contamination of the signal, but still, it provides whichistunedtomatchthefrequencyandphaseofareferencefrequency- goodinversionresultsifanappropriatedenoisingstrategyisapplied.Inthis modulatedsignal.Since2001,manydeep-wateroceanacousticexperiments work,thestatisticalsignalcharacterizationisappliedtosignalswhichare haveusedthistypeofsoundsource.Thesourcewassuccessfullyusedfor bothblurredandnoisecontaminated.Deblurringofthesignalisachieved ocean acoustic tomography and long range navigation. Recently, it was bymeansofatechniqueintroducedbyTaroudakiandO’Leary(SIAMJ. shownthatabottom-deployedsweptfrequencyarraycanbeusedforhigh- Sci. Comput.37(6),A2947-A2968(2015))forimagedeblurring,anditis resolution seismic imaging of deep geological formations. The long-term based on a statistical near optimal spectral filtering technique that takes operatingexperienceofthesoundsourcesdemandsthedevelopmentofan advantage of the singular values of the approximated blurring matrix and improved sound source system. A finite-element analysis that shows the thePicardParameterofthesignalthatallowsforestimationoftheadditive structuralacousticsofthetunableresonatorhasbeenconductedtoimprove noisepropertiesandestimationoftheerror.Thestudyisextendedtocases theacousticsofthesoundsource.Theanalysisgaveabettersolutionfora whennoaccurateknowledgeoftheblurringmechanismisavailable.Itis tuningmechanismwithanoctavefrequencyrange.Thedevelopmentofthe shown by typical simulated experimental data that the combination of electricandmechanicalsystemsofthesoundsourcewillbediscussed.Tele- deblurringandsimpledenoisingstrategiesprovidegoodresultswithrespect dyne Marine Systems continues innovating promising solutions for ocean tobothsignalcharacterizationandsubsequentinversions. acoustictomography,navigation,andseismo-acousticapplications. InvitedPaper 11:40 3aAO14.Recentprogressincoastalacoustictomography.ArataKaneko(GraduateSchoolofEng.,HiroshimaUniv.,HiroshimaUni- versity, Higashi-Hiroshima 739-8527, Japan, [email protected]), Fadli Syamsudin, Yudi Adityawarman (Agency for the AssessmentandApplicationofTechnol.(BPPT),Jakaruta,Indonesia),HongZheng(ZhejiangOceanUniv.,Zhoushan,China),Chen- FenHuang,NaokazuTaniguchi(NationalTaiwanUniv.,Taipei,Taiwan),XiaohuaZhu(StateOceanicAdministration,SecondInst.of Oceanogr.,Hangzhou,China),JuLin(OceanUniv.ofChina,Qingdao,China),andNoriakiGohda(GraduateSchoolofEng.,Hiroshima Univ.,Higashi-Hiroshima,Japan) Coastalacoustictomography(CAT)whichwasproposedbyHiroshimaUniversityin1990sasashallow-seaapplicationofocean acoustictomography(OAT)isdevelopedasamirror-typeCAT(MCAT)formeasuringdeepstraitthroughflowsinIndonesianarchipel- agoseasinrealtime.MCATsystemiscomposedofalandstation(M0)connectedtoa100msubmarinecableedgedbya5kHzsubsur- face transceiver and triangular-arrayed bottom-moored stations (M1, M2, and M3). Reciprocal data are first obtained among three stationpairs(M1M2,M2M3,andM3M1).DatareceivedatM1fromM2andM3aretransferredtothelandstation(M0)bythefirst 3135 J.Acoust.Soc.Am.,Vol.140,No.4,Pt.2,October2016 5thJointMeetingASA/ASJ 3135
Description: