ebook img

WECC Variable Generation Planning PDF

221 Pages·2013·3.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview WECC Variable Generation Planning

Document name WECC Variable Generation Planning Reference Book Category ( ) Regional Reliability Standard ( ) Regional Criteria ( ) Policy ( ) Guideline (x) Report or other ( ) Charter Document date May 14, 2013 Adopted/approved by Variable Generation Subcommittee Date adopted/approved May 14, 2013 Custodian (entity responsible for maintenance and upkeep) Stored/filed Physical location: Web URL: Previous name/number (if any) Status ( ) in effect ( ) usable, minor formatting/editing required ( ) modification needed ( ) superseded by _____________________ ( ) other _____________________________ ( ) obsolete/archived) W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 WECC Variable Generation Planning Reference Book A Guidebook for Including Variable Generation in the Planning Process Volume 1: Main Document Version 1 May 14, 2013 May 14, 2013 iii Project Lead Dr. Yuri V. Makarov, Chief Scientist – Power Systems, Pacific Northwest National Laboratory (PNNL) Western Electricity Coordinating Council (WECC) Project Manager Matthew Hunsaker, Renewable Integration Manager Contributors Art Diaz-Gonzalez, Supervisory Power System Dispatcher, Western Area Power Administration (WAPA) Ross T. Guttromson, PE, MBA, Manager Energy Storage, Sandia National Laboratory Dr. Pengwei Du, Research Engineer, PNNL Dr. Pavel V. Etingov, Senior Research Engineer, PNNL Dr. Hassan Ghoudjehbaklou, Senior Transmission Planner, San Diego Gas & Electric (SDG&E) Dr. Jian Ma, PE, PMP, Research Engineer, PNNL David Tovar, Principal Electrical Systems Engineer, El Paso Electric Company Dr. Vilayanur V. Viswanathan, PNNL Dr. Bharat Vyakaranam, PNNL WECC Member Reviewers Variable Generation Subcommittee Members Antonio Alvarez, Manager IRP, Pacific Gas and Electric (PG&E) Steve Enyeart, Customer Service Engineering, Bonneville Power Administration (BPA) Yi Zhang, California Independent System Operator (ISO) PNNL Peer Reviewers and Content Advisors Dr. Krishnappa Subbarao, Senior Research Engineer Dr. Pavel V. Etingov, Senior Research Engineer Dr. Landis Kannberg, Manager, Energy Storage and Renewables Integration Dr. Ning Lu, Senior Research Engineer, previous PNNL employee Dr. Ronald Melton, Senior Staff Engineer Acknowledgements U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability WECC Variable Generation Subcommittee (VGS) Members Ravi Aggarwal, BPA Gil Bindewald, DOE Linda Brown, SDG&E Landis Kannberg, Lead Manager – Energy Storage, PNNL Carl Imhoff, Business Line Manager, PNNL Dale King, Product Line Manager, PNNL Dmitry Kosterev, BPA Mariam Mirzadeh, SDG&E Bradley Nickell, Director of Transmission Planning, WECC Robert Sparks, Manager, Grid Planning South, California ISO May 14, 2013 iv Table of Contents Figures ...................................................................................................................................... vii Tables ........................................................................................................................................ ix Executive Summary ................................................................................................................... 1 1 Guidebook Objectives .......................................................................................................... 7 1.1 The guidebook will ....................................................................................................... 7 1.2 The guidebook will NOT .............................................................................................. 7 2 Variable Renewable Generators and Their Impacts on Transmission .................................. 9 2.1 Wind generation types ................................................................................................. 9 2.1.1 Squirrel cage induction generators ................................................................... 9 2.1.2 Doubly fed (wound rotor) induction generator................................................... 9 2.1.3 Direct-drive synchronous generator ................................................................. 9 2.2 Local distribution level impacts and interconnection issues ........................................10 2.3 Brief summary of impacts and issues .........................................................................11 2.4 Types of PV systems ..................................................................................................11 2.5 Impacts of solar photovoltaic generators on power system stability and voltage performance ........................................................................................................................12 3 Transmission Planning ........................................................................................................13 3.1 Probabilistic and multi-variant transmission planning ..................................................13 3.1.1 Sources of uncertainty and variability and their models ...................................13 3.1.2 Deterministic planning versus a probabilistic planning .....................................14 3.1.3 Simulation techniques to capture the variability of VG .....................................15 3.1.4 Probabilistic reliability criteria and analyses ....................................................17 3.2 Evaluation and provision of transmission capacity for VG integration .........................22 3.2.1 Federal Energy Regulatory Commission (FERC) Order 1000 .........................22 3.3 Better utilization of transmission assets ......................................................................23 3.3.1 More accurate and adaptive characterization of the system security conditions 23 3.4 Transmission technologies .........................................................................................29 3.4.1 Ultra-high voltage AC .....................................................................................30 3.4.2 Compact AC lines ...........................................................................................33 3.4.3 Superconductor electricity pipelines ................................................................40 3.4.4 Transmission upgrades ...................................................................................42 3.5 Grid Stability ...............................................................................................................46 3.5.1 Dynamic or transient stability ..........................................................................48 3.5.2 Voltage stability ...............................................................................................52 3.5.3 Small signal stability ........................................................................................65 3.5.4 Fault-induced delayed voltage recovery ..........................................................66 3.6 Grid Controllability ......................................................................................................67 3.6.1 FACTS ............................................................................................................67 3.6.2 Phase-shifting transformers ............................................................................74 3.7 Long-term transmission planning ................................................................................74 4 Generation Planning............................................................................................................76 4.1 Tail events ..................................................................................................................76 4.2 VG capacity value .......................................................................................................76 4.2.1 Capacity value analysis methodology .............................................................76 4.2.2 The use of capacity value in planning .............................................................76 W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 May 14, 2013 v 4.2.3 Wind generation capacity value (task force on the capacity value of wind power, 2011) ..............................................................................................................77 4.2.4 Solar Generation Capacity Value ....................................................................78 4.3 Generation fleet flexibility ............................................................................................78 4.4 Operating reserves .....................................................................................................79 4.4.1 WECC Standard BAL-STD-002-1 – Operating Reserves ................................81 4.4.2 Suggested changes to WECC operating reserves standard ............................82 4.4.3 Impact of variable generation on reserves .......................................................82 4.4.4 Impact of new control performance standards on reserves .............................85 4.5 Overgeneration ...........................................................................................................86 4.5.1 CAISO analysis and practice ...........................................................................86 4.5.2 Proposed oversupply management at BPA .....................................................89 5 Modeling Using VG Specific Models ....................................................................................94 5.1 Models developed by Modeling and Validation Work Group and REMTF ...................94 6 VG Grid Interconnection Considerations .............................................................................97 6.1 Wind generation interconnection studies ....................................................................97 6.2 FERC Order 661-A .....................................................................................................97 6.3 Ride-through capability ...............................................................................................98 6.3.1 Voltage ride-through capability ........................................................................98 6.3.2 Frequency ride-through capability ...................................................................99 6.4 Voltage support and power factor .............................................................................1 00 6.4.1 Discussion on the role of frequency response ............................................... 101 6.4.2 Sources of primary frequency response ........................................................1 02 6.4.3 Calculation of frequency response from simulations or experimental data .... 103 6.4.4 Existing and proposed frequency response standards .................................. 104 6.5 Western Renewable Energy Zones ..........................................................................1 05 6.5.1 The Path Toward Western Renewable Energy Zones ................................... 105 7 Extreme Events, Cascading Failures, and Blackouts .........................................................1 09 8 Considerations for Energy Storage ....................................................................................1 10 8.1 Energy storage technologies and applications ..........................................................1 10 8.1.1 Energy storage applications and benefits ......................................................1 12 8.1.2 Energy storage technologies .........................................................................1 14 8.1.3 Flywheels ......................................................................................................1 33 8.1.4 Pumped hydro power plant ...........................................................................1 34 8.1.5 Superconducting magnetic energy storage (SMES) ...................................... 136 8.1.6 Compressed air energy storage (CAES) ....................................................... 137 8.1.7 Plug-in hybrid electric vehicles (PHEV) .........................................................1 38 8.2 Energy Storage Comparison.....................................................................................1 38 9 Considerations for Demand Response (NERC 2010a) ...................................................... 141 9.1 Capability/feasibility of providing system reliability functions (NERC 2010a) ............. 143 9.2 Inertial response (NERC 2010a) ...............................................................................1 43 9.3 Primary frequency response .....................................................................................1 44 9.4 Regulation ................................................................................................................1 44 9.5 Load following/ramping .............................................................................................1 44 9.6 Dispatchable energy (NERC 2010a) .........................................................................1 44 9.7 Contingency spinning reserve service (NERC 2010a) .............................................. 145 9.8 Contingency non-spinning reserve (NERC 2010a) ................................................... 145 9.9 Replacement or supplemental reserve (NERC 2010a) ............................................. 145 9.10 VG tail event reserve (NERC 2010a) ........................................................................1 45 9.11 Voltage support (NERC 2010a) ................................................................................1 45 9.12 Wide-scale deployment and associated risks (NERC 2010a) ................................... 146 W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 May 14, 2013 vi 9.13 Distribution interconnection – technical concerns (Kroposki 2009) ........................... 147 9.13.1 Short-circuit current coordination (Kroposki 2009) ......................................... 147 9.13.2 Recloser coordination (Kroposki 2009)..........................................................1 47 9.13.3 Voltage regulation (Kroposki 2009) ...............................................................1 48 9.13.4 Grounding (Kroposki 2009) ...........................................................................1 48 9.13.5 Power quality issues (Kroposki 2009) ...........................................................1 48 9.13.6 Intentional and unintentional islanding (Kroposki 2009) ................................. 149 10 Other Considerations Influencing Grid Planning ................................................................1 51 10.1 Consolidation and cooperation among BAs (Makarov et al. 2010a) .......................... 151 10.1.1 Challenges facing individual BAs at high VG penetration levels .................... 151 10.1.2 Motivations for BA cooperation ..................................................................... 153 10.1.3 Benefits from BA cooperation ........................................................................ 153 10.1.4 Major BA cooperation strategies ................................................................... 153 10.2 Microgrids .................................................................................................................1 55 10.2.1 Microgrid Standard IEEE 1547.4 ................................................................... 156 10.2.2 Microgrid Planning and Design (Butt 2011) ................................................... 158 11 Existing Regional VG Planning Practices in the Industry ................................................... 162 11.1 U.S. Planning Guidelines ..........................................................................................1 62 11.1.1 California ISO Interconnection Standards Review Initiative ........................... 162 11.1.2 Bonneville Power Administration (BPA).........................................................1 65 11.1.3 Midwest ISO Multi-Value-Based Planning Process ....................................... 166 Bibliography ............................................................................................................................1 71 W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 May 14, 2013 vii Figures Figure 1. An example of an estimated probability density function. ...........................................16 Figure 2. Some possible risk analysis methods depending on severity and frequency of events . .................................................................................................................................................21 Figure 3. Transmission capability in megawatts of AC lines with 50 percent compensation. .....31 Figure 4. Superconductor pipeline design. ................................................................................40 Figure 5. Losses for 5GW transmission.....................................................................................42 Figure 6. FSC scheme. .............................................................................................................44 Figure 7. Classification of grid stability. .....................................................................................47 Figure 8. Voltage transient performance parameters.................................................................51 Figure 9. Determination of the dynamic reactive power resource requirement. .........................54 Figure 10. Determination of the dynamic reactive power resource requirement. .......................55 Figure 11. Predictor-corrector process. .....................................................................................60 Figure 12. Proposed WECC voltage ride-through requirements for all generators. ...................64 Figure 13. Shunt controller.. ......................................................................................................69 Figure 14. Series controller. ......................................................................................................70 Figure 15. Combined series-series controller.. ..........................................................................70 Figure 16. Combined series-shunt controller.. ...........................................................................70 Figure 17. SVC and off-shore wind power plant. .......................................................................73 Figure 18. Example of Grid Code requirements: fault ride-through capability. ...........................73 Figure 19. Reserve deployment as defined by NERC. ..............................................................80 Figure 20. Simulated upward and downward 5-minute load following capability for ...................87 Figure 21. Detailed overgeneration analysis of May 28, 2012. ..................................................88 Figure 22. Dispatchable generation and overgeneration (. ........................................................89 Figure 23. BPA overgeneration forecast for 2012. ....................................................................90 Figure 24. Four major WTG topologies and their generic models. .............................................95 Figure 25. Simulated Western Interconnection system frequency over the first 19 seconds following the sudden loss of the 2,800 mw of generation for the high reserves case. .............. 103 Figure 26. Steps being taken to move from identification of renewable resources to a WREZ.106 Figure 27. WREZ Initiative Hub Map.. .....................................................................................1 08 Figure 28. Output energy densities of different energy storage technologies. ........................ 110 Figure 29. Ratings of various energy storage technologies. ................................................... 111 Figure 30. Schematic of the ultrabattery electrode configuration. ............................................ 117 Figure 31. Cycle life of the ultrabattery compared with conventional lead-acid and Ni-MH HEV batteries charge (62s) and discharge (60s) at 3ºC rate, with 10s rest after charge and discharge. ...............................................................................................................................................1 18 Figure 32. The Infinity XStorra regenerative fuel cell. ..............................................................1 20 Figure 33. Schematic of the working principle of a NaS cell. ................................................... 122 Figure 34. Schematic of a Li-air cell ........................................................................................1 27 Figure 35. (left) 1-MW/250-kWh mobile Altairnano Li-ion energy storage system deployed at PJM; and (right) A123 Systems’ 12-MW Li-ion Hybrid Ancillary Power Units (Hybrid-APUs™), installed by AES in Chile substation. .......................................................................................1 28 Figure 36. Prudent Energy 5-kW/30-kWh Vanadium Redox Flow Battery System installed at Kitangi, Kenya. ........................................................................................................................1 30 Figure 37. (left) 5-kW/20-kWh RedFlow Power community energy storage systems. (right) Premium Power’s 0.5-MW/2.8-MWh TransFlow 2000 Transportable zinc-bromine energy storage system. .......................................................................................................................1 31 Figure 38. NERC and NAESB characterization of demand response. .................................... 142 W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 May 14, 2013 viii Figure 39. Short-circuit current coordination. ...........................................................................1 47 Figure 40. Recloser coordination. ...........................................................................................1 47 Figure 41. Voltage regulation. ................................................................................................. 148 Figure 42. Harmonics. .............................................................................................................1 49 Figure 43. Microgrid structure. ................................................................................................1 56 Figure 44. Examples of distributed resources island systems. ................................................ 157 Figure 45. Microgrid planning and design. ...............................................................................1 58 Figure 46. Microgrid load profile. .............................................................................................1 59 Figure 47. Wind turbine and fuel cell. .....................................................................................1 60 W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 May 14, 2013 ix Tables Table 1. Comparison of DC superconductor cable with AC transmission line. ...........................41 Table 2. WECC disturbance-performance table of allowable effects on other systems. ............51 Table 3. FACTS applications. ....................................................................................................71 Table 4. Generic WTG models available in PSSE and PSLF ....................................................96 Table 5. NERC PRC-024-1 voltage ride-through performance requirement ............................99 Table 6. WECC generator ONF performance requirement ......................................................1 00 Table 7. Storage applications and benefits ..............................................................................1 13 Table 8. The Application matric- A Logical Analytical Framework. . ......................................... 114 Table 9. Properties of various metal-air chemistries (* - actual Open Circuit Voltage (OCV). .. 125 Table 10. Comparison of the various Premium Power modules. ............................................. 133 Table 11 Summary of capital cost diversity for flywheel systems ............................................ 136 Table 12. Comparison of various energy storage technologies. .............................................. 139 Table 13. The scope of the MVP portfolio analysis. ................................................................1 68 W E S T E R N E L E C T R I C I T Y C O O R D I N A T I N G C O U N C I L • W W W . W E C C . B I Z 155 NORTH 400 WEST • SUITE 200 • SALT LAKE CITY • UTAH • 84103-1114 • PH 801.582.0353 May 14, 2013 1 Executive Summary Renewable variable generation (VG) will penetrate the power grid at a high level, as required by Renewable Portfolio Standards (RPS) in different states. RPS in 24 states established the goal of reaching between 10 to 40 percent of renewable energy integrated into the grid from 2015 to 2030. In 2008, the U.S. Department of Energy (DOE) modeled an energy scenario in which wind would provide 20 percent of U.S. electricity by 2030 (USE Supply, 2008). The following is an excerpt from that report: In the Western Interconnection, California has a goal of reaching 33 percent renewable generation by 2020, including massive developments of wind and solar power. In the Pacific Northwest, the total wind power capacity is expected to reach 6,000 MW (approximately 14 percent of peak demand) by the end of 2011 (Northwest Wind Integration Forum 2007). In the Bonneville Power Administration (BPA) area, wind generation capacity will be 4,000 MW by the end of 2012, and will exceed 6,000 MW by the end of 2013 (BPA 2010b). The power grid planning process is experiencing major new challenges and facing many changes because of the increasing penetration of renewable variable generation. The ongoing process of renewables integration is concurrent with: • unintended effects of deregulation and markets; • new forms of cooperation and coordination between Balancing Authorities (BAs); • uncertainty over future generation additions; and • new elements added to the grid (such as energy storage, microgrids, and demand-side controls). Generation is becoming more uncertain and less predictable because of uncertainties with future generation additions, the variability of renewable generation, and increasingly distributed natural and random market forces. Transmission impacts such as congestion, system stability and reliability are becoming more random. These impacts are less related to the economic dispatch operations, and the original design of the structure and elements of the transmission grids. The behavior of the entire system is more complex; it’s more interrelated, more stressed, and much less predictable. Topics traditionally addressed by grid planning (such as reliability, stability, performance, economics, and modeling) are changing significantly and require new solutions. For instance, deterministic methods traditionally used by grid planning engineers are becoming increasingly inadequate for addressing the increasing levels of variability and uncertainty in the modern power systems. New topics arise that were not historically considered by grid planning. For example, system inertia and frequency response characteristics can be affected with the increasing penetration of renewables and, because of that, grid planning requires certain considerations and decisions to mitigate these impacts. Utilities and transmission system operators, both in the U.S. and abroad, have accumulatedsignificant experience with handling large quantities of renewable generation. Multiple issues related to grid planning, as well as many new solutions, have been addressed or discussed by the industry and the research community. But unlike system operation issues, and despite a significant information exchange and multiple sources of information, little effort has been made so far to consolidate the related planning challenges in one document.

Description:
WECC Variable Generation Subcommittee (VGS) Members. Ravi Aggarwal, BPA. Gil Bindewald, DOE. Linda Brown, SDG&E. Landis Kannberg, Lead
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.