ebook img

Weak dependence for a class of local functionals of Markov chains on $\mathbb{Z}^d$ PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weak dependence for a class of local functionals of Markov chains on $\mathbb{Z}^d$

Weak dependence for a class of local functionals of Markov chains on Zd C. Boldrighini1, A.Marchesiello2, and C. Saffirio3 5 1 1 DipartimentodiMatematicaG.Castelnuovo,SapienzaUniversitàdiRoma,PiazzaleAldo 0 Moro5,00185Roma. 2 GNFM,IstitutoNazionalediAltaMatematica,PiazzaleAldoMoro5,00185Roma. ∗ l 2FacultyofNuclearSciencesandPhysicalEngineering,CzechTechnicalUniversityinPrague, u DeˇcˇínBranch,Pohranicní1,40501Deˇcˇín† J 3InstitutfürMathematikUniversitätZürich,Winterthurerstrasse190,CH-8057Zürich‡ 0 3 ] h Dedicatedtothe90.thanniversaryofAcademicianYu. M.Berezansky p - Abstract h InmanymodelsofMathematicalPhysics,basedonthestudyofaMarkovchain mat ehrt=yo{fh tth}et¥=s0toocnhaZsdti,coonpeecraatnorprroevsteribcytedpetrotuarbsautbivsepaacreguomfelonctsalafuconncttiroanctsioHnproenp-- M [ dbowedwithasuitablenorm.Weshow,ontheexampleofamodelofrandomwalk in random environment with mutual interaction, that the condition is enough to 3 proveaCentralLimitTheoremforsequences f(Skh ) ¥ , whereSisthetime v { }k=0 shiftand f isstrictlylocalinspaceandbelongstoaclassoffunctionalsrelatedto 6 theHöldercontinuosfunctionsonthetorusT1. b 8 4 7 1 Introduction 0 . 1 Manyproblemsin Physicsand othersciences lead to considerMarkovchainson the 0 d-dimensionallattice Zd withlocalinteraction(see [15]). Thestatesof thechainare 5 1 randomfields h t = h t(x):x Zd ,t Z+ = 0,1,... , with h t(x) S, where S is { ∈ } ∈ { } ∈ : usuallyafiniteorcountableset. v i In many models, notably in the work of R.A. Minlos and collaborators(see, e.g. X [1, 3, 4, 6, 13, 14, 15] and referencestherein)one can prove,usually byperturbative ar arguments,theexistenceofaninvariantmeasureP onthestatespaceW =SZd,andof asubspaceoflocalfunctionsH L (W ,P ),invariantwithrespecttothestochastic M 2 operatorT and such that for all F⊂ HM with zero average F P =0, we have, for someconstantm¯ (0,1), ∈ h i ∈ (TF)(x ) m¯ F , x W . (1) M | | ≤ k k ∈ Here isasuitablenormonH ,whichisasaruleidentifiedwiththehelpofan M M k·k expansioninanaturalbasis. [email protected] ∗ †[email protected] ‡chiara.saffi[email protected] 1 Ifoneconsiderssumsoffunctionalsdependingonthespace-timefieldh = h ¥ { t}t=0∈ W =SZd Z+, Z = 0,1,2,... , of the type (cid:229) T f(Sth ), where S is the time shift, Sh = h ×¥ an+d f {isafunctio}nalwhichislocta=l0inspace,onecannotinbgeneralob- { t}t=1 tbainaCentralLimitTheorem(CLT)byrelyingonproperbtiessuchasstrongmixingand thbelike[11],whichneedrequirementsthatmaynotapplyormaybedifficulttoprove [7].Theaimofthepresentpaperistoestablishpropertieswhichholdintheframework describedaboveandaresufficientfortheCLTtohold. Themodelstowhichourdescriptionaboveappliesareofdifferentnature,andthe space H is based on explicit constructions, so that it is convenientto work on the M exampleofaparticularmodel. Themodelthatwe considerhereisa randomwalkin dynamicalrandomenvironmentwithmutualinteractionintroducedinthepapers[2,3]: theMarkovchainh ,t Z ,describesthe“environmentfromthepointofviewofthe t + ∈ randomwalk”,anobjectwhichplaysanimportantroleintheanalysisofrandomwalks inrandomenvironment[12]. OurresultsareinspiredbyaclassicalresultontheCLTforfunctionalsofindepen- dentvariablesbyIbragimovandLinnik[11](Th. 19.3.1). Inthenextsectionwedescribethemodel,whichisaperturbationofanindependent model,andpresentthemainfeatureswhicharerelevanttoouranalysis.In§3weprove somepreliminaryresultsandinthefinalsection§4weproveourmainresults. 2 Description of the model We consideraversionofthemodelstudiedin [2, 3], whichdescribesa discrete-time random walk X Zd, d 1, t Z , evolving in mutual interaction with a random t + fieldx = x (x)∈: x Zd≥, with∈x (x) S= 1 . Thestate spaceisW =SZd, and t t t thespaceo{fthe"traje∈ctori}es"(or"histo∈ries")o{f±the}environmentxˆ = x : t Z is t + { ∈ } W =SZd Z+. Measurabilityisunderstoodwithrespecttothes -algebrageneratedby × thecylindersets. b Thepair(X,x ),t Z is aconditionallyindependentMarkovchain[15], i.e., if t t + A W isameasurable∈set,wehave ⊂ P(X =x+u,x A X =x,x =x¯) t+1 t+1 t t ∈ | (2) =P(X =x+u X =x,x =x¯)P(x A X =x,x =x¯). t+1 t t t+1 t t | ∈ | Ifxˆ W isfixed,thefirstfactorontherightof(2)definesthe"quenched"random ∈ walk,forwhichweassumethesimpleform b P(X =x+u X =x,x =x¯)=P(u)+e c(u)x¯(x), u Zd,x¯ W . (3) t+1 t t 0 | ∈ ∈ Heree >0 isa smallparameter,P isa probabilitydistributiononZd andc is a real 0 function on Zd, such that P(u) e c(u) [0,1), u Zd. We also assume that P is 0 0 ± ∈ ∈ evenandcoddinu,andthatbotharefiniterange. Byhomogeneityinspaceitisnot restrictivetoassumeX =0. 0 FortherandomwalktransitionprobabilityP,withcharacteristicfunctionp˜ (l )= 0 0 l(cid:229) u=∈Z0d,Pa0n(du,)ieni(ol r,ud)ewrteoamsseuemtaettehcahtniitciaslnasosnu-mdepgtieonneriante[3,]i,.ew.,e|ap˜l0s(ol n)e|e=dt1haiftathnedFoonulyrieifr coefficientsofthefunction 1 areabsolutelysummable. p˜0(l ) 2 The evolution of the environment is independent at each site, so that P(x t+1 A X =x,x =x¯)isasumofproductsofthefactors ∈ t t | P(x (y)=s X =x,x =x¯)=(1 d )Q (x¯(y),s)+d Q (x¯(y),s) (4) t+1 t t x,y 0 x,y 1 | − where s= 1, Q ,Q are symmetric 2 2 matrices, Q has eigenvalues 1,m , m 0 1 0 (0,1),andQ± issuchthatQ Q =O(×e ). Inwords,ateachsitex Zd theevol|uti|o∈n 1 1 0 − ∈ isgivenbythetransitionmatrixQ ,exceptatthesitewheretherandomwalkislocated, 0 wherethetransitionmatrixisQ . 1 AnaturalprobabilitymeasureonthestatespaceW istheproductP =p Zd, with 0 0 p =(1/2,1/2).IfQ =Q (noreactionontheenvironment)P isinvariant. 0 0 1 0 The model just described was first considered in [3] both for the annealed and quenched case. If there is no reaction on environment (i.e., Q =Q ) the CLT for 0 1 theannealedandquenchedasymptoticsoftherandomwalkwasobtainedinageneral setting[8]. Anon-perturbativeresultwasobtainedin[9]. Thefieldh (x)=x (X +x),t Z isthe“environmentfromthepointofviewof t t t + the particle”. h : t Z isalso∈a Markovchainwithstate space W , andit canbe t + shown[6,9]th{atitis∈equiv}alenttothefullprocess(X,x ),i.e,forallT Z ,T 1, t t + giventhesequenceh ,...,h onecanreconstruct(X ,x ),...,(X ,x ),a∈lmost-su≥rely. 0 T 0 0 T T ThestochasticoperatorT ontheHilbertspaceH =L (W ;P ),isdefinedas 2 0 (T f)(h¯)= f(h )h =h¯ , f H (5) t+1 t h | i ∈ where the average is w.r.t. the transition probability (3). By our assumptions T preservesparityundhe·irtheexchangeh h . →− In H we introducea convenientbasis. As Q is symmetric, its eigenvectorsare 0 e =(1,1)ande =(1, 1)withcorrespondingeigenvalues1andm . Wedenotetheir 0 1 − componentsase (s),sothate (s)=s,e (s)=1,s= 1,andset j 1 0 ± F G (h¯)=(cid:213) e1(h¯(x))=(cid:213) h¯(x), G G, (6) ∈ x G x G ∈ ∈ whereGisthecollectionofthefinitesubsetsofZd,withF 0/ =1. F G :G G isadis- creteorthonormalcompletebasisinH,andfor f H wewrite{f(h )=∈(cid:229) G }G fG F G . ∈ ∈ ForM>1thedensesubspaceH H isdefinedas M ⊂ HM = f =(cid:229) fG F G : f M=(cid:229) fG M|G |<¥ . (7) { k k | | } G G HM equippedwiththenorm MisaBanachspace. As F G (h ) =1,wehave k·k | | f H f ¥ f M, f HM. (8) k k ≤k k ≤k k ∈ MoreoverH isclosedundermultiplication.Infact,asitistosee, M F G F G =F G G , G G ′=G G ′ G ′ G , ′ △ ′ △ \ ∪ \ sothatif f,g HM and f =(cid:229) G fG F G ,g=(cid:229) G gG F G ,wehave ∈ (cid:229) G G fg M= fG gG M| △ ′| f M g M. (9) k k | ′| ≤k k k k GG ′ Inthepaper[3]ananalysisoftheexpressionofthematrixelementsofT andits adjointT ,relyingontheirspectralpropertiesfore =0,leadstothefollowingresults. ∗ 3 Theorem 2.1. If e and m are small enough, the space H is invariant under T, M andthereisaninvariant|pro|babilitymeasureP forthechain h whichisabsolutely t continuous with respect to P with uniformly bounded densi{ty v}(h ). Moreover H 0 M canbedecomposedas H =H(0)+H M M M where H(0) is the space ofthe constants, andon H the restriction of T actsas a M c M contraction: T f M m¯ f M, fc HM, (10) k k ≤ k k ∈ m¯ (0,1),m¯ = m +O(e ). Furthermoreif f = f +f,f H(0), f H ,then ∈ | | 0 0c∈ M ∈ M f = f(h )dP (h )= f(h )v(bh )dP (h ). b c 0 0 Z Z 3 Preliminary estimates WedenotebyPP theprobabilitymeasureonW = 1 Zd×Z+ generatedbytheinitial {± } distribution P , and by Mt1, 0 t t the s -algebra of subsets of W generated by t0 ≤ 0 ≤ 1 {h t}tt1=t0. AsP isinvariant,PP isinvariantunbderthetimeshift. b Weconsiderfunctionals f whichdependonlyonthevaluesofthefieldattheorigin, i.e., on the sequence of random variables h (0) ¥ . We set for brevity z =h (0) { t }t=0 t t and z ={z t :t ∈Z+}∈W + ={±1}Z+. Mtt01, 0≤t0 <t1 will denotethe s -algebra generatedbythevariables h (0) t1 ,whichisasubalgebraofMt1. { t }t=t0 t0 b Byabuseofnotation, f(z )maydenoteafunctiononW oronW ,accordingtothe + circumstances, and similarly for the s -algebrasMt1, 0 t <t . We also write M andMt forMtt andMtt,respbectively. t0 ≤b 0 1 t Inwhatfollowsif f isafunctiononW weintroducethenotation f()M (h )= 0 G(f)(h ),h W . ThefollowinglemmaisasimpleconsequenceofThehore·m| 2.1i. ∈ b Lemma3.1. Let f(z )beacylinderfunctiononW ,dependingonlyonthevariables + z ,...,z ,m 1. ThenG(f)(h ) H and 0 m 1 M − ≥ ∈ b G(f) C max fg (1+m )m, (11) M≤ g 0,...,m 1 | | ∗ (cid:13) (cid:13) ∈{ − } (cid:13) (cid:13) wherem =M m¯(1+(cid:13)2m¯)a(cid:13)ndC>0isaconstant. ∗ Proof. As f deppendsonlyonz ,...,z itcanbewrittenintheform 0 m 1 − f(z )= (cid:229) fgY g(z ) (12) g 0,...,m 1 ⊂{ − } b b wherethesumrunsoverthesubsetsof 0,...,m 1 ,andthefunctions { − } Y g(z )=(cid:213) z t, g =0/, Y 0/(z )=1 (13) t g 6 ∈ b b are called “Walsh functions”. The first assertion follows from the fact that for any subsetg = t ,t ,...,t Z ,t <t <...<t ,wehave 0 1 k + 0 1 k { }⊂ Gg(h¯):= Y g|Mt0 ∈HM, h¯ ∈W . (14) (cid:10) (cid:11) 4 Infact,ifrj=tk 1 j tk j, j=1,...,k,Gg canbewrittenas − − − − Gg(h¯)=F 0 (h¯) TrkF 0 ...Tr1F 0 (h¯), h¯ W , (15) { } { } { } ∈ i.e.,Gg isobtainedbysuccessive(cid:2)applicationsofT and(cid:3)ofthemultiplicationoperator byF 0 . AsbothoperationsleaveHM invariant,Gg HM. { } ∈ MoreoverthefollowinginequalityisprovedintheAppendix Gg M M|g|m¯[|2g|](1+2m¯)[|g|2−1] Cm |g|, (16) k k ≤ ≤ ∗ where[]denotestheintegerpart,andC>0isaconstantwhichiseasilyworkedout. · Theproofofthelemmafollowsbyobservingthattheinequality(16)implies khf(·)|M0ikM≤ C g∈{0m,..a.,xm−1}|fg |g 0,(cid:229)...,m 1 m ∗|g|. (17) ⊂{ − } We denotebyˆ the probabilitymeasureinducedbyPP onW +. ˆ is stationary withrespecttothetimeshiftonW : Sz = z ,z ,... . + 1 2 { } Thefollowingassertionisasimpleconsequenceofthepreviouslemma. b Lemma3.2. Undertheassumptionsofthepreviouslemma,ifm¯ issosmallthatm <1, thentheprobabilitymeasureˆ onW iscontinuous. ∗ + Proof. We need to prove that any point z (0) = z¯ ¥ W has zeroˆ -measure. { k}k=0 ∈ + ConsiderthecylindersZ (z (0))= z =z¯ : j=0,1,...,n 1 ,whicharedecreasing n j j Z (z (0)) Z (z (0))andsuchtha{t Z (bz (0))= z (0) . T−he}probabilities n+1 n n n ⊂ b ∩ { } b b ˆ Z (z (0)) = 1 b n(cid:213)−1 1+bz¯ z (18) n 2n j j (cid:16) (cid:17) *j=0(cid:0) (cid:1)+ˆ b arecomputedbyexpandingtheinternalproductintermsofthefunctionsY g: n 1 (cid:213) − 1+z¯jz j = (cid:229) Y g(z¯)Y g(z ), z¯ ={z¯j}nj=−01. j=0 g 0,...,n 1 (cid:0) (cid:1) ⊂{ − } b b b Recallingthat Y g(z ) =1,wehave | | b (cid:229) Y g(z¯)Y g(z ) (cid:229) Y g(z ) = (cid:12)(cid:12)(cid:12)*g⊂{0,...,n−1} +ˆ (cid:12)(cid:12)(cid:12)≤g⊂{0,...,n−1}(cid:12)(cid:12)D Eˆ (cid:12)(cid:12) (cid:12) b b (cid:12) (cid:12) b (cid:12) (cid:12)(cid:12)= (cid:229) Y g M0 () (cid:12)(cid:12)P = (cid:229) (cid:12) Gg() P (cid:12). | · · g 0,...,n 1 g 0,...,n 1 ⊂{ − }(cid:12)(cid:10)(cid:10) (cid:11) (cid:11) (cid:12) ⊂{ − }(cid:12)(cid:10) (cid:11) (cid:12) Thereforebytheinequality(cid:12)(16)therightside(cid:12)isboundedby(cid:12) (cid:12) C (cid:229) m |g|=C 1+m ∗ n. 2ng 0,...,n 1 ∗ (cid:18) 2 (cid:19) ⊂{ − } Henceifm <1,therightsidetendsto0asn ¥ ,whichprovesthelemma. ∗ → 5 Fromnowonweassumethatm <1. ∗ Wepasstoconsiderfunctionsforwhichtheexpansion(12)isinfinite,i.e.,g runs over the collection g of the finite subsets Z+. The functions Y g :g g , are an orthonormalbasisinL2(W +,ˆ 0), whereˆ 0=p Z+ istheprobab{ilityme∈asur}eonW + correspondingtotherandomvariables z ¥ beingi.i.d. withdistributionp ( 1)= { k}k=0 ± 1. Thecorrespondingseriesiscalled“Fourier-Walshexpansion”[10]. 2 A map F :W T1, where T1 =[0,1) mod1 is the one-dimensionaltorus, is + → definedbyassociatingtoapointz W thebinaryexpansionx=0,a a ... [0,1], + 0 1 wtwiothbainta=ry1e−x2zpta,ntsi∈onZs,+b.utFitbiescnobomt∈eisnvinevretirbtilbelebeifcawueseexthcleuddeyathdeicsepqouinentsceosfsTu∈c1hhtahvaet z = 1 for all t large enough. Such sequences are a countable set, which has zero t ˆ -m−easure,andalso,byLemma3.2,zeroˆ -measure. 0 UnderthemapF thebasisfunctionsY g gointothefunctions y g(x)=(cid:213) f t(x), g g. t g ∈ ∈ wheref (x)istheimageofz ,t Z ,i.e., t t + ∈ 1, 0 x< 1 f 0(x)= 1, 1≤ x<12 (cid:26) − 2 ≤ andfort 0,f (x)=f (2tx),where2txisunderstood mod1. t 0 ≥ If f L (W ,ˆ )then f˜(x)= f(F 1x) L2(T1,dx)andcanbeexpandedinthe 2 + 0 − orthonor∈malbasis y g :g g ,withcoefficie∈nts { ∈ } 1 fg = f(z )dˆ 0(z )= f˜(x)y g(x)dx. (19) ZW + Z0 AnaturalwayoforderingthebcollectiobngofthefinitesubsetsofZ ,whichplays + an importantrole in the theory, is obtainedby setting g =0/ and g = t ,t ,...,t , 0 n 1 2 r { } whererand0 t1<t2<...<trareuniquelydefinedbytherelationn=2t1+...+2tr. ≤ WecallWalshseriesboththeexpansion ¥ f(z )= (cid:229) fgY g(z )= (cid:229) fg Y g (z ), (20) n n g g n=0 ∈ b b b and the correspondingexpansionsof f˜(x). For the latter, an importantrole is played byaparticularsetofpartialsums 2k 1 S 2k(f˜;x)= (cid:229) fgy g(x)= (cid:229) − fgny gn(x) (21) g 0,1,...,k 1 n=0 ⊂{ − } forwhichitcanbeseen[10]that b S (f˜;x)=2k k f˜(y)dy, a =m2 k, b =(m+1)2 k (22) 2k k − k − a Z k wheretheintegermissuchthata x<b . k k ≤ Thefollowingresultisprovedin[10]. Werepeatithere,withashorterproofbased onconditionalprobabilities. 6 Lemma 3.3. Let f˜(x)beaboundedfunction. ThenitsWalsh-Fouriercoefficients fg , givenby(19),satisfythefollowinginequality w (f˜;2 n 1) fg − − , n=max t:t g , (23) ≤ 2n+2 { ∈ } (cid:12) (cid:12) wherew (f;d )isthe(cid:12)mo(cid:12)dulusofcontinuityof f˜: f(x) f(x) w (f;d )= sup | − ′ |. (24) d x,x T1 |x−′x∈′|=d Proof. Wehave fg =*f(z )(cid:213)t∈g z t+ˆ 0 =*t∈(cid:213)g\{n}z t Df(z )z n|M0n−1E+ˆ 0. b b GoingbacktoT1,andsettingxn= a20 +...+an2−n1,aj= 1−2z j,wehave f(z )z Mn =2n xn+2−n f˜(x)(1 2f (x))dx= (cid:12)D n| 0E(cid:12) Zxn − n (cid:12)(cid:12) b=2n xn+(cid:12)(cid:12)2−n−1 f˜(x) f˜(x+2−n−1) dx, (25) Zxn − (cid:2) (cid:3) fromwhich,takingintoaccount(24),theinequality(23)followsimmediately. TheresultsaboveallowustoprovetheanalogueofLemma3.1forfunctions f such that f˜(x)= f(F 1x)isHöldercontinuous: f˜ Ca (T1),a (0,1). Inwhatfollows − ifg Ca (T1)wedenoteby g Ca thenorman∈dby g a the∈semi–norm ∈ k k k k g(x) g(y) kgka = sup | x −ya |. x,y T1 | − | ∈ Lemma3.4. Let f beafunctiononW ,suchthat f˜ Ca (T1),a (0,1). Ifm¯ isso + smallthatk :=2 a (1+m )<1,thenG(f) H and∈thefollowing∈inequalityholds − M ∗ ∈ G(f) M≤ 1Ca k kf˜kCa , (26) (cid:13) (cid:13) − whereCa >0isapositivecon(cid:13)(cid:13)stant.(cid:13)(cid:13) Proof. If2k n<2k+1 theFouriercoefficientg intheWalshseries(20)issuchthat n max t gn ≤=k. Hence,asdw (f˜;d ) d a f˜ a ,theinequality(23)gives { ∈ } ≤ k k fgn ≤ k21f˜+kaa 2−ka , 2k≤n<2k+1. (27) (cid:12) (cid:12) Thereforewehave (cid:12) (cid:12) (cid:13)(cid:13)(cid:13)(cid:13)2kn+(cid:229)=12−k1fgn(cid:10)Y gn|M0(cid:11)(cid:13)(cid:13)(cid:13)(cid:13)M≤ |2|1f˜+||aa 2−ka 2kn+(cid:229)=12−k1(cid:13)(cid:13)(cid:10)Y gn|M0(cid:11)(cid:13)(cid:13)M. (cid:13) (cid:13) 7 Observemoreoverthatthenumberofelementsofg isr = g =u 1whereu is n n n n n | | − thenumberof"1"inthebinaryexpansionofn. Hence,bytheinequality(16)wefind 2kn+(cid:229)=12−k1 Y gn|M0 M ≤Cks(cid:229)=−01(cid:18)k−s 1(cid:19)m ∗s=C(1+m ∗)k−1, (cid:13)(cid:10) (cid:11)(cid:13) (cid:13) (cid:13) which,as f0/ f ¥ ,togetherwith(27),implies(26). | |≤k k 4 Weak dependence and the Central Limit Theorem Inthepresentparagraphweproveourmainresultsforsumsofsequencesofthetype f(Stz ),t=0,1,.... AsPP andthemeasureˆ inducedbyitonW +areinvariantunder timeshift,thesequenceisstationaryindistribution. Inbwhatfollows denotesanaveragewith respecttoˆ ,PP orP , accordingto h·i thecontext. Moreoverwedenotebyc,i=1,2,...,andsometimesbyconst,different i constantswhichdependontheparametersofthemodel. Let f beaboundedmeasurablefunctiononW +with f ˆ =0,and h i n 1 S (z f)= (cid:229)− f(Stz ), n=1,2,.... (28) n | t=0 b b If f admitsaWalshexpansion(20)then(cid:229) g gfg Y g ˆ = f ˆ =0,sothat ∈ h i h i f(z )= (cid:229) fgY g(z ), Y g(z )=Y g(z ) Y g() ˆ . (29) − · g g,g=0/ ∈ 6 (cid:10) (cid:11) b b b b b b Inwhatfollowswemakerepeateduse ofthefactthatif f isafunctiononW and G(f):= f()M H ,then,byTheorem2.1, f(St+h )M =TtG(f) H . 0 M h M h · | i∈ h · | i ∈ b Theorem4.1. Let f beafunctiononW ,dependingonlyonz ,...,z ,m 1,and + 0 m 1 suchthat f ˆ =0. Thenthedispersionofnormalizedsums Sn(z |f) ten−ds,as≥n ¥ , h i √n → toafinitenon-negativelimit b ¥ s 2= f2() +2(cid:229) f()f(St ) (30) f · ˆ · · ˆ t=1 (cid:10) (cid:11) (cid:10) (cid:11) andtheseriesisabsolutelyconvergent.Moreover,ifs 2f >0,thesequence Sn√(zn|f) tends weaklytothecenteredgaussiandistributionwithdispersions 2. b f Proof. Theproofofthetheoremisbasedontwobasicinequalities. f(·)f(St·)|M0 M≤c1kfk2¥ m¯max{0,t−m+1}(1+m ∗)2m, (31) (cid:13)(cid:10) (cid:11)(cid:13) G(Sn) (cid:13) c2 f ¥ (1+m(cid:13))m, G(S2n) c3 f 2¥ m(1+m )m, (32) M≤ k k ∗ M≤ k k ∗ (cid:13) (cid:13) (cid:13) b (cid:13) where(cid:13)S2(z (cid:13)f)=S2(z f) S2( f) andc(cid:13),c ,c(cid:13)areconstantsindependentofm. (cid:13) n |(cid:13) n | −h n ·| i (cid:13)1 2 (cid:13)3 b b b 8 Fortheproofof(31),observethatift m 1,then f(2)(z ):= f(z )f(St(z ))isa t cylinderfunctionM0t+m−1-measurablean≤dbou−ndedbykfk2¥ . Hence,byLemma3.1 and(19), ft(2) M const f 2¥ (1+m )m+t,and(31)holdsforbt m b1. b Ift kmtakking≤theexpkectkationwit∗hrespecttoMm 1 wehave≤ − ≥ 0− f()f(St )M = f(z )[Tt m+1G(f)](h )M . 0 − m 1 0 · · | − | (cid:10) (cid:11) D E AsG(f) H ,expanding f inWalshsebriesandusingProposition5.1intheAppendix M ∈ andLemma3.1weseethatInequality(31)alsoholdsfort m 1. ≥ − Thefirstcinequalityin(32)isasimpleconsequenceoftheinequality f(St )M = 0 M TtG(f) M m¯t G(f) M,ofLemma3.1andoftheinequality fg kfh ¥ (s·ee| (19k)). k k ≤ k k | |≤k k Moreover,setting f2(z )= f2(z ) f2() and f(2)(z )= f(2)(z ) f(2)() ,wehave t t t −h · i −h · i G(Sb2n) b n(cid:229)−1bT jG(f2) +2bn(cid:229)−2n−b(cid:229) j−1 T jGb(ft2) , (33) M≤ M M j=0 j=0 t=1 (cid:13) b (cid:13) (cid:13) b (cid:13) (cid:13) b (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) and the second inequality in (32) followsby observingthat f2 is a cylinder function withzeroaverageand f2 ¥ f 2¥ ,andusingtheestimate(31)for G(ft2) M. k k ≤k k k k b Passing to the assertions of the theorem, observefirst that, by the probperty(8) of H ,theabsoluteconverbgenceoftheseriesin(30)followsfromInequality(31). M Assumingthats 2>0,fortheproofoftheCLTweadoptaBernsteinscheme. Let f p =[nb ],q =[nd ],k =[ n ],with0<d <b <1/4. Theintervalofintegers n n n p(n)+q(n) [0,n 1]isdividedintosubintervalsoflength p andq : n n − I =[(ℓ 1)(p +q ), ℓp +(ℓ 1)q 1], J =[ℓp +(ℓ 1)q ,ℓ(p +q ) 1], ℓ n n n n ℓ n n n n − − − − − ℓ=1,...k ,andtherestJ =[0,n 1] kn [I J ]. n ∗ − \∪j=1 j∪ j Thesum(28)isthenwrittenasS (z f)=S(M)(z f)+S(R)(z f)where n n n | | | S(M)(z f)= (cid:229)kn S (z f), bS(R)(z f)=b(cid:229)kn S (z f)b+S (z f) (34) n | ℓ=1 Iℓ | n | ℓ=1 Jℓ | J∗ | b b b b b andS ,S ,S denotethesumsoverthecorrespondingsubinterval. Iℓ Jℓ J ∗ WefirstprovethattheL -normofS(R)/√nvanishesasn ¥ ,i.e., 2 n → 2 (cid:229)kn S ( f) =k S2 ( f) +2 (cid:229) S ( f)S ( f) =O(n1 b +d ). * ℓ=1 Jℓ ·| ! + n J1 ·| 1 s<t knh Js ·| Jt ·| i − (cid:10) (cid:11) ≤ ≤ (35) Fortheproof,observethatInequality(31)impliesthat S2 ( f) =O(q ),sothat h J1 ·| i n thefirsttermontherightof(35)isoftheorderk q n1 b +d . n n − ∼ Forthesecondterm,observethat,bytranslationinvariance,recallingthatS (z f) qn | isMq0n+m−2-measurableandtakingthecorrespondingconditionalprobability, b hSJs(·|f)SJt(·|f)|M0i= Sqn(·|f) T(t−s)ℓn+pn−m+2G(Sqn) (h qn−m+2)|M0 , (36) D h i E 9 whereℓ =p +q . Therefore,recallingtheinequalities(8),wegettheestimate n n n |hSJs(·|f)SJt(·|f)i|≤const(1+m ∗)mkfk2¥ qnm¯(t−s)ℓn+pn−m. (37) Asknqnm¯pn constm¯ p2n,thedoublesumontherightof(35)isoftheorderO(m¯ p2n), ≤ sothat(35)isproved. AsforS ,(31)implies S2 ( f) S2 ( f) =O(n 1+b ). Thisfact,together with (35), pJr∗oves that (S(Rh)(Jz∗ ·f|))2i≤/nh=pnO+q(nn·|b +di), and,−as b >d , S(R) does not n − n h | i contributetothelimitingdistribution. Wenowshowthattherandbomvariables S kn arealmostindependentforlarge { Iℓ}ℓ=1 n,i.e.,forthecharacteristicfunctionsf (ℓ)(l z )=exp i l S (z f) wehave n | { √n Iℓ | } (cid:213)kn f (ℓ)(l z ) (cid:213)kn f (ℓ)(bl z ) 0, nb ¥ . (38) n n *ℓ=1 | +−ℓ=1 | → → D E b b Weproceedbyiteration.Asafirststepweconsiderthedifference (cid:213)kn f (ℓ)(l z ) k(cid:213)n−1f (ℓ)(l z ) f (kn)(l z ) = n n n *ℓ=1 | +−*ℓ=1 | + | D E b b b = k(cid:213)n−1f (ℓ)(l z )f (kn)(l z ) , f (ℓ)(l z )=f (ℓ)(l z ) f (ℓ)(l z ) . (39) n n n n n *ℓ=1 | | + | | − | D E Weexpandf (knb)(lbz )inTbaylorseriebsatl =b0,wehave,bforsomel , bl l , n | ∗ | ∗|≤| | l l 2 l 3 f (kn)(l z )=bi S b(z f) S2 (z f) (S2 ( f) +i3 R (l ,z ), n | √n Ikn | − 2n Ikn | − Ikn ·| n233! n ∗ (cid:16) D E(cid:17) (40) b b b l b l b Rn(l ∗,z )=SI3ℓ(z |f)exp{i√∗nSIℓ(z |f)}− SI3ℓ(z |f)exp{i√∗nSIℓ(z |f)} , (41) (cid:28) (cid:29) Clearly|Rnb(l ∗,z )|≤b2p3n|l |3kfk3¥ =bO(n3b ),sothbat,asb <1/4,webneedonlycon- siderthefirsttwotermsoftheexpansion(40). Theproductbofthefirstk 1factorsintheexpectationin(39)ismeasurablewith n respecttoMtn,wheret =(k− 1)p +(k 2)q +m 2. Takingthecorresponding 0 n n− n n− n − conditionalexpectation,byInequality(32)wegetforthefirstordertermtheestimate (cid:12)*kℓ(cid:213)n=−11f n(ℓ)(l |z ) Tqn−m+2G(Spn) (h tn)+(cid:12)≤c4m¯qn−m(1+m ∗)mkfk¥ . (42) (cid:12) h i (cid:12) (cid:12) b (cid:12) (cid:12) (cid:12) Fo(cid:12)rthesecondorderterm,proceedinginthe(cid:12)sameway,andtakingintoaccountthe secondinequality(33)wecometotheestimate (cid:12)*kℓ(cid:213)n=−11f n(ℓ)(l |z ) Tqn−m+2G(S2pn) (h tn)+(cid:12)≤c5m¯qn−mm(1+m ∗)mkfk2¥ . (43) (cid:12) h b i (cid:12) (cid:12) b (cid:12) (cid:12) (cid:12) I(cid:12)terating the procedure for the remaining p(cid:12)roducth(cid:213) ℓk=n−11f n(ℓ)(l |z )i, we see that thequantityontheleftof(38)isoftheorderO(knn−3(21−b ))=O(n−21+2b ), so that, asb <1/4,itvanishesasn ¥ . b → 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.