Eur.Phys.J.C(2015)75:340 DOI10.1140/epjc/s10052-015-3535-1 RegularArticle-TheoreticalPhysics → Weak annihilation and new physics in charmless B MM decays ChristophBobeth1,MartinGorbahn2,a,StefanVickers3 1TechnischeUniversitätMünchen,InstituteforAdvancedStudy,Lichtenbergstraße2a,85748Garching,Germany 2DepartmentofMathematicalSciences,UniversityofLiverpool,LiverpoolL693BX,UK 3TechnischeUniversitätMünchen,ExcellenceClusterUniverse,Boltzmannstraße2,85748Garching,Germany Received:6October2014/Accepted:23June2015/Publishedonline:22July2015 ©TheAuthor(s)2015.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract We use currently available data of nonleptonic viewofthis,strategieshavebeendevelopedtoconstructtests charmless2-bodyB → MMdecays(MM=PP,PV,VV) of the weak phases of the Cabibbo–Kobayashi–Maskawa that are mediated by b → (d,s) QCD- and QED-penguin (CKM)quark-mixingmatrixoftheSMwherethehadronic operatorstostudyweakannihilationandnew-physicseffects matrixelementsaredeterminedfromdata,usuallyinvolving in the framework of QCD factorization. In particular we additionalassumptionsof SU(2)and/or SU(3)flavorsym- introduceoneweak-annihilationparameterfordecaysrelated metries.Althoughthisallowsonetotesttheconsistencyof by (u ↔ d) quark interchange and test this universal- weak phases extracted in tree- and loop-induced processes ity assumption. Within the standard model, the data sup- in the framework of the SM, no other detailed information portsthisassumptionwiththeonlyexceptionsinthe B → canbeobtainedonparticularshort-distancecouplingsofthe Kπ system, which exhibits the well-known “ΔA puz- involvedQCD-andQED-penguinoperators. CP zle”, and some tensions in B → K∗φ. Beyond the stan- In this respect, systematic expansions in the heavy bot- dardmodel,wesimultaneouslydetermineweak-annihilation tom quark mass,m ,yield at leading order in 1/m a sim- b b and new-physics parameters from data, employing model- plifiedrepresentationofhadronic2-bodymatrixelementsin independentscenariosthataddressthe“ΔA puzzle”,such termsofratherwell-knownheavy-to-lightformfactorsand CP as QED-penguins and b → su¯u current-current operators. distributionamplitudes(DA)oftheinvolvedmesons.These We discuss also possibilities that allow further tests of our approaches,QCDfactorization(QCDF)[1–6],soft-collinear assumption once improved measurements from LHCb and effectivetheory(SCET)[7–10]orperturbativeQCD(pQCD) BelleIIbecomeavailable. [11–14], provide predictions at leading order in 1/m that b allow one in principle to test short-distance couplings with data. 1 Introduction Weakannihilation(WA)contributionsareformallyofsub- leadingorderin1/m ,butanadditionalchiralenhancement b Nonleptonic charmless 2-body decays B → MM, with makes them phenomenologically relevant for a consistent final state mesons MM = (PP, PV, VV), form a large description of experimental data in the SM and scenarios classofdecaysthatallowonetotestinprincipletheunder- beyond.InQCDFandSCET,theyareplaguedbynonfactor- lying tree and penguin topologies at the parton level, as izabledivergences,whicharepresentinendpointregionsof predicted by the standard model (SM). Further, the sub- convolutionsofmesonDAs.InQCDF,thesedivergencesare classofQCD-andQED-penguin-dominateddecaysaresen- frequently parameterized by a phenomenological complex sitive to new physics (NP) beyond the SM, as any other parameter[3]andhencearemodel-dependent.Inparticular, b→(d,s)flavor-changingneutral-current(FCNC)process, theassociatedstrongphasegovernsthesizeofCPasymme- which makes them valuable probes of the according short- tries.Inpracticethisleadstolargetheoreticaluncertainties distancecouplings. inthepredictionofobservables[5,15].Althoughbranching Themajorobstacletoconstrainingtheshort-distancecou- fractions and CP asymmetries are sensitive to new-physics plingswithdataistheevaluationofhadronicmatrixelements effects,themodel-dependenceandthearisinguncertainties in 2-body B-meson decays beyond naive factorization. In due to the involved strong phases raise the question how reliable information can be extracted on the short-distance couplings. ae-mail:[email protected] 123 340 Page 2 of 34 Eur.Phys.J.C(2015)75 :340 Here we determine the model-dependence in the frame- is governed by the decay rates RH,L ≡ Γ[BH,L → f] of f D workofQCDFfromdata,admittingonephenomenological theheavyandlightmasseigenstates BH,L,whichyieldthe parameterfordecays B → M M thatarerelatedby(u ↔ D a b averagedandtime-integratedbranchingfraction d)quarkexchange.Thetheoreticaluncertaintiesofallother (cid:4) (cid:5) (cid:6) ilnatpeudtapnadrahmaveetebrese(nseinecAlupdpeednidnitxotAh)ealirkeeltirheoatoeddaassexupnlcaoinrreed- B[BD → f]= 21 dt RLf e−ΓDLt + RHf e−ΓDHt (cid:7) (cid:8) inAppendixB.WeusedataofmostlyQCD-penguindom- 1 RL RH inated Bu,d decays into PP = Kπ, Kη((cid:5)), KK or PV = = 2 ΓLf + ΓHf , (2.2) Kρ, Kφ, Kω, K∗π, K∗η((cid:5)) or VV = K∗ρ, K∗φ, K∗ω, D D K∗K∗,andfurther B decaysinto PP =ππ, KK, Kπ or VV =φφ, K∗φ, K∗sK∗finalstates.Wedeterminealsothe withtheirrespectivelifetimesΓDH,Linthetwoexponentials. The mass eigenstates are related to the flavor eigenstates relativemagnitudeofsubleadingWAamplitudescompared |BL(cid:9)= p|B (cid:9)+q|B¯ (cid:9)and|BH(cid:9)= p|B (cid:9)−q|B¯ (cid:9)defin- totherelevantleadingorderamplitudes.Theresultswithin D D D D D D ing q and p. On the other hand, theoretical predictions are the context of the SM are presented in Sect. 4. Given the madefortheflavoreigenstates,implyingt =0, current data, a simultaneous fit of the WA parameters and (cid:2) (cid:3) theshort-distancecouplingsispursuedinSect.5forgeneric 1 Γ[B¯ → f]+Γ[B → f] NPextensionsoftheSMinordertoexploretheconstraining B[B → f]= 2 D (cid:2) (cid:3)D (2.3) D 1 ΓL+ΓH powerofthesedecays.Beforepresentingourresultsofthe 2 D D fit, we review the observables and collect the experimental input of charmless 2-body decays in Sect. 2. The relevant withtheaveragelifetimeτBD = (ΓD)−1 ≡ 2/(ΓDL +ΓDH). details of QCDF and the definition of the phenomenologi- Bothbranchingfractionsarerelatedvia[16] calparameteraresummarizedinSect.3.Variousappendices B[B → f]=B[B → f]1+yDHf (2.4) collectadditionalmaterialonnumericalinputinAppendixA D D 1−y2 D andthestatisticaltreatmentofexperimentalandtheoretical where y isproportionaltothewidthdifferenceΔΓ D D uncertainties as well as determination of pull values and p valuesinAppendixB. y = ΔΓD ≡ ΓDL−ΓDH. (2.5) D 2ΓD ΓDL+ΓDH TheCPasymmetryduetononvanishingwidthdifference, 2 B → MM observablesanddata H = RHf−RLf, (2.6) f RH+RL f f The 2-body decays of B mesons into final states f = is an independent observable and provides complemen- PP, PV, V V with light charmless pseudoscalar (P) h h tary tests of physics beyond the SM. It can be obtained and/or vector (V ) mesons with polarization mode h = h from measurements of effective lifetimes in untagged, but L,⊥,(cid:7)providevariousobservablesintime-integrated,time- time-dependentratemeasurements[17]ortogetherwiththe dependent,andalsoangularanalyses.Thesearereviewedin mixing-inducedCPasymmetry S andthedirectCPasym- f the first part of this section, whereas in the second part the metryC =−A ofatime-dependentanalysis f CP accordingavailableexperimentaldataislistedthathasbeen usedinthefits. ACP[BD → f](t)= Scofsshi(cid:5)n(ΔΔΓ2mDDt(cid:6)t−)−HCffsicnohs(cid:5)(ΔΔmΓ2DDtt(cid:6)), (2.7) 2.1 Observables where the mass difference of the heavy and light mass eigenstates is denoted as Δm = mH − mL > 0. The D D D The most important observables for decays of charged B three CP asymmetries are not independent of each other, u mesons into a final state f are the CP-averaged branching |Sf|2 + |Cf|2 + |Hf|2 = 1, and they are given in terms fractionandthe(direct)CPasymmetry ofonecomplexquantity B[Bu → f]= τ2Bu (cid:2)Γ[B¯u → f¯]+Γ[Bu → f](cid:3), λf = qp AAff , (2.8) Γ[B¯ → f¯]−Γ[B → f] asfollows: ACP[Bu → f]= Γ[B¯uu → f¯]+Γ[Buu → f]. (2.1) S = 2Im(cid:9)(λf(cid:9)), H = 2Re(cid:9)(λf(cid:9)), f 1+(cid:9)λ (cid:9)2 f 1+(cid:9)λ (cid:9)2 f f ConcerningdecaysofneutralB mesons(D =d,s)into (cid:9) (cid:9) D ¯ 1−(cid:9)λ (cid:9)2 acommonfinalstate f forbothflavoreigenstatesBDandBD, C = (cid:9) f(cid:9) . (2.9) the simplest measurements are untagged rates. The decay f 1+(cid:9)λ (cid:9)2 f 123 Eur.Phys.J.C(2015)75 :340 Page 3 of 34 340 In Eq. (2.8) A = A[B¯ → f] and A = A[B → f] polarizationfractionsandthreeCPasymmetries f D f D denotethedecayamplitudesandinSect.3wereviewtheir calculationinQCDF. f = 1(cid:5)fB¯ + fB(cid:6), A = fhB¯ − fhB. (2.12) In the limit ΔΓD → 0 one obtains B[BD → f] = h 2 h h CPh fB¯ + fB h h B[B → f]. This is the case for D = d to a very good D approximation in the SM where y | = (0.21±0.04)· Concerningthephases,thefollowingtwoCP-averagedand d SM 10−2 (cid:10) 1 [18]. Currently, the precision of experimen- CP-violatingobservablescanbeconstructedforh =((cid:7),⊥): tal results does not yet allow one to test the SM predic- (cid:5) (cid:6) tion. Measurements are available from B-factories |y | = φ = 1 φB¯ +φB (0.7±0.9)·10−2 [19]andarecentdeterminationofLdHCb h 2 h (cid:5) h (cid:6) (cid:5) (cid:6) fromeffectivelifetimesy =(−2.2±1.4)·10−2[20],which −πsgn φB¯ +φB θ φB¯ −φB −π , d h h h h assumestheSMresultfor H .Model-independentanalysis (cid:5) (cid:6) (cid:5) (cid:6) f 1 ¯ ¯ ofeffectsofNPinΔΓd showthatthereisstillroomforhuge Δφh = 2 φhB −φhB −πθ φhB +φhB . (2.13) nonstandard contributions [21]. We use the approximation yd = 0 in all our predictions, which is well justified in the Thisconventionimpliesφh = Δφh = 0atleadingorderin SMandalsotheconsideredNPscenarios. QCDF,whereallstrongphasesarezero[23]andmightdiffer Ontheotherhand,ΔΓs isnotnegligibleandthecurrent forthesignof AL relativeto A(cid:7),⊥ adoptedbyexperimental worldaveragefrom Bs → J/ψφanalysesaloneis[19] collaborations. y =(5.8±1.0)·10−2, (2.10) InthecaseofBs → VV decays,againacorrectionfactor s Eq.(2.4)dueto y (cid:13)=0applies,however,now s whichwillbeusedinouranalysis.Ingeneral−1≤ H ≤1, f and thereforethecorrection factoronther.h.s.ofEq.(2.4) (cid:11) 1+y H can become of O(10 %) for final states f that are CP B[BD → f]= B[BD → fh] 1−Dy2 fh, h=L,(cid:7),⊥ D eigenstates, as has been found for some cases [16]. Other asivse,rathgeeseftfaekcetivinetolifaectcimouentmBeassu→remJe/nψtπofπBang→ularKa+naKly−- f¯h = (cid:11)B[BBD[B→→fh]f ] 1+1−yDyH2 fh. (2.14) s D h D and flavor-specific Bs lifetime averages, which involve h=L,(cid:7),⊥ additional assumptions in the potential presence of new physics.TheyyieldaslightlylargervaluethaninEq.(2.10), Here Hfh is defined as in Eq. (2.9) and the quantity λf is ys = (6.2 ±0.9)·10−2 [19], being consistent within the evaluatedwith Af → Afh. uncertainties. Besidestheseobservables,furthercombinationsarecon- BesidesbranchingfractionsandCPasymmetries,2-body sideredthatinvolvedifferenttypesofchargedandneutralB, decays B → VV with subsequent decays V → PP pro- Ma,andMbmesons.Theyareeitherratiosofbranchingfrac- vide additional observables in the full angular analysis of tionsordifferencesofdirectCPasymmetries.Thecomplete the 4-body final state [22]. The decay can be described in setofratios[15,31]is terms of three amplitudes, which can be chosen to corre- (cid:12) (cid:13) (cid:12) (cid:13) slVopawo,hniandVgtb,o,thrbdaenwfisvniteihtreshihtayela=icmitpihelbistuo=dfetsh(:LeA,fi(cid:7)+n,⊥a,l−-=s)tao(teAr,v+aesc±tionAr−tmh)ee/s√foon2ls-. RcB =2BB(cid:12)(cid:12)BB−−→→ MMaa−0MMb−(cid:13)b0(cid:13), RcMa =2BB(cid:12)BB¯−0 →→MMa−a−MMb+b0(cid:13), ctTiaohnne,btwherheemereemawsauegrnefoidtlulodinwesatahnethddreetewfifnooiltdiroenlaasntig[v2ue3la]pr.hHadseeecnsacyeo,fdfiitvsheteriCbAPuh-- RcMb = BB(cid:12)BB¯(cid:12)−0 →→MMa−a0MMbb−+(cid:13),(cid:13) (cid:12) (cid:13) TainvhetehrraeegceaadrseeanpwdohlaCerrPiez-aattasigyogmninmfgreatocrtfiicothnoesbsianenirtvdiaarlbelBleas-tflicvaaevnoprbheiassmpeseoasfssouibrrleeBd¯. RnB = 21 BB(cid:12)B¯B¯00→→MMa−a0MMbb+0(cid:13) , RnMa = 21 BB(cid:12)BB¯−0 →→ MMaa00MMbb−0(cid:13) , (cid:12) (cid:13) dfehB¯ca=ys(cid:10)|hA¯|hA¯|2h|2, φ(cid:7)B¯,⊥ =arg A¯A¯(cid:7),L⊥. (2.11) RnMb = BB(cid:12)BB¯−0 →→ MMaa−0MMb0b0(cid:13) , (2.15) IonneviueswesofthtehebrnaonrcmhainligzaftriaocnticoonnadnitdiotnwofLBo¯f+thef(cid:7)B¯po+larfi⊥zB¯at=ion1 wofhRercMe,naf,aMcbt,ocrsonotfraτrBy0t/oτ[B1−5]a.rIetnisoatninticcliupdaetedditnhathtethdeesfienraittiioons fractions. In combination with the same quantities from B are measured directly in experimental analyses, such that decays, replacing A¯ → A , one has three CP-averaged commonexperimentalsystematicerrorscancel.Further,the h h 123 340 Page 4 of 34 Eur.Phys.J.C(2015)75 :340 Table1 ObservablesofB→ PPdecaysmediatedbyb→sandb→dtransitionsthatareusedinthefit b→s b→d B→Kπ B→Kη B→Kη(cid:5) Bs →KK [24] Bs →ππ B→KK Bs →Kπ K0π0:B,C, S K0η:B K0η(cid:5):B,C, S K+K−:B,C, S π+π−:B K0K¯0:B K+π−:B,C K+π−:B,C K+η:B,C K+η(cid:5):B,C K+K−:B K+π0:B,C K+K0:B,C K0π+:B,C Table2 ObservablesofB→ PV decaysmediatedbyb→stransitionsthatareusedinthefit b→s B→K∗π B→Kρ B→K∗η B→K∗η(cid:5) B→Kφ[25–28] B→Kω[29,30] K∗0π0:B,C K0ρ0:B,C, S K∗0η:B,C K∗0η(cid:5):B,C K0φ:B,C, S K0ω:B,C, S K∗+π−:B,C K+ρ−:B,C K∗+η:B,C K∗+η(cid:5):B,C K+φ:B,C K+ω:B,C K∗+π0:B,C K+ρ0:B,C K∗0π+:B,C K0ρ+:B,C followingtwodifferencesofdirectCPasymmetriesarefre- whichthereforeexclusivelymeasurestheinterferenceofCP quentlyconsidered: violationinthedecayandinmixing. (cid:14) (cid:15) (cid:14) (cid:15) −ΔC =ΔACP =ACP(cid:14)B−→Ma−Mb0(cid:15)−ACP(cid:14)B¯0→Ma−Mb+(cid:15), 2.2 Data ΔA0CP =ACP B−→Ma0Mb− −ACP B¯0→ Ma0Mb0 , (2.16) WeinvestigatemainlyB → MMdecaysmediatedbyb →s transitions but will consider also some b → d examples. inwhichinQCDFacancelationofuncertaintiestakesplace Thefinal2-mesonstateMMconsistseitheroutoftwopseu- [32]. doscalars (MM = PP) or one pseudoscalar and one vec- In order to separate NP effects in decays from those in tor (MM = PV)1 or two vectors (MM = VV), which B −B mixinginS ,wedefinetheobservables[33,34] D D f are listed in Tables 1, 2, and 3, respectively, together with (cid:16) the observables that have been measured. We use the most ΔSf =−ηfSf − SS((BB¯¯ds →→JJ//ψψφK¯)S) DD ==sd (2.17) mrecixeinntg-vianlduuecseodfCbPraansychminmgetrraietisoAs B a=s −weCllanasddSifrreocmt atnhde CP Heavy Flavor Averaging Group (HFAG) 2012 compilation with η = ±1 the CP eigenvalue of the final state f. The f andupdatesfrom2013/2014onthewebsite[19].Fordecays decays B¯ → J/ψ K¯ and B¯ → J/ψφ aredominatedby d S s intoVV finalstatesweincludealsothedataofpolarization contributions from charm tree-level operators and CP vio- fractions fL,⊥, the relative phases φ(cid:7),⊥ and CP asymme- lationinthedecayisbothparametrically(CKM)andtopo- triesCL,⊥.Meanwhile,someobservableshadbeenupdated logically(loop)suppressed.WeexpectthattheCP-violating or measured for the first time from individual experiments phaseinB −B mixing,φ andφ ,canclearlybeextract D D Bd Bs and not yet included in the HFAG averages. In these cases fromthosedecays,eveninthepresenceofmostNPscenarios wedonotmakeuseofHFAGaverages,butinsteadallmea- [35] surementsfromindividualexperimentsenterthelikelihood functioninEq.(B3)assinglemeasurements.Theaccording λJ/ψK¯S (cid:14)e−iφBd, S(B¯d → J/ψ K¯S)(cid:14)sin2β, referencesaregivenexplicitlyinthetablesforsuchcases. λJ/ψφ (cid:14)e−iφBs, S(B¯s → J/ψφ)(cid:14)sin2βs, (2.18) posIendaodbdsietirovnabwlees,inthveesrtaigtiaotseRthcBe,,nMcoa,mMpble(2m.1e5n)taorfitybroanfcchoimng- fractionsanddifferencesofCPasymmetriesΔC (2.16).In inwhichthe(cid:2)angles(cid:3)oftheCKMunita(cid:2)ritytri(cid:3)anglearedefined as β = arg λd/λd and β = arg λs/λs . This source of the future, it is desirable to have direct experimental deter- c t s t c minationsoftheuncertaintiesforthese“composed”observ- CP violation enters the mixing-induced CP asymmetry of most decays that are triggered by b → s transition in the samewayandcanbeeliminatedbytheconstructionofΔSf, 1 HereMM = PV standsforboth,MM = PV andMM =VP. 123 Eur.Phys.J.C(2015)75 :340 Page 5 of 34 340 Table3 ObservablesofB→VV decaysmediatedbyb→sandb→dtransitionsthatareusedinthefit b→s b→d B→K∗ρ B→K∗φ[36–38] B→K∗ω Bs →φφ Bs →K∗K∗[39] Bs →K∗φ B→K∗K∗ K∗0ρ0:B,C, fL K∗0φ:B,C,CL,⊥, K∗0ω:B,C, fL φφ:B, fL K∗0K∗0:B, fL K∗0K∗0:B, fL K∗+ρ−:B,C, fL fL,⊥,φ(cid:7),⊥ K∗+ω:B,C, fL K∗+φ:B, fL K∗+K∗0:B, fL K∗+ρ0:B,C, fL K∗+φ:B,C,CL,⊥, K∗0ρ+:B,C, fL fL,⊥,φ(cid:7),⊥ ables that already account for the cancelation of common 3 B → MM inQCDfactorization experimentalsystematicuncertainties,whichareonlyacces- sibletotheexperimentalcollaborationsthemselves.Thisis Here we revisit the building blocks that arise in QCDF to important, since usuallyoutsiders arenot intheposition to calculate the final-state-dependent corrections needed for a account retroactively for cancelations of systematic errors suitablepredictionofthedecayamplitudesλ Eq.(2.8)and f andarerestrictedtotheapplicationofrulesoferrorpropaga- detailsoftheirtreatmentinouranalysis.Mostimportantly, tiontotheuncertaintiesofthemeasurementsoftheinvolved the parametrization of the endpoint divergences arising in components,whichthenmightresultintooconservativeesti- weak-annihilation(WA)andhard-scattering(HS)contribu- mates.Ofcoursesuchaprocedureontheexperimentalside tionsaregiven,whichwillbedeterminedfromexperimental requires that the according decay modes with charged and datainSects.4and5intheframeworkoftheSMandscenar- neutral initial/final states can be analyzed simultaneously, iosofNP,respectively.Further,wedescribeinSect.3.2the whichisthecaseforBabar,Belle,andalsoBelleII.Inthis determination of the relative magnitude of WA amplitudes contextitshouldbenotedthatratiosofgaussiandistributed comparedtotheleadingonesintheSMandNPscenarios,as quantities are not gaussian distributed, although the differ- theyareformallyofsubleadingorderin1/m ,butchirally b encesaresmallaslongasthetailregionsofthedistribution enhanced. do not contribute. The details of the treatment of Gaussian In our analysis all decay modes are driven by the same and ratio of Gaussian distributed experimental probability flavortransitionb → D (D = d,s),whichisdescribedby distributionsofthemeasurementsaregiveninAppendixB. theeffectiveHamiltonianofelectroweakinteractions.Inthe The Tables 1, 2, and 3 show that the decay systems SM[2,3] B → Kπ, K∗π, Kρ, K∗ρ(andK∗φ)aretheoneswiththe (cid:7) mostmeasuredobservables,allowingtoinvestigatethecom- (cid:11) G plementarityoftheconstraintsimposedonthephenomeno- HD = √F λ(D) C Op+C Op eff p 1 1 2 2 2 logical parameter of WA by branching fractions versus CP p=u,c (cid:8) asymmetries versus other observables in VV final states. (cid:11)10 In these cases we can also form the ratios of branching + CiOi +C7γO7γ +C8gO8g +h.c., (3.1) fractionsEq.(2.15)anddifferencesofCPasymmetriesEq. i=3 (2.16).Wewillperformfitsusingtwodifferentsetsofobserv- ables for these systems. In the first, called “Set I”, we will where G denotestheFermiconstantandλ(D) ≡ V V∗ F p pb pD use four branching fractions and four direct CP asymme- are products of elements of the CKM matrix. The flavor- tries.Inthelackofpreciseexperimentaldataonthemixing- changingoperatorsare induced CP asymmetry S, we rather prefer to predict them fAropmpenthdeixreBs.u4ltfsoorfdethtaeilfistotnhetnheinpcrloucdeidnugreth.eSmucihnptrheedifictt;iosnees O1p =(D¯p)V−A(p¯b)V−A, canbetestedwithmeasurementsofSbyBelleIIandLHCb O2p =(D¯αpβ)V−(cid:11)A(p¯βbα)V−A, inthenearfuture[40–42]andaregivenfortheSMandsome O3(5) =(D¯b)V−A (q¯q)V∓A, NP fits in Tables 7 and 10. The second “Set II” contains q (cid:11) tthherefeulrlaytiionsdeRpcBe,,nnMdae,nMtbo,btsherreveabdlierescotfCoPneabsyramnmcheitnrgiefsraCctiaonnd, O4(6) =(D¯αbβ)V−A (q¯βqα)V∓A, thedifferenceofCPasymmetriesΔC—seeTable5forthe (cid:11)q explicitlistofobservables.Insummary: O7(9) = 3(D¯b)V−A eq(q¯q)V±A, 2 q (cid:11) SetI:(4×B)+(4×C) O8(10) = 3(D¯αbβ)V−A eq(q¯βqα)V±A, SetII:(1×B)+(3× Rc,n)+(3×C)+ΔC. (2.19) 2 q 123 340 Page 6 of 34 Eur.Phys.J.C(2015)75 :340 O7γ =−e8πm2b (D¯ σμν(1+γ5)b)Fμν, smon,wcoheefrfiecaiseαntsdoofesth.EeqwueivaakleHnatmarigltuomnieanntsdiontnhoetfrruamnebweloorwk O8g =−g8sπm2b(D¯ασμν(1+γ5)Tαaβbβ)Gaμν, (3.2) ofbQThCeDNFNcaLnObsαefocuonrdreicnti[o4n3s].to TI,II are work in progress s where(q¯1q2)V±A =q¯1γμ(1±γ5)q2,thesumisoveractive andbynowtheonlylackingpartarecorrectionstoTI from quarks q = (u,d,s,c,b), with e denoting their electric QCD- and QED-penguin operators i = 3,...,10 as well q chargeinfractionsof|e|andα,βdenotingcolorindices.The as the dipole operators i = 7γ,8g. These NNLO correc- Wilsoncoefficients,C ,areobtainedbyamatchingcalcula- tions are especially important for decays under considera- i tionatascaletypicallyoftheorderO(M )oftheW-boson tionherebecausestrongphasesaregeneratedinQCDFonly W massandareevolveddowntothelowenergyscaleofO(m ) at NLO and higher order corrections might be large, apart b of the bottom-quark mass by means of the renormalization fromthereductionofrenormalizationschemedependences. group(RG)equation.Here,wewillusethemodifiedcounting Inthecaseofthecolor-allowedandcolor-suppressedcurrent- p scheme,asdescribedin[3],inwhichthedominantpartofthe current contributions due to O1,2, the NNLO contributions electroweakpenguinWilsoncoefficientsC (i =7,...,10) toTIcancelinlargepartsforboth,realandimaginaryparts, i are treated as a leading order effect. The electroweak pen- [44–46] with the ones to TII [47–49] in the corresponding guin operators belong to the isospin-violating part of HeDff amplitudesα1,2(MM)[46,50]for MM =ππ, ρπ,leaving and affect in principle isospin-asymmetric observables, as them close to NLO predictions. This might not be the case forexampleEqs.(2.15)and(2.16). forfinalstatesconsideredhere. As it is discussed in detail in the literature [3,5], contri- 3.1 WeakannihilationinQCDF butionsfromHSandWAtopologies,whicharesubleading in1/m ,eludesofarfromasystematictreatmentinQCDF. b AswasestablishedbyBenekeetal.[2,3],thematrixelements However,theycanbechirallyenhancedandcontributesiz- of theinvolved operators can betreated systematicallyina ablecorrectionsinpredictions.Duetotheignoranceofthe 1/m expansionthathasbecomeknownasQCDfactoriza- respectiveQCDmechanisms,additionalphenomenological b tion(QCDF).Atleadingorderthisyields parameterswereintroduced (cid:4) (cid:16)M1M2|Oi|B(cid:9)=(cid:11)FjB→M1(m22) 1duTiIj(u)ΦM2(u) Xk =(1+ρk)ln Λmb , j 0 QCD +(M1↔ M2)+(cid:4) 1dξdvduTiII(u,v,ξ)ΦB(ξ)ΦM1(v)ΦM2(u) ρk ≡|ρk|eiφk (3.4) (cid:17) (cid:18) 0 Λ withthecomplexparametersρ fork = A,H. +O QCD (3.3) k mb IntheHStheyoriginatefromtermsinvolvingtwist-3light- coneDAsΦ (y)withΦ (y) (cid:13)= 0for y → 1inconvolu- twotermswithhard-scatteringkernels TI,II,whicharecal- m1 m1 tions culable in perturbation theory to higher orders in the QCD (cid:4) (cid:4) tcioounpalimngplαitsu.dTeshe(DyAar)eocfotnhveolliugthetdmweisthonlsig,hdte-ncootneeddaisstΦribMui-, 01 Φm11−(y)ydy ≡Φm1(1)XH + 01 Φ[1m−1(yy)]d+y, (3.5) andaremultipliedbythecorrespondingheavy-to-lightform factors FB→Mi in the case of TI and involve an additional whichareregulatedbytheintroductionofthephenomeno- j convolutionwiththe B-mesondistributionamplitudeΦB in logicalparameterXH,2representingasoft-gluoninteraction thecaseofTII.InEq.(3.3),themesonM1inheritsthespec- withthespectatorquark.Asindicatedabove,itisexpected tatorquarkofthedecaying B meson,anddependingonthe that X ∼ ln(m /Λ ) because it arises in a perturba- H b QCD finalstate,thedecayamplitudemightdependalsoonmatrix tive calculation of these soft interactions that are regulated elementswith M1 ↔ M2;see[3,5]fordetails. in principle latest by a physical scale of order ΛQCD. Nei- At leading order in 1/mb, the perturbative kernels TI,II thertheadequatedegreesoffreedomnortheirinteractions, havebeencalculateduptoNLOinstrongcouplingαs [2,3] whichshouldbeusedinaneffectivetheorybelowthisscale andthroughoutwewillstaywithinthisapproximation.Con- areknown.Itisalsoconceivablethatfactorizationmightbe trary to previous works [3,5,15], we employ Wilson coef- achievedatsomeintermediatescalebetweenm andΛ . b QCD ficients of the weak Hamiltonian evaluated at the scale mb Thefactor(1+ρH)summarizestheremainderofanunknown eveninWAandHScontributions,onlythest(cid:19)rongcoupling nonperturbativematrixelement,includingthepossibilityof α isevaluatedatthesemi-hardscaleμ = Λ m .In s h QCD b theSCETapproachthisisapparentasasubsequentmatching 2 InprincipleonemightintroduceaseparateXH foreachmesonM1 stepfromQCDtoSCETItakenatμ∼mbsuchthattheWil- andM2aswellasforeachoperatorinsertion. 123 Eur.Phys.J.C(2015)75 :340 Page 7 of 34 340 astrongphase,whichaffectsespeciallythepredictionsofCP which in principle are different for each meson and each i,f i,f asymmetries.Thenumericalsizeofthecomplexparameter building block A . Explicit expressions for A in terms k k ρ is unknown, however, too large values will give rise to of X aregivenfor MM = PP, PV, VP, VV inthelit- H A numericallyenhancedsubleading1/m contributionscom- erature [5,23,51,52], but independently one has Af = 0. b 1,2 pared to the formally leading terms putting to question the Asafurthersimplification,itisassumedintheliteraturethat validityofthe1/m expansionofQCDF. thereisonlyonephenomenologicalparameter,independent b WAisentirelysubleadingin1/m andconsistsinprinci- of meson type and Dirac structure, such that Ai,f(X ) are pleofsixdifferentbuildingblocks Abi,f (k =1,2,3),which functions of the same parameter. In this contexkt we wAould k arecharacterizedbygluonemissionfromtheinitial(i)and like to note that in the most relevant WA amplitude βc the 3 final (f) states and the three possible Dirac structures that buildingblock Af isparametricallyenhancedby N andin 3 c are involved: k = 1 for (V − A) ⊗ (V − A), k = 2 for theSMalargeWilsoncoefficient.Inconsequenceitscontri- (V −A)⊗(V +A),andk =3for(−2)(S−P)⊗(S+P). butiondominatesovertheonesofAi .Itshouldbenotedthat 1,3 Theycontributetonon-singletannihilationamplitudeswith theWAamplitudes(3.6)inthelight-conesumrule(LCSR) specificcombinationsofWilsoncoefficientsofthe4-quark approach exhibit the same dependence on the products of operators[3,5] Wilsoncoefficientsandbuildingblocks[53],however,inthis i,f C approach the calculation of A does not suffer from end- b = FC Ai, k 1 N2 1 1 pointsingularitiesduetodifferentassumptionsandapprox- c imations. With the latter in mind, a more general approach C b2 = NF2C2Ai1, wouldbetointerpretthebuildingblocksthemselvesasphe- c (cid:12) (cid:13) nomenologicalparameters,orequivalentlyintroduceoneXA C bp = F C Ai +C (Ai + Af)+N C Af , foreachofthem.Wheninvestigatingnew-physicseffects,it 3 N2 3 1 5 3 3 c 6 3 c (cid:12) (cid:13) is desirable to keep the explicit dependence on the Wilson C bp = F C Ai +C Ai , coefficients in (3.6) since they depend on NP parameters, 4 N2 4 1 6 2 including new weak phases. In the case of non-negligible c (cid:12) (cid:13) bp = CF C Ai +C (Ai + Af)+N C Af , WAcontributions,theCPasymmetriesandbranchingfrac- 3,EW N2 9 1 7 3 3 c 8 3 tionswillbesensitivetotheinterferenceofthenew-physics c (cid:12) (cid:13) bp = CF C Ai +C Ai , (3.6) phasesandthestrongphasesfrom XA. 4,EW N2 10 1 8 2 As already indicated, the phenomenological parameters c XA,H areunknownandtheirsizeisconventionallyadjusted anddependon M1 and M2.Here, Nc =3denotesthenum- withinsomerange|ρA,H|(cid:2)2toreproducedatawhereasthe ber of colors and the color factor CF = 4/3. In particu- phaseφA,H iskeptarbitraryandvariedfreelytoestimatethe lar,theycorrespondtotheamplitudesduetocurrent-current uncertainty in theoretical predictions of observables within (b , b ), QCD-penguin (bp, bp) and electroweak penguin QCDFduetoWAandHS.Thisprocedureshowedthephe- 1 2 3 4 (bp , bp )annihilation.Belowwewillfrequentlyrefer nomenological importance of WA and constitutes a major 3,EW 4,EW toWAamplitudeswiththenormalization[5] source of theoretical uncertainty in predictions within the ⎧ SM[5]andsearchesbeyond[15]andbelowwewillreferto ⎪⎪⎪⎨ bi(p) for M M = V±V± itas“conventionalQCDF”. 1 2 βi(p) =Nβ ⎪⎪⎪⎩mbi(Mp)2 forallothers (3.7) alsoInρtHhi—swfroormk,dwaeta.arAesgaoicnognstoeqfiuteρncAe—,naondprfeodricBtio→nswKiπll m bepossibleforthoseobservablesthatareusedinthefit,while B the fitted values of ρ depend on the short-distance model A wheretheargument M1M2 hasbeensuppressedandNβ ≡ under consideration. Yet, the consistency of the underlying fB fM1/(mBFB→M1)isindependentonM2.Asinthecaseof short-distance model can be tested. We perform our fits in HS,theendpointsingularitiesinWAamplitudesareregulated theframeworkoftheSM,andfurtherinnew-physicsscenar- in a model-dependent fashion. The results are expressed in iossimultaneouslywiththeadditionalNPparameters.Inthe termsofconvolutionsofhard-scatteringkernelswithDAsof lattercase,thedeterminationoftheNPparameterswilltake twist-2andchirallyenhancedtwist-3,involvingphenomeno- into account the uncertainty of the WA contribution when logicalparameters XA marginalizingoverρA. (cid:4) 1 dy This procedure is different from conventional QCDF in y → XA, as much as it assumes one universal parameter ρA for all (cid:4) 0 observablesinonespecificdecaymode.Indeed,inconven- 1 lnydy 1 →− (XA)2, (3.8) tional QCDF the independent variation of ρA,H for each y 2 0 123 340 Page 8 of 34 Eur.Phys.J.C(2015)75 :340 observableinaspecificdecaycorrespondstoadifferentWA interest to know the relative magnitude of WA to leading (andHS)parameterforeachobservable.However,sincein amplitudesforthebest-fitregionsofρA(H).Forthispurpose QCDF the parameters ρA,H are introduced at the level of weintroducethequantities decay amplitudes one would expect that they are the same (cid:9) (cid:9) forallobservablesofaspecificdecaymode.Consequently, (cid:9) β (ρ ) (cid:9) conventionalQCDFallowsforsituationswhereexperimental ξiA(ρA)=(cid:9)(cid:9)α i A (cid:9)(cid:9), (3.9) (i+Δi3),I measurementsandtheorypredictionsfortwoobservablesare inagreement,althoughforthefirstobservabletheagreement forWAand is reached for values of φA,H that might be very different (cid:9) (cid:9) forbosmervthaobslee.where the agreement is reached for the second ξiH(ρH)=(cid:9)(cid:9)(cid:9)(cid:9)ααit,wI+I−3α(ρtwH−)2(cid:9)(cid:9)(cid:9)(cid:9), (3.10) In the lack of precise data for most of the decays, we i,I i,II makethefurtherassumptionofaWAparameterthatiseven universal for decay modes that are related by the exchange for HS amplitudes. For the latter, αtw−3 denotes the sub- i,II of (u ↔ d) quarks. As an example, this allows one to leading,butchirallyenhanced,twist-3contribution,whereas combine observables of the four decay channels B¯0 → αtw−2 is the leading HS contribution from twist-2 DAs, K¯0π0, K−π+, and B− → K−π0, K¯0π−, to which we wih,IiIch is free of endpoint divergences. The leading ampli- refer as “decay system” B → Kπ. All considered decay tudes are splitted into αi = αi,I +αi,II, with the two con- systems and the according observables have been listed in tributionsfromkernelIandIIintroducedinEq.(3.3).Note Tables1,2,and3.Thisassumptionismotivatedbythecir- that ξ3A = |β3/α4,I|. This definition is generalized for the cumstancethatthedominantcontributionstotheamplitude case MM = VV, where ξA is defined as the mean value inallconsidereddecayscomeactuallyfromthelinearcombi- ofthecorrespondingratiosforthelongitudinalandnegative nationαˆ (M M )=α (M M )+β (M M ),whichisdue polarizedamplitudesξA ≡(ξA +ξA )/2. 4 1 2 4 1 2 3 1 2 i,VV i,L i,− toisospin-conservingQCD-penguinoperators O3,...,6 (3.2). Themostimportantcontributionfrompower-suppressed The definition of all α ’s can be found in [5], whereas β ’s corrections are clearly obtained from HS in α , which is i i 2 are given in Eq. (3.7). Other assumptions have been tested enhancedbythelargeWilsoncoefficientC andfromtheWA 1 inthe literatureas for example universal weak annihilation correctionβ inQCD-penguin-dominateddecays.Therefore 3 among B and B decaysintofinalstatescontainingkaons ξH andξAwillplayanimportantroleinthephenomenolog- s d 2 3 andpions[54]. icalpartofthiswork. Theprocedurereflectsthegeneralideainherentto1/m In the SM, the ξA-ratios depend exclusively on ρ and b A expansions,whichaimatafactorizationintoshort-distance contour lines of constant ξA can easily be obtained in the anduniversalnonperturbativequantities,wherethelatterare complex ρ -plane. Concerning fits in new-physics scenar- A determined from data in the lack of first-principle determi- ios,theξA-ratiosdependinadditiononnew-physicsparam- nations. Presently, however, factorization theorems are not etersxNP,wheredim(xNP)correspondstotheirnumber.The yet established at subleading order that would support the dependence is both, explicit in the Wilson coefficients and existenceofsuchuniversalquantities.Whilestepshavebeen implicit on data via the likelihood. In this case one would madetoshowthatweakannihilationisfactorizableandreal be interested in the minimal value of ξA(xNP) in the 68 % i [55], doubts are cast on the reality condition [56]. In view credibilityregions(CR)ofallNPparameters,butmarginal- ofthis,ourstudycanaffirmatmostexperimentalevidence ized over ρ . Since the determination of this CRs requires A againsttheassumptionofoneuniversalparameterperdecay huge computational efforts when dim(xNP) > 2, we pro- system. Therefore a positive affirmation may not be over ceeddifferently.Inthecourseofthefit,wehistograminall interpreted.Finally,itmustalsobenotedthatcontributions two-dimensional subspaces of NP parameters (xNP, xNP), a b ofnotincludedNNLOcorrectionscouldbesizeableandin with a (cid:13)= b, those values ξA in each bin (xNP, xNP) that a b ourfitstheyareinterpretedaspartofthephenomenological belong to the largest likelihood value when sampling the WAparameter. complementary subspace of the remaining NP parameters xNP with c (cid:13)= a and c (cid:13)= b. As a result, in each of c 3.2 Sizeofpower-suppressedcorrections the 2D-marginalized planes, “labeled” by (a,b), the 68 % CR will contain a smallest and a largest ξA in one of the i Inthiswork,wedeterminethesizeofsubleadingWA(and bins in (xNP, xNP), which all belong to the minimal χ2 a b HS)contributionsfromdataintheframeworkoftheSMand in the subspace of x . As the final range we choose the c NPscenarios.Duetothechiralenhancement,WAcontribu- minimum of the smallest values and the maximum of the tionsarenotnecessarily1/m suppressednumericallywith largestvaluesfromallthepairs(a,b)inourNPanalysesin b respect to the leading order amplitudes. Therefore, it is of Sect.5. 123 Eur.Phys.J.C(2015)75 :340 Page 9 of 34 340 4 Weakannihilationinthestandardmodel Our findings for lower and upper bounds on ρ in the A 68%CRaresummarizedinTable4forallconsidereddecay Inthissectionwepresenttheresultsofthedeterminationof systems. It can be seen that data requires nonzero values the WA parameter ρ from data of various QCD-penguin- of |ρ | to be in agreement with QCDF predictions in the A A and WA- dominated nonleptonic charmless B → MM SM. In some cases they are much larger compared to the decays in the framework of the SM. This includes charac- conventionallyadaptedranges,allowingthusinprinciplefor teristics of the best-fit regions, the p values at the best-fit abetteragreementoftheoreticalpredictionswithdata.Since pointandpullvaluesforobservables,aswellastherelative weuseWilsoncoefficientsatthescaleμ∼m inWA(and b amountofthesubleadingWAcontributionneededtoexplain HS)contributions,contraryto[5,15],ournumericalvalues the data, which we quantify by the ratio ξA defined in Eq. of|ρ |areingeneralabitlargercomparedtotheonesknown 3 A (3.9). in the literature. Representing the size of a nonperturbative We start with an extensive discussion of the B → Kπ quantity,|ρ |isexpectednaivelytobeoforderone,whereas A system,whichshowsthelargestdeviationsfromSMpredic- too large values would put in doubt the convergence of the tions for the difference of CP asymmetries ΔC(Kπ) (see 1/m expansion. b Eq.(2.16)),commonlyknownintheliteratureasthe“ΔA FurtherwelisttheratioξA ofWAamplitudestoleading CP 3 puzzle”andtoalesserextentintheratioRB(Kπ).Weinves- ones as a measure of the numerical relevance of these for- n tigatethe“ΔA puzzle”furtherinasimultaneousfitofthe mallysubleadingbutchiralityenhancedcontributions.While CP parameterofWA,ρ ,andHS,ρ ,anddiscusstheimplica- largesubleadingWAamplitudesdonotnecessarilyimplya A H tionsonotherCPasymmetriesin Bd,s → Kπ. breakdown of the 1/mb expansion, it is generally assumed We turn then to the discussion of the decays B → thatthefactorizationachievedatleadingorderprovesuseful Kρ, K∗ρ, K∗π, which allow also for studies of different onlyifsubleadingWAamplitudesarenotbetoolarge.Using setsofobservablesinSetIandSetIIduetotherathernumer- the priors for our analysis which result in a wide range for ousandquiteprecisemeasurements.Subsequently,wedis- ξA, we can explicitly show that data does not require huge 3 cussbrieflytheresultsforotherdecayslistedinTables1,2, WA.Atthebest-fitpointofρ theaccordingvalueisindeed A and 3 with some special comments on B → Kω and ξA < 1 for many decay systems. Although at the best-fit 3 B → K∗φ.Foreachdecaysystemwepresentseparatecon- pointξAmightreachvaluesupto2oreven3forsomedecay 3 straintsfrombranchingfractions,CPasymmetries,polariza- systems,onceconsideringthe68%CRinρ ,itispossible A tionfractionsandrelativephasesontheWAparameterρ , tohaveagainξA <1(exceptforB → K∗K∗)fortheprice A 3 s besidesthecombinedones. ofsometensionamongdataandprediction.Bearinginmind Apart from the above listed penguin-dominated decays, the chirality enhancement, our fits of the data thus do not wealsostudydecaysmediatedsolelybyweakannihilation, indicateanomalouslyhugeWAcontributions,whichputthe suchas B → K+K−and B →π+π−.Beingindependent usefulnessofthe1/m expansionintoquestioninprinciple. s b of β and hence Af, these decay modes are sensitive to a By definition, there is no ξA for the two pure WA modes 3 3 3 WA contribution from Ai and provide access to different B → K+K−and B →π+π−. 1,2 d s buildingblocks. Based on our previous fit results, we discuss finally the 4.1 Resultsfor B → Kπ assumptionofauniversalWAfor B and B decaysintothe d s same final state and investigate in particular consequences Inthissectionwediscussfirstfitsofonlyρ fromB → Kπ A for CP asymmetries in B → Kπ in view of the “ΔA observables encountering thereby the well-known “ΔA s CP CP puzzle”in B → Kπ. puzzle”.IntheSMitcanbeexplainedonlyreasonablywell The statistical procedure used in all fits is described in inthepresenceoflargecolor-suppressedcurrent-currenttree Appendix B. In the SM, we deal mostly with the fit of one contributionsthatarestronglydependentonρ .Therefore H complex-valuedparameterρ exceptforthe B → Kπ sys- weperforminasecondstepasimultaneousfitofρ andρ A A H tem,wherewealsoperformasimultaneousfitofρ andρ . toamodifiedsetof B → Kπ observables,anddiscussthe A H Whenfitted,forbothparametersauniformprior possibility to discern large color-suppressed tree contribu- tionsinfuturemeasurementsofCPasymmetrieswithK0π0 0≤|ρA,H|≤8, 0≤φA,H ≤2π, (4.1) finalstates.Itshouldbeemphasizedthatingeneralboth,ρA and ρ should be considered in fits due to their different H is assumed and no restriction is imposed on the phases. In contributions to CP-averaged and asymmetric observables. comparison,inconventionalQCDFthemagnitude|ρA,H|≤ Hence simultaneous fits of ρA and ρH are in principle of 2isusedforuncertaintyestimatesoftheoreticalpredictions. greater interest, but apart from B → Kπ data, the current In the case that ρ is not fitted, but treated as a nuisance precision of other decay system’s data does not yet permit H parameterinstead,weuse|ρ |=1andvary0≤φ ≤2π. thiskindofanalysis. H H 123 340 Page 10 of 34 Eur.Phys.J.C(2015)75 :340 Table4 Compilationofthepower-suppressedratioξA atthebest-fit fitwiththeobservableSetII.ThepureWAdecay B0 → K+K− is 3 point(BFP)andinthe68and95%CRs,aswellaslowerandupper notincludedinthedecaysystem B → KK andρA-boundsaregiven boundsonthefitparameter|ρA|inthe68%CRforallrelevantdecay separatelyinparentheses systems.For B → (Kπ, K∗π, Kρ, K∗ρ),valuescorrespondtothe B→Kπ B→Kη B→Kη(cid:5) B→KK Bs →KK Bs →ππ Bs →Kπ MM = PP ξA 3 BFP 0.39 0.08 1.83 0.58 1.83 – 0.96 68%CR [0.37;0.54] [0.00;−] [0.18;3.25] [0.00;2.07] [0.02;2.09] – [0.56;1.54] 95%CR [0.34;0.69] [0.00;−] [0.16;3.34] [0.00;2.10] [0.00;2.13] – [0.44;1.83] |ρ | A Lower >1.8 >0 >0.9 >0(0.9) >0 >3.4 >2.3 Upper <3.9 – <7.7 <6.1(8.6) <5.5 <10.9 <4.8 B→K∗π B→Kρ B→K∗η B→K∗η(cid:5) B→Kφ B→Kω MM = PV ξA 3 BFP 0.89 0.78 2.74 0.48 0.50 2.7 68%CR [0.75;1.40] [0.39;1.55] [0.71;3.77] [0.02;7.84] [0.40;2.41] [0.63;2.88] 95%CR [0.69;1.56] [0.16;2.18] [0.64;5.06] [0.02;8.41] [0.32;2.54] [0.57;2.88] |ρ | A Lower >1.4 >0.8 >1.1 >0 >0.8 >1.3 Upper <3.4 <3.4 <4.4 <6.1 <3.6 <4.3 B→K∗ρ B→K∗φ Bs →K∗φ B→K∗K∗ Bs →K∗K∗ Bs →φφ B→K∗ω MM =VV ξA 3 BFP 1.33 0.38 1.53 1.84 3.01 0.50 0.91 68%CR [0.84;1.94] [0.31;0.43] [0.30;2.05] [0.85;2.68] [1.94;3.79] [0.49;1.11] [0.20;1.39] 95%CR [0.56;2.33] [0.25;0.50] [0.10;2.15] [0.09;2.90] [0.96;4.17] [0.41;1.38] [0.09;1.46] |ρ | A Lower >1.0 >0.6 >0.3 >1.2 >1.6 >0.7 >0.3 Upper <2.9 <1.8 <3.2 <3.0 <3.6 <2.3 <2.4 The B → Kπ system offers the most precise measured posed observables in Set II at the best-fit point: −2.8σ for branchingfractionsandCPasymmetries(seeTable1)among ΔC(Kπ)and−1.9σforRB(Kπ),comparedtoSetI:−2.1σ n thedecaysconsideredhere.Inconsequence,wefindstringent forC(B− → K−π0),showingtheimportanceandcomple- boundsontheWAparameterρKπ.ThiscanbeseeninFig.1a mentarity of composed observables. The large pull values A when using the observables in Set I and Fig. 1b for Set II. in CP asymmetries arise from the higher statistical weight Theallowedregionsfromboth,Band/orRcB,,nMa,Mb (blue)as ofthemorepreciselymeasuredbranchingfractionsintheir well as C and/or ΔC (green) are very distinct leaving two combinedfit,reflectingthe“ΔA puzzle”inthe B → Kπ CP tinyoverlapregions(red)at68%probabilityaroundρKπ ≈ sytem.TheindividualpullvaluesofC(B− → K−π0)and A 2.1exp(i5.5) and ρKπ ≈ 3.4exp(i2.7), which differ only C(B¯0 → K−π+)inSetIadduptothelargepullofΔC(Kπ) A slightly for both Sets I and II. The best-fit points listed in inSetII. Table5fallintothesolutionwithlarger|ρKπ| ≈ 3.4,butit Inthefollowingwewillelaborateontheconstraintsposed A mustbenotedthattheothersolutionprovidesalmostequally byindividualobservables.Forexample,thegeneralshapeof goodfitsintermsofχ2. thecontourofbranchingfractionscaneasilybeunderstood As shown in Table 5, the p values at the best-fit points as follows: The leading contribution of the decay ampli- ofthefitsofSetIandSetIIareverydifferent:0.44versus tude αˆc(Kπ) = αc(Kπ) + βc(Kπ) is given as the sum 4 4 3 0.04,respectively.Thereasonarelargepullvaluesofcom- oftheQCD-penguinandtheρ -dependentWAamplitudes A 123
Description: