ebook img

WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1. Introduction In general, one can ... PDF

18 Pages·2001·0.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1. Introduction In general, one can ...

TRANSACTIONSOFTHE AMERICANMATHEMATICALSOCIETY Volume354,Number4,Pages1435{1452 S0002-9947(01)02957-9 ArticleelectronicallypublishedonDecember4,2001 WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS B. E. FORREST AND L. W. MARCOUX Abstract. Let Aand B b(cid:20)e unital Ba(cid:21)nach algebras, and let MbeaBanach A M A;B-module. Then T = becomes a triangular Banach algebra 0 B (cid:20) (cid:21) a m whenequippedwiththeBanachspacenormk k=kakA+kmkM+ 0 b kbkB. A Banach algebra T is said to be n-weakly amenable if all derivations from T into its nth dual space T(n) are inner. In this paper we investigate Arensregularityandn-weakamenabilityofatriangularBanachalgebraT in relationtothatofthealgebrasA,BandtheiractiononthemoduleM. 1. Introduction In general, one can obtain a good deal of information about the structure of a BanachalgebraAbystudyingthevariousHochschildcohomologygroupsHn(A;X) ofAwithcoe(cid:14)cientsinaBanachA-bimoduleX. Forexample,thestudyofthe(cid:12)rst cohomologygroupH1(A;X)isessentiallythestudyofinner(vs. outer)derivations fromAinto X, while ifX is(cid:12)nite-dimensional,the study ofH2(A;X) isrelatedto that of strong splittings of extensions of A by X [1]. For this reason, it is perhaps discouraging to know that explicit calculations of cohomology groups tends to be rather di(cid:14)cult, and results often focus on whether a givengroupHn(A;X) is or is not trivial. In [7], motivated by work of Gilfeather and Smith [8] in their study of joins of operator algebras, we began an investigation of derivations of triangular Banach algebras; these are algebras of the form (cid:20) (cid:21) A M T = ; 0 B whereAandBarethemselvesBanachalgebrasandMisaBanachA;B-module. In thatpaperatechniquewasdevelopedwhich,inmanycases,allowsonetoexplicitly compute H1(T;T) for speci(cid:12)c choices of A, B, and M. In this paper, we show that the (cid:12)rst cohomology group for these algebras with coe(cid:14)cients in their nth dual spaces T(n) is also often tractable. In particular, we willdevelopcriteriafordecidingwhenH1(T;T(n))=0. Thisnotion,referredtoas n-weak amenability and de(cid:12)ned by Dales, Ghahramani and Gr(cid:28)nb(cid:26)k in [5], splits along two distinct lines in the setting of triangular Banachalgebras. Indeed, when n is odd, the ((cid:12)rst) cohomology group of T depends only upon that of A and B [see Theorem 3.7 below]. When n is even, the techniques developed in [7] can be ReceivedbytheeditorsOctober9,1998and,inrevisedform,July20,1999. 2000 Mathematics Subject Classi(cid:12)cation. Primary46H25,16E40. ResearchsupportedinpartbyNSERC(Canada). (cid:13)c2001 American Mathematical Society 1435 1436 B. E. FORREST AND L. W. MARCOUX extended to this setting, where it allows us to compute H1(T;T(2n)) for many choices of A, B and M [see Theorem 3.12]. The body ofthis paper is divided into three parts. In Section2,we examine the natural actions of T on its dual spaces T(n), n (cid:21) 1, and characterize when T is Arensregular. InSection3,weobtainourtwomainresultsconcerningH1(T;T(n)), the (cid:12)rstdealingwiththe casewhere nis odd,andthe seconddealingwiththe case where n is even. Finally, in Section 4, we apply these results to three (classes) of examples, including tensor products of a given C(cid:3)-algebra A by T , and (cid:12)nite 2 dimensional nest algebras. 2. Preliminaries 2.1. Let A and B be Banach algebras, and suppose X is a Banach A;B-module; thatis,X isaBanachspace,aleftA-moduleandarightB-module,andtheactions of A and B are continuous in that ka(cid:14)x(cid:14)bk(cid:20)kakA kxkX kbkB: If A has a unit eA and B has a unit eB, then X is said to be unital provided that eA(cid:14)x=x(cid:14)eB =x for all x2X. We cande(cid:12)ne a rightactionof A onthe dualspaceX(cid:3) ofX anda left actionof B on X(cid:3) via ((cid:30)(cid:14)a)(x) = (cid:30)(a(cid:14)x); (b(cid:14)(cid:30))(x) = (cid:30)(x(cid:14)b); for all a2A; b2B; x2X, and (cid:30)2X(cid:3). Similarly, the second dual X(2) of X becomes a Banach A;B-module under the actions (a(cid:14)(cid:8))((cid:30)) = (cid:8)((cid:30)(cid:14)a); ((cid:8)(cid:14)b)((cid:30)) = (cid:8)(b(cid:14)(cid:30)); for all a2A; b2B; (cid:30)2X(cid:3), and (cid:8)2X(2). Of course, we may continue this process to higher order dual spaces of X, with theconclusionbeingthatX(2m) isaBanachA;B-moduleandX(2m(cid:0)1) isaBanach B;A-module for all m (cid:21) 1. When X is unital, so is each X(m), m (cid:21) 1. When A=B, we simply have that each X(m) is a Banach A-bimodule. A particular but important example of this is when X = A = B, and the module actions are given by a(cid:14)x=ax and x(cid:14)a=xa for all a;x2A. The above analysis then shows that A(m) is a Banach A-bimodule for all m(cid:21)1. Suppose X is a Banach A-bimodule. A derivation (cid:14) : A ! X is a linear map which satis(cid:12)es (cid:14)(ab) = (cid:14)(a)(cid:14)b+a(cid:14)(cid:14)(b) for all a;b 2 A. In this paper, we shall only consider continuous derivations. The derivation (cid:14) is said to be inner if there exists x 2 X such that (cid:14)(a) = (cid:14) (a) := a(cid:14)x(cid:0)x(cid:14)a for all a 2 A. Denoting x the linear space of bounded derivations from A into X by Z1(A;X) and the linear subspaceof (necessarilybounded) inner derivations byN1(A;X), we may consider the quotient space H1(A;X) = Z1(A;X)=N1(A;X), called the (cid:12)rst Hochschild cohomology group of A with coe(cid:14)cients in X. The Banach algebra A is said to be amenable if H1(A;X(cid:3)) = 0 for all Banach A-bimodules X. This notion was (cid:12)rst de(cid:12)ned by Johnson in [10], who showed that the groupalgebra L1(G) is amenable precisely when G is an amenable group. In particular, the equivalence of amenability and nuclearity for C(cid:3)-algebras [9] WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1437 indicates that amenability canbe viewedas a generalized\(cid:12)niteness"condition on a Banach algebra. Bade, Curtis and Dales [1] later de(cid:12)ned the notion of weak amenability for a commutative Banach algebra A. They called A weakly amenable if every bounded derivation from A into a symmetric Banach A-module is inner and hence zero. They also showed that this is equivalent to H1(A;A(cid:3)) = 0. This latter condition, thatH1(A;A(cid:3))=0, has been adoptedas the de(cid:12)nition ofweak amenability for an arbitrary Banach algebra. That this is strictly weaker than amenability is clear, since all C(cid:3)-algebras are weakly amenable [9]. More recently, Dales, Ghahramani and Gr(cid:28)nb(cid:26)k [5] have de(cid:12)ned the notions of n-weak amenability and permanent weak amenability for a Banach algebra A as follows: let n be a positive integer. Then A is said to be n-weakly amenable if H1(A;A(n))=0,andAispermanently weakly amenable ifitisn-weaklyamenable for all n(cid:21)1. Amongst other things, they were able to show that everyC(cid:3)-algebra is permanently weakly amenable ([5], Theorem 2.1). Inthisnoteweshallconsiderthen-weakamenabilityofaclassofBanachalgebras we (cid:12)rst studied in [7], and which we call triangular Banach algebras. They are de(cid:12)ned in the following way: let A and B be Banach algebras and suppose that M is an essential Banach A;B-module; that is, A(cid:14)M = M (cid:14)B = M. (This is guaranteed when M is unital.) We de(cid:12)ne the corresponding triangular Banach algebra (cid:20) (cid:21) A M T = ; B with the sum and product being given by the usual 2(cid:2)2 matrix operations and obvious internal module actions. The norm on T is (cid:20) (cid:21) a m k k:=kakA+kmkM+kbkB: b An important class of examples arises when H is a complex Hilbert space, A and B are operator subalgebras of B(H), and M is an essential A;B-submodule of B(H). T is still not quite an operator subalgebra of B(H(cid:8)H), however, since the given norm and the operator norm do not coincide. 2.2. Arens regularity for triangular Banach algebras. Given a triangular Banach algebra T as above, we can make A(2) and B(2) into Banach algebras by giving them the (cid:12)rst Arens product as follows: Let fa g;fa g be nets in A with (cid:0) =w(cid:3)-lim a and (cid:0) =w(cid:3)-lim a : Then we i j 1 i i 2 j j de(cid:12)ne (cid:0) (cid:3)(cid:0) =w(cid:3)-limlima a : 1 2 i j i j Similarly, we can de(cid:12)ne (cid:9) (cid:3)(cid:9) =w(cid:3)-limlimb b 1 2 i j i j whenever (cid:9) = w(cid:3)-lim b and (cid:9) = w(cid:3)-lim b : Moreover, we can extend the 1 i i 2 j j actions of A on M and of B on M to actions of A(2) and B(2) on M(2) via (cid:0)(cid:3)(cid:5)=w(cid:3)-limlima m i j i j 1438 B. E. FORREST AND L. W. MARCOUX and (cid:5)(cid:3)(cid:9)=w(cid:3)-limlimm b ; j k j k where (cid:0) = w(cid:3)-lim a , (cid:5) = w(cid:3)-lim m , and (cid:9) = w(cid:3)-lim b : This allows us to i i j j k k show th(cid:20)at the (cid:12)rst(cid:21)A(cid:20)rens multip(cid:21)lication de(cid:12)ned on T(2) behaves in a natural way. (cid:0) (cid:5) (cid:0) (cid:5) Let 1 1 ; 2 2 2T(2): Assume also that (cid:9) (cid:9) 1 2 (cid:20) (cid:21) (cid:20) (cid:21) (cid:0)1 (cid:5)1 =w(cid:3)-lim ai mi (cid:9)1 i bi and (cid:20) (cid:21) (cid:20) (cid:21) (cid:0)2 (cid:5)2 =w(cid:3)-lim aj mj : (cid:9)2 j bj Thenit iseasytosee that(cid:0) =w(cid:3)-lim a ;(cid:0) =w(cid:3)-lim a ;(cid:9) =w(cid:3)-lim b ;(cid:9) = 1 i i 2 j j 1 i i 2 w(cid:3)-lim b ;(cid:5) =w(cid:3)-lim m and (cid:5) =w(cid:3)-lim m Moreover, j j 1 i i 2 j j: (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21)(cid:20) (cid:21) (cid:0)1 (cid:5)1 (cid:3) (cid:0)2 (cid:5)2 =w(cid:3)-limlim ai mi aj mj (cid:9)1 (cid:20) (cid:9)2 i j (cid:21) bi bj =w(cid:3)-limlim aiaj aimj +mibj (cid:20) i j bibj (cid:21) w(cid:3)-lim lim a a w(cid:3)-lim lim (a m +m b ) = i j i j i j i j i j w(cid:3)-lim lim b b (cid:20) i(cid:21) j i j (cid:0) (cid:3)(cid:0) (cid:0) (cid:3)(cid:5) +(cid:5) (cid:3)(cid:9) = 1 2 1 2 1 2 : (cid:9) (cid:3)(cid:9) 1 2 Thus the (cid:12)rst Arens product of T behaves just like matrix multiplication, with coordinate-level operations behaving like the (cid:12)rst Arens product of the building blocks. There is a second way of de(cid:12)ning a product on the second dual of a Banach algebra, namely by interchanging the order of the limits taken in the (cid:12)rst Arens product. The result of doing this is called the second Arens product. We now set (cid:0) (cid:5)(cid:0) =w(cid:3)-limlima a ; 1 2 i j j i and similarly, (cid:9) (cid:5)(cid:9) = w(cid:3)-limlimb b ; 1 2 i j j i (cid:0) (cid:5)(cid:5) = w(cid:3)-limlima m ; 1 i j j i (cid:5)(cid:5)(cid:9) = w(cid:3)-limlimm b : 1 j i i j WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1439 The previous analysis of the (cid:12)rst Arens product can now be extended to the second Arens product to see that (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:0)1 (cid:5)1 (cid:5) (cid:0)2 (cid:5)2 =w(cid:3)-limlim ai mi aj mj (cid:9)1 (cid:20) (cid:9)2 j i (cid:21) bi bj =w(cid:3)-limlim aiaj aimj +mibj (cid:20) j i bibj (cid:21) w(cid:3)-lim lim a a w(cid:3)-lim lim (a m +m b ) = j i i j j i i j i j w(cid:3)-lim lim b b (cid:20) (cid:21) j i i j (cid:0) (cid:5)(cid:0) (cid:0) (cid:5)(cid:5) +(cid:5) (cid:5)(cid:9) = 1 2 1 2 1 2 : (cid:9) (cid:5)(cid:9) 1 2 In general, a Banach algebra D is said to be Arens regular provided that the (cid:12)rstandsecondArensproductsonD(2) agree. GivenD;F 2D(2),itisknownthat D(cid:3)F =D(cid:5)F whenever either D or F lies in the image of D under the canonical embedding of D into D(2) ([13], Theorem 1.4.2) A fortiori, when this is the case, the Arens product also coincides with the natural dual module action of D on D(2) de(cid:12)ned at the beginning of Section 2.1. To see this, suppose for instance that D; F 2D(2) withDbeingtheimageofsomed2Dunderthecanonicalembedding. Suppose F =w(cid:3)-lim f and consider (cid:26)2D(cid:3). Then (D(cid:3)F)=w(cid:3)-lim df and so j j j j (D(cid:3)F)((cid:26))=lim(cid:26)(df ): j j On the other hand, we have (D(cid:14)F)((cid:26)) = F((cid:26)(cid:14)d) = lim((cid:26)(cid:14)d)(f ) j j = lim(cid:26)(df ) j j = (D(cid:3)F)((cid:26)): The case where F arises from the image of some f 2 D under the canonical em- bedding and D 2D(2) is arbitrary is handled in a similar fashion. Returning to the setting of triangular Banach algebras, the same observations carry over to the case of the two A(2);B(2)-module actions (cid:5) and (cid:3) which we have de(cid:12)ned on M(2). More precisely, (cid:0)(cid:5)(cid:5) = (cid:0)(cid:3)(cid:5) if either (cid:0) is the image of some a2A under the canonical embedding of A into A(2), or if (cid:5) is the image of some m 2 M under the canonical embedding of M into its second dual. (A similar statement holds for the right action of B(2) upon M(2).) Again, when at least one termistheimageofanelementinA(orM,orB),thesetwoactions(cid:3)and(cid:5)agree with the dual module action (cid:14) de(cid:12)ned above. We shall return to this later. Let us say that the Banach algebras A and B act regularly on M if for every (cid:0)2A(2), (cid:5)2M(2) and (cid:9)2B(2) we have (cid:0)(cid:3)(cid:5)=(cid:0)(cid:5)(cid:5) and (cid:5)(cid:3)(cid:9)=(cid:5)(cid:5)(cid:9): The following proposition is now immediate: (cid:20) (cid:21) A M 2.3. Proposition. A triangular Banach algebra T = is Arens regular B if and only if both A and B are Arens regular and A and B act regularly on M. 1440 B. E. FORREST AND L. W. MARCOUX 2.4. Now that we have shownthat T(2) canbe made into a Banachalgebrausing either Arens product, we may apply the same argumentto show that we canmake T(4); T(6);andmoregenerallyT(2n) forn(cid:21)1intoaBanachalgebrabyrepeatedly using the (cid:12)rst (or second) Arens product. Two interesting implications of this analysis are the following: (i) It provides us with an action of T upon T(2n) for each n (cid:21) 1 via restriction ofthe ArensproducttothecanonicalembeddingofT intoT(2n). Aswehaveseen, this action agrees with the dual module action de(cid:12)ned in Section 2.1. (ii) The action of T upon T(2n) referred to in the previous paragraph in turn de(cid:12)nes\actions"ofA(2n) andB(2n) onM taking values in M(2n) viathe formulae A(cid:14)m=A(cid:5)m~ and m(cid:14)B =m~ (cid:5)B; where A 2 A(2n), B 2 B(2n), and m~ denotes the (canonical) embedding of an elementm2Minto M(2n). We shalluse this inourstudy ofderivationsofT into T(2n), n(cid:21)1. 2.5. Iterated duals - the actions of T upon T(m). Since, as a Banach space, T is isomorphic to the ‘1-direct sum of A, M and B, it is clear that T(2m(cid:0)1) ’ A(2m(cid:0)1) (cid:8)1M(2m(cid:0)1) (cid:8)1B(2m(cid:0)1), while T(2m) ’ A(2m) (cid:8)1M(2m) (cid:8)1B(2m) for each m (cid:21) 1. Let us now consider the action of T upon T(m), m (cid:21) 1. To reduce notational clutter, we shall denote the module actions of A and B upon M simply by juxtaposition. (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:11) (cid:22) The case m = 1. Suppose t = 2 T and (cid:28) = 2 T(cid:3). b (cid:12) (Althoughwewrite(cid:28) asanupper triangularmatrix,thisis simplyforconvenience. The action o(cid:20)f T(cid:3) up(cid:21)on T is given by (cid:28)(t)=(cid:11)(a)+(cid:22)(m)+(cid:12)(b).) x y Let w = 2T. From above, the action of w on (cid:28) is given by z (w(cid:14)(cid:28))(t) = (cid:28)(tw) (cid:20) (cid:21) ax ay+mz = (cid:28) bz = (cid:11)(ax)+(cid:22)(ay+mz)+(cid:12)(bz) = (x(cid:14)(cid:11))(a)+(y(cid:14)(cid:22))(a)+(z(cid:14)(cid:22))(m)+(z(cid:14)(cid:12))(b) (cid:20) (cid:21) (cid:18) (cid:19) x(cid:14)(cid:11)+y(cid:14)(cid:22) z(cid:14)(cid:22) a m = : z(cid:14)(cid:12) b (cid:20) (cid:21) x(cid:14)(cid:11)+y(cid:14)(cid:22) z(cid:14)(cid:22) Thus (w(cid:14)(cid:28))= : z(cid:14)(cid:12) (cid:20) (cid:21) (cid:11)(cid:14)x (cid:22)(cid:14)x Similarly, one can check that ((cid:28) (cid:14)w)= : (cid:22)(cid:14)y+(cid:12)(cid:14)z (cid:20) (cid:21) A(2) M(2) The case m=2. We canidentify T(2) with . As we have seen, B(2) the action of T upon T(2) coincides with the restriction of the ((cid:12)rst or second) Arens product on T(2) to the image of T in T(2) under the canonical embedding, and hence (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) x y (cid:0) (cid:5) x(cid:14)(cid:0) x(cid:14)(cid:5)+y(cid:14)(cid:8) (cid:14) = z (cid:8) z(cid:14)(cid:8) WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1441 and (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:0) (cid:5) x y (cid:0)(cid:14)x (cid:0)(cid:14)y+(cid:5)(cid:14)z (cid:14) = : (cid:8) z (cid:8)(cid:14)z Again,we observethattheseequationscoincide withthe standardmatrix\mul- tiplications" of w and T, with multiplication at the coordinate level corresponding to the appropriate module action. The case m(cid:21)3. It is not hard to see that the action of T on T(3) agrees with the dual action of T(2) on T(3) when we restr(cid:20)ict to th(cid:21)e image o(cid:20)f T in T((cid:21)2) under (cid:18) (cid:17) (cid:0) (cid:5) the canonicalembedding. Indeed, note that if 2T(3), 2T(2), (cid:20) (cid:21) ! (cid:9) a m and 2T, then b (cid:20) (cid:21) (cid:20) (cid:21)(cid:18) (cid:19) (cid:20) (cid:21)(cid:18)(cid:20) (cid:21) (cid:20) (cid:21)(cid:19) (cid:18) (cid:17) a m (cid:0) (cid:5) (cid:18) (cid:17) a m (cid:0) (cid:5) (cid:14) = (cid:14) ! b (cid:9) ! b (cid:9) (cid:20) (cid:21)(cid:18)(cid:20) (cid:21) (cid:20) (cid:21)(cid:19) (cid:18) (cid:17) a m (cid:0) (cid:5) = (cid:5) ; ! b (cid:9) where(cid:14)denotestheappropriatedualactionand(cid:5)denotestheArensproduct(recall thatbothArensproductsagreesinceoneofthetermsistheimageofanelementof T underthecanonicalembedding). Moregenerally,itfollowsthatthecomputation of the action of T upon T(cid:3) carries over mutatis mutandis to the action of T upon T(2m(cid:0)1), m (cid:21) 2. Similarly, the action of T upon T(2m), m (cid:21) 2, also satis(cid:12)es the corresponding formulae for the action of T upon T(2), and hence \looks like" standard matrix multiplication, as we saw in Section 2.4. 3. Derivations and n-weak amenability 3.1. We now wish to(cid:20)consider t(cid:21)he question of n-weak amenability of triangular A M Banach algebras T = . From this point on, we shall assume that the B corner algebras A and B are unital and that M is a unital Banach A;B-module. Although this is not crucial for weak amenability (i.e. when n = 1), it guarantees thatM(n) isanessentialmodulewhenn(cid:21)2. Asweshallsee,therearetwodistinct phenomena which occur, depending upon whether n is even or odd. We begin by considering the case where n is odd, and in fact, (cid:12)rst considering the case where n=1. Weakamenability. Theproofofthefollowinglemmainvolvesnothingmorethan routine calculations which are left to the reader. 3.2. Lemma. Let D : T ! T(cid:3) be a continuous derivation. Then there exist continuous derivations (cid:14) : A ! A(cid:3), (cid:14) : B ! B(cid:3), and an element (cid:13) 2 M(cid:3) such 1 4 (cid:14) that (cid:20) (cid:21) (cid:20) (cid:21) x 0 (cid:14) (x) (cid:13) (cid:14)x (i) D = 1 (cid:14) for all x2A, (cid:20) 0 (cid:21) (cid:20) 0 (cid:21) 0 0 0 (cid:0)z(cid:14)(cid:13) (ii) D = (cid:14) for all z 2B, (cid:20) z (cid:21) (cid:20) (cid:14)4(z) (cid:21) 0 y (cid:0)y(cid:14)(cid:13) 0 (iii) D = (cid:14) for all y 2M. 0 (cid:13) (cid:14)y (cid:14) 1442 B. E. FORREST AND L. W. MARCOUX 3.3. Lemma. Suppose (cid:14)A :A!A(cid:3) is a continuous derivation. Then D(cid:14)A : (cid:20) T (cid:21) ! (cid:20) T(cid:3); (cid:21) a m 7! (cid:14)A(a) 0 ; b 0 is also a continuous derivation. Furthermore, (cid:14)A is inner if and only if D(cid:14)A is inner. Similarly, suppose (cid:14)B :B !B(cid:3) is a continuous derivation. Then D(cid:14)B : (cid:20) T (cid:21) ! (cid:20) T(cid:3); (cid:21) a m 0 0 ; 7! b (cid:14)B(b) is a continuous derivation, and it is inner precisely when (cid:14)B is inner. Proof. That D and D are derivations are again elementary calculations which (cid:14)A (cid:14)B we leave to the reader. Suppose (cid:14)A is inner. Then there exists (cid:11) 2 A(cid:3) such that (cid:14)A(a) = (cid:14)(cid:11)(a) := a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a. (cid:20) (cid:21) (cid:11) 0 Consider (cid:28) = 2T(cid:3). Then 0 (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m a m (cid:11) 0 (cid:11) 0 a m D = (cid:14) (cid:0) (cid:14) (cid:28) b b 0 0 b (cid:20) (cid:21) a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a 0 = 0 (cid:20) (cid:21) (cid:14) (a) 0 = (cid:11) 0 (cid:20) (cid:21) a m = D ; (cid:14)A b and so D(cid:14)A is inner. (cid:20) (cid:21) (cid:11) (cid:22) Conversely, suppose D is inner. Then there exists (cid:28) = 2 T(cid:3) such (cid:14)A (cid:12) that (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m a m (cid:11) (cid:22) (cid:11) (cid:22) a m D = (cid:14) (cid:0) (cid:14) (cid:14)A b b (cid:12) (cid:12) b (cid:20) (cid:21) a(cid:14)(cid:11)+m(cid:14)(cid:22)(cid:0)(cid:11)(cid:14)a b(cid:14)(cid:22)(cid:0)(cid:22)(cid:14)a = : b(cid:14)(cid:12)(cid:0)(cid:22)(cid:14)m(cid:0)(cid:12)(cid:14)b But (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:14)A(a) 0 D = : (cid:14)A b 0 It follows that (cid:14)A(a) = a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a+m(cid:14)(cid:22) for all a 2 A; m 2 M. We may assume without loss of generality that m=0. Then for any a2A, we have (cid:14)A(a)=a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a; and so (cid:14)A =(cid:14)(cid:11) is inner, as claimed. The proofs for (cid:14)B and D(cid:14)B are similar. WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1443 Wementionedintheaboveproofthatthecalculationthatshowsthatderivations from the corner algebra A into its dual space lift to derivations from T into T(cid:3) is elementary. It is worth pointing out that the conclusion is false if we consider lifting derivations from A into A to derivations from T into T. See [7], Example 3.6 for a counterexample. 3.4. Theorem. Let A(cid:20)and B be (cid:21)unitalBanach algebras and M bea unitalBanach A M A;B-module. Let T = be the corresponding triangular Banach algebra. B Then H1(T;T(cid:3))’H1(A;A(cid:3))(cid:8)H1(B;B(cid:3)): Proof. Let (cid:14) : T ! T(cid:3) be a (continuous) derivation. From Lemma 3.2 above, we obtain derivations (cid:14) : A ! A(cid:3) and (cid:14) : B ! B(cid:3), as well as an element (cid:13) 2 M(cid:3) 1 4 (cid:14) such that (cid:20) (cid:21) (cid:20) (cid:21) x y (cid:14) (x)(cid:0)y(cid:14)(cid:13) (cid:13) (cid:14)x(cid:0)z(cid:14)(cid:13) (cid:14) = 1 (cid:14) (cid:14) (cid:14) : z (cid:13) (cid:14)y+(cid:14) (z) (cid:14) 4 Consider the linear map (cid:20): Z1(T;T(cid:3)) ! H1(A;A(cid:3))(cid:8)H1(B;B(cid:3)); (cid:14) 7! ((cid:14) +N1(A;A(cid:3));(cid:14) +N1(B;B(cid:3))): 1 4 Clearly (cid:20) is linear. Weclaimthat(cid:20)issurjective. Indeed,given(cid:14)A 2Z1(A;A(cid:3))and(cid:14)B 2Z1(B;B(cid:3)), Lemma 3.3 shows that the lifted maps D and D both lie in Z1(T;T(cid:3)), and (cid:14)A (cid:14)B thus D =D +D 2Z1(T;T(cid:3)). But then (cid:14)A (cid:14)B (cid:20)(D) = (cid:20)(D )+(cid:20)(D ) (cid:14)A (cid:14)B = ((cid:14)A+N1(A;A(cid:3));0)+(0;(cid:14)B+N1(B;B(cid:3))) = ((cid:14)A+N1(A;A(cid:3));(cid:14)B+N1(B;B(cid:3))): Thus (cid:20) is onto, as claimed. Next, suppose (cid:14) 2 ker (cid:20). Then (cid:14) 2 N1(A;A(cid:3)) and (cid:14) 2 N1(B;B(cid:3)). By 1 4 Lemma 3.3, D ; D 2 N1(T;T(cid:3)), and hence D = D + D 2 N1(T;T(cid:3)). But (cid:14) (cid:0) D = (cid:14)(cid:14)12 (cid:14)4 3 2 N1(T;T(cid:3)), and so (cid:14) is an (cid:14)i1nner d(cid:14)e4rivation. That 0 (cid:13) 4 (cid:14) 5 0 (cid:14) 2 N1(T;T(cid:3)) implies (cid:14) ;(cid:14) are also inner is again Lemma 3.3. Thus ker (cid:20) = 1 4 N1(T;T(cid:3)). Elementary linear algebra theory now implies that H1(A;A(cid:3))(cid:8)H1(B;B(cid:3))=ran(cid:20)’Z1(T;T(cid:3))=ker (cid:20)=H1(T;T(cid:3)): 3.5. Corollary. LetA(cid:20)andB be(cid:21)unitalBanach algebras andMbeaunitalBanach A M A;B-module. Let T = be the corresponding triangular Banach algebra. B Then T is weakly amenable if and only if both A and B are weakly amenable. 1444 B. E. FORREST AND L. W. MARCOUX 3.6. Recall that the action of T on T(3) is a restriction of the action of T(2) on T(3). FromthiswecanagaindeterminethebehaviourofaderivationD :T !T(3). As before, (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:18) (cid:17) a m (cid:18)(cid:14)a (cid:17)(cid:14)a (cid:14) = ! b (cid:17)(cid:14)m+!(cid:14)b and (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:18) (cid:17) a(cid:14)(cid:18)+m(cid:14)(cid:17) b(cid:14)(cid:17) (cid:14) = : b ! b(cid:14)! By repeating exactly the same calculations as for derivations (cid:14) from T into T(cid:3), we (cid:12)nd that there exist derivations (cid:14)1 : A ! A(3) and (cid:14)4 : B ! B((cid:18)3)(cid:20)as well a(cid:21)s(cid:19)an element(cid:13) 2M(3)(arisingasthe(1;2)-coordinateoftheimageof(cid:14) eA 0 )) (cid:14) 0 such that (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:14) (a) 0 a m (cid:14)( )= 1 +(cid:14)2 3( ): b (cid:14) (b) 0 (cid:13) b 4 4 (cid:14) 5 0 This shows that H1(T;T(3))’H1(A;A(3))(cid:8)H1(B;B(3)), and that, in particu- lar,T is3-weaklyamenableifandonly ifbothAandB are. Infact, this argument extends to any dual of the form T(2n(cid:0)1) with n(cid:21)1. We therefore have: 3.7. Theorem. Let A(cid:20)and B be (cid:21)unitalBanach algebras and M bea unitalBanach A M A;B-module. Let T = be the corresponding triangular Banach algebra. B Suppose n is a positive integer. Then H1(T;T(2n(cid:0)1))’H1(A;A(2n(cid:0)1))(cid:8)H1(B;B(2n(cid:0)1)): It follows that T is (2n(cid:0)1)- weakly amenable if and only if both A and B are. 3.8. (2n)-weak amenability. The study of derivations from T into T(2n) di(cid:11)ers radically from that of derivations into T(2n(cid:0)1), n (cid:21) 1. While the (2n(cid:0)1)-weak amenabilityofT dependsonlyuponthe(2n(cid:0)1)-weakamenabilityofAandB,the situationfor(2n)-weakamenabilitymorecloselyresemblesthesituationexploredin [7]forderivationsfromT intoitself. Indeed,giventhatthe actionofT uponT(2n) mimics that of matrix multiplication, many of the calculations from that paper formally carry over intact to prove an analogue of [7], Thm. 2.8. For the sake of completeness, we shall include a detailed outline of the proof here, elaborating on the di(cid:11)erences which occur as a result of having changed the codomain of the derivations. 3.9. Proposition. Let n be a positive integer and suppose (cid:14) : T ! T(2n) is a continuous derivation. Then there exist (cid:13) 2 M(2n), and continuous derivations (cid:14) (cid:14) : A ! A(2n), (cid:14) : B ! B(2n) and a continuous map (cid:26) : M ! M(2n) which 1 4 satisfy: (cid:20) (cid:21) (cid:20) (cid:21) a 0 (cid:14) (a) a(cid:14)(cid:13) (i) (cid:14) = 1 (cid:14) ; (cid:20) 0 (cid:21) (cid:20) 0 (cid:21) 0 0 0 (cid:0)(cid:13) (cid:14)b (ii) (cid:14) = (cid:14) ; b (cid:14) (b) 4

Description:
Arens regularity and n-weak amenability of a triangular Banach algebra T in relation to that of strong splittings of extensions of A by X [1]. For this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.