TRANSACTIONSOFTHE AMERICANMATHEMATICALSOCIETY Volume354,Number4,Pages1435{1452 S0002-9947(01)02957-9 ArticleelectronicallypublishedonDecember4,2001 WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS B. E. FORREST AND L. W. MARCOUX Abstract. Let Aand B b(cid:20)e unital Ba(cid:21)nach algebras, and let MbeaBanach A M A;B-module. Then T = becomes a triangular Banach algebra 0 B (cid:20) (cid:21) a m whenequippedwiththeBanachspacenormk k=kakA+kmkM+ 0 b kbkB. A Banach algebra T is said to be n-weakly amenable if all derivations from T into its nth dual space T(n) are inner. In this paper we investigate Arensregularityandn-weakamenabilityofatriangularBanachalgebraT in relationtothatofthealgebrasA,BandtheiractiononthemoduleM. 1. Introduction In general, one can obtain a good deal of information about the structure of a BanachalgebraAbystudyingthevariousHochschildcohomologygroupsHn(A;X) ofAwithcoe(cid:14)cientsinaBanachA-bimoduleX. Forexample,thestudyofthe(cid:12)rst cohomologygroupH1(A;X)isessentiallythestudyofinner(vs. outer)derivations fromAinto X, while ifX is(cid:12)nite-dimensional,the study ofH2(A;X) isrelatedto that of strong splittings of extensions of A by X [1]. For this reason, it is perhaps discouraging to know that explicit calculations of cohomology groups tends to be rather di(cid:14)cult, and results often focus on whether a givengroupHn(A;X) is or is not trivial. In [7], motivated by work of Gilfeather and Smith [8] in their study of joins of operator algebras, we began an investigation of derivations of triangular Banach algebras; these are algebras of the form (cid:20) (cid:21) A M T = ; 0 B whereAandBarethemselvesBanachalgebrasandMisaBanachA;B-module. In thatpaperatechniquewasdevelopedwhich,inmanycases,allowsonetoexplicitly compute H1(T;T) for speci(cid:12)c choices of A, B, and M. In this paper, we show that the (cid:12)rst cohomology group for these algebras with coe(cid:14)cients in their nth dual spaces T(n) is also often tractable. In particular, we willdevelopcriteriafordecidingwhenH1(T;T(n))=0. Thisnotion,referredtoas n-weak amenability and de(cid:12)ned by Dales, Ghahramani and Gr(cid:28)nb(cid:26)k in [5], splits along two distinct lines in the setting of triangular Banachalgebras. Indeed, when n is odd, the ((cid:12)rst) cohomology group of T depends only upon that of A and B [see Theorem 3.7 below]. When n is even, the techniques developed in [7] can be ReceivedbytheeditorsOctober9,1998and,inrevisedform,July20,1999. 2000 Mathematics Subject Classi(cid:12)cation. Primary46H25,16E40. ResearchsupportedinpartbyNSERC(Canada). (cid:13)c2001 American Mathematical Society 1435 1436 B. E. FORREST AND L. W. MARCOUX extended to this setting, where it allows us to compute H1(T;T(2n)) for many choices of A, B and M [see Theorem 3.12]. The body ofthis paper is divided into three parts. In Section2,we examine the natural actions of T on its dual spaces T(n), n (cid:21) 1, and characterize when T is Arensregular. InSection3,weobtainourtwomainresultsconcerningH1(T;T(n)), the (cid:12)rstdealingwiththe casewhere nis odd,andthe seconddealingwiththe case where n is even. Finally, in Section 4, we apply these results to three (classes) of examples, including tensor products of a given C(cid:3)-algebra A by T , and (cid:12)nite 2 dimensional nest algebras. 2. Preliminaries 2.1. Let A and B be Banach algebras, and suppose X is a Banach A;B-module; thatis,X isaBanachspace,aleftA-moduleandarightB-module,andtheactions of A and B are continuous in that ka(cid:14)x(cid:14)bk(cid:20)kakA kxkX kbkB: If A has a unit eA and B has a unit eB, then X is said to be unital provided that eA(cid:14)x=x(cid:14)eB =x for all x2X. We cande(cid:12)ne a rightactionof A onthe dualspaceX(cid:3) ofX anda left actionof B on X(cid:3) via ((cid:30)(cid:14)a)(x) = (cid:30)(a(cid:14)x); (b(cid:14)(cid:30))(x) = (cid:30)(x(cid:14)b); for all a2A; b2B; x2X, and (cid:30)2X(cid:3). Similarly, the second dual X(2) of X becomes a Banach A;B-module under the actions (a(cid:14)(cid:8))((cid:30)) = (cid:8)((cid:30)(cid:14)a); ((cid:8)(cid:14)b)((cid:30)) = (cid:8)(b(cid:14)(cid:30)); for all a2A; b2B; (cid:30)2X(cid:3), and (cid:8)2X(2). Of course, we may continue this process to higher order dual spaces of X, with theconclusionbeingthatX(2m) isaBanachA;B-moduleandX(2m(cid:0)1) isaBanach B;A-module for all m (cid:21) 1. When X is unital, so is each X(m), m (cid:21) 1. When A=B, we simply have that each X(m) is a Banach A-bimodule. A particular but important example of this is when X = A = B, and the module actions are given by a(cid:14)x=ax and x(cid:14)a=xa for all a;x2A. The above analysis then shows that A(m) is a Banach A-bimodule for all m(cid:21)1. Suppose X is a Banach A-bimodule. A derivation (cid:14) : A ! X is a linear map which satis(cid:12)es (cid:14)(ab) = (cid:14)(a)(cid:14)b+a(cid:14)(cid:14)(b) for all a;b 2 A. In this paper, we shall only consider continuous derivations. The derivation (cid:14) is said to be inner if there exists x 2 X such that (cid:14)(a) = (cid:14) (a) := a(cid:14)x(cid:0)x(cid:14)a for all a 2 A. Denoting x the linear space of bounded derivations from A into X by Z1(A;X) and the linear subspaceof (necessarilybounded) inner derivations byN1(A;X), we may consider the quotient space H1(A;X) = Z1(A;X)=N1(A;X), called the (cid:12)rst Hochschild cohomology group of A with coe(cid:14)cients in X. The Banach algebra A is said to be amenable if H1(A;X(cid:3)) = 0 for all Banach A-bimodules X. This notion was (cid:12)rst de(cid:12)ned by Johnson in [10], who showed that the groupalgebra L1(G) is amenable precisely when G is an amenable group. In particular, the equivalence of amenability and nuclearity for C(cid:3)-algebras [9] WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1437 indicates that amenability canbe viewedas a generalized\(cid:12)niteness"condition on a Banach algebra. Bade, Curtis and Dales [1] later de(cid:12)ned the notion of weak amenability for a commutative Banach algebra A. They called A weakly amenable if every bounded derivation from A into a symmetric Banach A-module is inner and hence zero. They also showed that this is equivalent to H1(A;A(cid:3)) = 0. This latter condition, thatH1(A;A(cid:3))=0, has been adoptedas the de(cid:12)nition ofweak amenability for an arbitrary Banach algebra. That this is strictly weaker than amenability is clear, since all C(cid:3)-algebras are weakly amenable [9]. More recently, Dales, Ghahramani and Gr(cid:28)nb(cid:26)k [5] have de(cid:12)ned the notions of n-weak amenability and permanent weak amenability for a Banach algebra A as follows: let n be a positive integer. Then A is said to be n-weakly amenable if H1(A;A(n))=0,andAispermanently weakly amenable ifitisn-weaklyamenable for all n(cid:21)1. Amongst other things, they were able to show that everyC(cid:3)-algebra is permanently weakly amenable ([5], Theorem 2.1). Inthisnoteweshallconsiderthen-weakamenabilityofaclassofBanachalgebras we (cid:12)rst studied in [7], and which we call triangular Banach algebras. They are de(cid:12)ned in the following way: let A and B be Banach algebras and suppose that M is an essential Banach A;B-module; that is, A(cid:14)M = M (cid:14)B = M. (This is guaranteed when M is unital.) We de(cid:12)ne the corresponding triangular Banach algebra (cid:20) (cid:21) A M T = ; B with the sum and product being given by the usual 2(cid:2)2 matrix operations and obvious internal module actions. The norm on T is (cid:20) (cid:21) a m k k:=kakA+kmkM+kbkB: b An important class of examples arises when H is a complex Hilbert space, A and B are operator subalgebras of B(H), and M is an essential A;B-submodule of B(H). T is still not quite an operator subalgebra of B(H(cid:8)H), however, since the given norm and the operator norm do not coincide. 2.2. Arens regularity for triangular Banach algebras. Given a triangular Banach algebra T as above, we can make A(2) and B(2) into Banach algebras by giving them the (cid:12)rst Arens product as follows: Let fa g;fa g be nets in A with (cid:0) =w(cid:3)-lim a and (cid:0) =w(cid:3)-lim a : Then we i j 1 i i 2 j j de(cid:12)ne (cid:0) (cid:3)(cid:0) =w(cid:3)-limlima a : 1 2 i j i j Similarly, we can de(cid:12)ne (cid:9) (cid:3)(cid:9) =w(cid:3)-limlimb b 1 2 i j i j whenever (cid:9) = w(cid:3)-lim b and (cid:9) = w(cid:3)-lim b : Moreover, we can extend the 1 i i 2 j j actions of A on M and of B on M to actions of A(2) and B(2) on M(2) via (cid:0)(cid:3)(cid:5)=w(cid:3)-limlima m i j i j 1438 B. E. FORREST AND L. W. MARCOUX and (cid:5)(cid:3)(cid:9)=w(cid:3)-limlimm b ; j k j k where (cid:0) = w(cid:3)-lim a , (cid:5) = w(cid:3)-lim m , and (cid:9) = w(cid:3)-lim b : This allows us to i i j j k k show th(cid:20)at the (cid:12)rst(cid:21)A(cid:20)rens multip(cid:21)lication de(cid:12)ned on T(2) behaves in a natural way. (cid:0) (cid:5) (cid:0) (cid:5) Let 1 1 ; 2 2 2T(2): Assume also that (cid:9) (cid:9) 1 2 (cid:20) (cid:21) (cid:20) (cid:21) (cid:0)1 (cid:5)1 =w(cid:3)-lim ai mi (cid:9)1 i bi and (cid:20) (cid:21) (cid:20) (cid:21) (cid:0)2 (cid:5)2 =w(cid:3)-lim aj mj : (cid:9)2 j bj Thenit iseasytosee that(cid:0) =w(cid:3)-lim a ;(cid:0) =w(cid:3)-lim a ;(cid:9) =w(cid:3)-lim b ;(cid:9) = 1 i i 2 j j 1 i i 2 w(cid:3)-lim b ;(cid:5) =w(cid:3)-lim m and (cid:5) =w(cid:3)-lim m Moreover, j j 1 i i 2 j j: (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21)(cid:20) (cid:21) (cid:0)1 (cid:5)1 (cid:3) (cid:0)2 (cid:5)2 =w(cid:3)-limlim ai mi aj mj (cid:9)1 (cid:20) (cid:9)2 i j (cid:21) bi bj =w(cid:3)-limlim aiaj aimj +mibj (cid:20) i j bibj (cid:21) w(cid:3)-lim lim a a w(cid:3)-lim lim (a m +m b ) = i j i j i j i j i j w(cid:3)-lim lim b b (cid:20) i(cid:21) j i j (cid:0) (cid:3)(cid:0) (cid:0) (cid:3)(cid:5) +(cid:5) (cid:3)(cid:9) = 1 2 1 2 1 2 : (cid:9) (cid:3)(cid:9) 1 2 Thus the (cid:12)rst Arens product of T behaves just like matrix multiplication, with coordinate-level operations behaving like the (cid:12)rst Arens product of the building blocks. There is a second way of de(cid:12)ning a product on the second dual of a Banach algebra, namely by interchanging the order of the limits taken in the (cid:12)rst Arens product. The result of doing this is called the second Arens product. We now set (cid:0) (cid:5)(cid:0) =w(cid:3)-limlima a ; 1 2 i j j i and similarly, (cid:9) (cid:5)(cid:9) = w(cid:3)-limlimb b ; 1 2 i j j i (cid:0) (cid:5)(cid:5) = w(cid:3)-limlima m ; 1 i j j i (cid:5)(cid:5)(cid:9) = w(cid:3)-limlimm b : 1 j i i j WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1439 The previous analysis of the (cid:12)rst Arens product can now be extended to the second Arens product to see that (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:0)1 (cid:5)1 (cid:5) (cid:0)2 (cid:5)2 =w(cid:3)-limlim ai mi aj mj (cid:9)1 (cid:20) (cid:9)2 j i (cid:21) bi bj =w(cid:3)-limlim aiaj aimj +mibj (cid:20) j i bibj (cid:21) w(cid:3)-lim lim a a w(cid:3)-lim lim (a m +m b ) = j i i j j i i j i j w(cid:3)-lim lim b b (cid:20) (cid:21) j i i j (cid:0) (cid:5)(cid:0) (cid:0) (cid:5)(cid:5) +(cid:5) (cid:5)(cid:9) = 1 2 1 2 1 2 : (cid:9) (cid:5)(cid:9) 1 2 In general, a Banach algebra D is said to be Arens regular provided that the (cid:12)rstandsecondArensproductsonD(2) agree. GivenD;F 2D(2),itisknownthat D(cid:3)F =D(cid:5)F whenever either D or F lies in the image of D under the canonical embedding of D into D(2) ([13], Theorem 1.4.2) A fortiori, when this is the case, the Arens product also coincides with the natural dual module action of D on D(2) de(cid:12)ned at the beginning of Section 2.1. To see this, suppose for instance that D; F 2D(2) withDbeingtheimageofsomed2Dunderthecanonicalembedding. Suppose F =w(cid:3)-lim f and consider (cid:26)2D(cid:3). Then (D(cid:3)F)=w(cid:3)-lim df and so j j j j (D(cid:3)F)((cid:26))=lim(cid:26)(df ): j j On the other hand, we have (D(cid:14)F)((cid:26)) = F((cid:26)(cid:14)d) = lim((cid:26)(cid:14)d)(f ) j j = lim(cid:26)(df ) j j = (D(cid:3)F)((cid:26)): The case where F arises from the image of some f 2 D under the canonical em- bedding and D 2D(2) is arbitrary is handled in a similar fashion. Returning to the setting of triangular Banach algebras, the same observations carry over to the case of the two A(2);B(2)-module actions (cid:5) and (cid:3) which we have de(cid:12)ned on M(2). More precisely, (cid:0)(cid:5)(cid:5) = (cid:0)(cid:3)(cid:5) if either (cid:0) is the image of some a2A under the canonical embedding of A into A(2), or if (cid:5) is the image of some m 2 M under the canonical embedding of M into its second dual. (A similar statement holds for the right action of B(2) upon M(2).) Again, when at least one termistheimageofanelementinA(orM,orB),thesetwoactions(cid:3)and(cid:5)agree with the dual module action (cid:14) de(cid:12)ned above. We shall return to this later. Let us say that the Banach algebras A and B act regularly on M if for every (cid:0)2A(2), (cid:5)2M(2) and (cid:9)2B(2) we have (cid:0)(cid:3)(cid:5)=(cid:0)(cid:5)(cid:5) and (cid:5)(cid:3)(cid:9)=(cid:5)(cid:5)(cid:9): The following proposition is now immediate: (cid:20) (cid:21) A M 2.3. Proposition. A triangular Banach algebra T = is Arens regular B if and only if both A and B are Arens regular and A and B act regularly on M. 1440 B. E. FORREST AND L. W. MARCOUX 2.4. Now that we have shownthat T(2) canbe made into a Banachalgebrausing either Arens product, we may apply the same argumentto show that we canmake T(4); T(6);andmoregenerallyT(2n) forn(cid:21)1intoaBanachalgebrabyrepeatedly using the (cid:12)rst (or second) Arens product. Two interesting implications of this analysis are the following: (i) It provides us with an action of T upon T(2n) for each n (cid:21) 1 via restriction ofthe ArensproducttothecanonicalembeddingofT intoT(2n). Aswehaveseen, this action agrees with the dual module action de(cid:12)ned in Section 2.1. (ii) The action of T upon T(2n) referred to in the previous paragraph in turn de(cid:12)nes\actions"ofA(2n) andB(2n) onM taking values in M(2n) viathe formulae A(cid:14)m=A(cid:5)m~ and m(cid:14)B =m~ (cid:5)B; where A 2 A(2n), B 2 B(2n), and m~ denotes the (canonical) embedding of an elementm2Minto M(2n). We shalluse this inourstudy ofderivationsofT into T(2n), n(cid:21)1. 2.5. Iterated duals - the actions of T upon T(m). Since, as a Banach space, T is isomorphic to the ‘1-direct sum of A, M and B, it is clear that T(2m(cid:0)1) ’ A(2m(cid:0)1) (cid:8)1M(2m(cid:0)1) (cid:8)1B(2m(cid:0)1), while T(2m) ’ A(2m) (cid:8)1M(2m) (cid:8)1B(2m) for each m (cid:21) 1. Let us now consider the action of T upon T(m), m (cid:21) 1. To reduce notational clutter, we shall denote the module actions of A and B upon M simply by juxtaposition. (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:11) (cid:22) The case m = 1. Suppose t = 2 T and (cid:28) = 2 T(cid:3). b (cid:12) (Althoughwewrite(cid:28) asanupper triangularmatrix,thisis simplyforconvenience. The action o(cid:20)f T(cid:3) up(cid:21)on T is given by (cid:28)(t)=(cid:11)(a)+(cid:22)(m)+(cid:12)(b).) x y Let w = 2T. From above, the action of w on (cid:28) is given by z (w(cid:14)(cid:28))(t) = (cid:28)(tw) (cid:20) (cid:21) ax ay+mz = (cid:28) bz = (cid:11)(ax)+(cid:22)(ay+mz)+(cid:12)(bz) = (x(cid:14)(cid:11))(a)+(y(cid:14)(cid:22))(a)+(z(cid:14)(cid:22))(m)+(z(cid:14)(cid:12))(b) (cid:20) (cid:21) (cid:18) (cid:19) x(cid:14)(cid:11)+y(cid:14)(cid:22) z(cid:14)(cid:22) a m = : z(cid:14)(cid:12) b (cid:20) (cid:21) x(cid:14)(cid:11)+y(cid:14)(cid:22) z(cid:14)(cid:22) Thus (w(cid:14)(cid:28))= : z(cid:14)(cid:12) (cid:20) (cid:21) (cid:11)(cid:14)x (cid:22)(cid:14)x Similarly, one can check that ((cid:28) (cid:14)w)= : (cid:22)(cid:14)y+(cid:12)(cid:14)z (cid:20) (cid:21) A(2) M(2) The case m=2. We canidentify T(2) with . As we have seen, B(2) the action of T upon T(2) coincides with the restriction of the ((cid:12)rst or second) Arens product on T(2) to the image of T in T(2) under the canonical embedding, and hence (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) x y (cid:0) (cid:5) x(cid:14)(cid:0) x(cid:14)(cid:5)+y(cid:14)(cid:8) (cid:14) = z (cid:8) z(cid:14)(cid:8) WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1441 and (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:0) (cid:5) x y (cid:0)(cid:14)x (cid:0)(cid:14)y+(cid:5)(cid:14)z (cid:14) = : (cid:8) z (cid:8)(cid:14)z Again,we observethattheseequationscoincide withthe standardmatrix\mul- tiplications" of w and T, with multiplication at the coordinate level corresponding to the appropriate module action. The case m(cid:21)3. It is not hard to see that the action of T on T(3) agrees with the dual action of T(2) on T(3) when we restr(cid:20)ict to th(cid:21)e image o(cid:20)f T in T((cid:21)2) under (cid:18) (cid:17) (cid:0) (cid:5) the canonicalembedding. Indeed, note that if 2T(3), 2T(2), (cid:20) (cid:21) ! (cid:9) a m and 2T, then b (cid:20) (cid:21) (cid:20) (cid:21)(cid:18) (cid:19) (cid:20) (cid:21)(cid:18)(cid:20) (cid:21) (cid:20) (cid:21)(cid:19) (cid:18) (cid:17) a m (cid:0) (cid:5) (cid:18) (cid:17) a m (cid:0) (cid:5) (cid:14) = (cid:14) ! b (cid:9) ! b (cid:9) (cid:20) (cid:21)(cid:18)(cid:20) (cid:21) (cid:20) (cid:21)(cid:19) (cid:18) (cid:17) a m (cid:0) (cid:5) = (cid:5) ; ! b (cid:9) where(cid:14)denotestheappropriatedualactionand(cid:5)denotestheArensproduct(recall thatbothArensproductsagreesinceoneofthetermsistheimageofanelementof T underthecanonicalembedding). Moregenerally,itfollowsthatthecomputation of the action of T upon T(cid:3) carries over mutatis mutandis to the action of T upon T(2m(cid:0)1), m (cid:21) 2. Similarly, the action of T upon T(2m), m (cid:21) 2, also satis(cid:12)es the corresponding formulae for the action of T upon T(2), and hence \looks like" standard matrix multiplication, as we saw in Section 2.4. 3. Derivations and n-weak amenability 3.1. We now wish to(cid:20)consider t(cid:21)he question of n-weak amenability of triangular A M Banach algebras T = . From this point on, we shall assume that the B corner algebras A and B are unital and that M is a unital Banach A;B-module. Although this is not crucial for weak amenability (i.e. when n = 1), it guarantees thatM(n) isanessentialmodulewhenn(cid:21)2. Asweshallsee,therearetwodistinct phenomena which occur, depending upon whether n is even or odd. We begin by considering the case where n is odd, and in fact, (cid:12)rst considering the case where n=1. Weakamenability. Theproofofthefollowinglemmainvolvesnothingmorethan routine calculations which are left to the reader. 3.2. Lemma. Let D : T ! T(cid:3) be a continuous derivation. Then there exist continuous derivations (cid:14) : A ! A(cid:3), (cid:14) : B ! B(cid:3), and an element (cid:13) 2 M(cid:3) such 1 4 (cid:14) that (cid:20) (cid:21) (cid:20) (cid:21) x 0 (cid:14) (x) (cid:13) (cid:14)x (i) D = 1 (cid:14) for all x2A, (cid:20) 0 (cid:21) (cid:20) 0 (cid:21) 0 0 0 (cid:0)z(cid:14)(cid:13) (ii) D = (cid:14) for all z 2B, (cid:20) z (cid:21) (cid:20) (cid:14)4(z) (cid:21) 0 y (cid:0)y(cid:14)(cid:13) 0 (iii) D = (cid:14) for all y 2M. 0 (cid:13) (cid:14)y (cid:14) 1442 B. E. FORREST AND L. W. MARCOUX 3.3. Lemma. Suppose (cid:14)A :A!A(cid:3) is a continuous derivation. Then D(cid:14)A : (cid:20) T (cid:21) ! (cid:20) T(cid:3); (cid:21) a m 7! (cid:14)A(a) 0 ; b 0 is also a continuous derivation. Furthermore, (cid:14)A is inner if and only if D(cid:14)A is inner. Similarly, suppose (cid:14)B :B !B(cid:3) is a continuous derivation. Then D(cid:14)B : (cid:20) T (cid:21) ! (cid:20) T(cid:3); (cid:21) a m 0 0 ; 7! b (cid:14)B(b) is a continuous derivation, and it is inner precisely when (cid:14)B is inner. Proof. That D and D are derivations are again elementary calculations which (cid:14)A (cid:14)B we leave to the reader. Suppose (cid:14)A is inner. Then there exists (cid:11) 2 A(cid:3) such that (cid:14)A(a) = (cid:14)(cid:11)(a) := a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a. (cid:20) (cid:21) (cid:11) 0 Consider (cid:28) = 2T(cid:3). Then 0 (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m a m (cid:11) 0 (cid:11) 0 a m D = (cid:14) (cid:0) (cid:14) (cid:28) b b 0 0 b (cid:20) (cid:21) a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a 0 = 0 (cid:20) (cid:21) (cid:14) (a) 0 = (cid:11) 0 (cid:20) (cid:21) a m = D ; (cid:14)A b and so D(cid:14)A is inner. (cid:20) (cid:21) (cid:11) (cid:22) Conversely, suppose D is inner. Then there exists (cid:28) = 2 T(cid:3) such (cid:14)A (cid:12) that (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m a m (cid:11) (cid:22) (cid:11) (cid:22) a m D = (cid:14) (cid:0) (cid:14) (cid:14)A b b (cid:12) (cid:12) b (cid:20) (cid:21) a(cid:14)(cid:11)+m(cid:14)(cid:22)(cid:0)(cid:11)(cid:14)a b(cid:14)(cid:22)(cid:0)(cid:22)(cid:14)a = : b(cid:14)(cid:12)(cid:0)(cid:22)(cid:14)m(cid:0)(cid:12)(cid:14)b But (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:14)A(a) 0 D = : (cid:14)A b 0 It follows that (cid:14)A(a) = a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a+m(cid:14)(cid:22) for all a 2 A; m 2 M. We may assume without loss of generality that m=0. Then for any a2A, we have (cid:14)A(a)=a(cid:14)(cid:11)(cid:0)(cid:11)(cid:14)a; and so (cid:14)A =(cid:14)(cid:11) is inner, as claimed. The proofs for (cid:14)B and D(cid:14)B are similar. WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS 1443 Wementionedintheaboveproofthatthecalculationthatshowsthatderivations from the corner algebra A into its dual space lift to derivations from T into T(cid:3) is elementary. It is worth pointing out that the conclusion is false if we consider lifting derivations from A into A to derivations from T into T. See [7], Example 3.6 for a counterexample. 3.4. Theorem. Let A(cid:20)and B be (cid:21)unitalBanach algebras and M bea unitalBanach A M A;B-module. Let T = be the corresponding triangular Banach algebra. B Then H1(T;T(cid:3))’H1(A;A(cid:3))(cid:8)H1(B;B(cid:3)): Proof. Let (cid:14) : T ! T(cid:3) be a (continuous) derivation. From Lemma 3.2 above, we obtain derivations (cid:14) : A ! A(cid:3) and (cid:14) : B ! B(cid:3), as well as an element (cid:13) 2 M(cid:3) 1 4 (cid:14) such that (cid:20) (cid:21) (cid:20) (cid:21) x y (cid:14) (x)(cid:0)y(cid:14)(cid:13) (cid:13) (cid:14)x(cid:0)z(cid:14)(cid:13) (cid:14) = 1 (cid:14) (cid:14) (cid:14) : z (cid:13) (cid:14)y+(cid:14) (z) (cid:14) 4 Consider the linear map (cid:20): Z1(T;T(cid:3)) ! H1(A;A(cid:3))(cid:8)H1(B;B(cid:3)); (cid:14) 7! ((cid:14) +N1(A;A(cid:3));(cid:14) +N1(B;B(cid:3))): 1 4 Clearly (cid:20) is linear. Weclaimthat(cid:20)issurjective. Indeed,given(cid:14)A 2Z1(A;A(cid:3))and(cid:14)B 2Z1(B;B(cid:3)), Lemma 3.3 shows that the lifted maps D and D both lie in Z1(T;T(cid:3)), and (cid:14)A (cid:14)B thus D =D +D 2Z1(T;T(cid:3)). But then (cid:14)A (cid:14)B (cid:20)(D) = (cid:20)(D )+(cid:20)(D ) (cid:14)A (cid:14)B = ((cid:14)A+N1(A;A(cid:3));0)+(0;(cid:14)B+N1(B;B(cid:3))) = ((cid:14)A+N1(A;A(cid:3));(cid:14)B+N1(B;B(cid:3))): Thus (cid:20) is onto, as claimed. Next, suppose (cid:14) 2 ker (cid:20). Then (cid:14) 2 N1(A;A(cid:3)) and (cid:14) 2 N1(B;B(cid:3)). By 1 4 Lemma 3.3, D ; D 2 N1(T;T(cid:3)), and hence D = D + D 2 N1(T;T(cid:3)). But (cid:14) (cid:0) D = (cid:14)(cid:14)12 (cid:14)4 3 2 N1(T;T(cid:3)), and so (cid:14) is an (cid:14)i1nner d(cid:14)e4rivation. That 0 (cid:13) 4 (cid:14) 5 0 (cid:14) 2 N1(T;T(cid:3)) implies (cid:14) ;(cid:14) are also inner is again Lemma 3.3. Thus ker (cid:20) = 1 4 N1(T;T(cid:3)). Elementary linear algebra theory now implies that H1(A;A(cid:3))(cid:8)H1(B;B(cid:3))=ran(cid:20)’Z1(T;T(cid:3))=ker (cid:20)=H1(T;T(cid:3)): 3.5. Corollary. LetA(cid:20)andB be(cid:21)unitalBanach algebras andMbeaunitalBanach A M A;B-module. Let T = be the corresponding triangular Banach algebra. B Then T is weakly amenable if and only if both A and B are weakly amenable. 1444 B. E. FORREST AND L. W. MARCOUX 3.6. Recall that the action of T on T(3) is a restriction of the action of T(2) on T(3). FromthiswecanagaindeterminethebehaviourofaderivationD :T !T(3). As before, (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:18) (cid:17) a m (cid:18)(cid:14)a (cid:17)(cid:14)a (cid:14) = ! b (cid:17)(cid:14)m+!(cid:14)b and (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:18) (cid:17) a(cid:14)(cid:18)+m(cid:14)(cid:17) b(cid:14)(cid:17) (cid:14) = : b ! b(cid:14)! By repeating exactly the same calculations as for derivations (cid:14) from T into T(cid:3), we (cid:12)nd that there exist derivations (cid:14)1 : A ! A(3) and (cid:14)4 : B ! B((cid:18)3)(cid:20)as well a(cid:21)s(cid:19)an element(cid:13) 2M(3)(arisingasthe(1;2)-coordinateoftheimageof(cid:14) eA 0 )) (cid:14) 0 such that (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) a m (cid:14) (a) 0 a m (cid:14)( )= 1 +(cid:14)2 3( ): b (cid:14) (b) 0 (cid:13) b 4 4 (cid:14) 5 0 This shows that H1(T;T(3))’H1(A;A(3))(cid:8)H1(B;B(3)), and that, in particu- lar,T is3-weaklyamenableifandonly ifbothAandB are. Infact, this argument extends to any dual of the form T(2n(cid:0)1) with n(cid:21)1. We therefore have: 3.7. Theorem. Let A(cid:20)and B be (cid:21)unitalBanach algebras and M bea unitalBanach A M A;B-module. Let T = be the corresponding triangular Banach algebra. B Suppose n is a positive integer. Then H1(T;T(2n(cid:0)1))’H1(A;A(2n(cid:0)1))(cid:8)H1(B;B(2n(cid:0)1)): It follows that T is (2n(cid:0)1)- weakly amenable if and only if both A and B are. 3.8. (2n)-weak amenability. The study of derivations from T into T(2n) di(cid:11)ers radically from that of derivations into T(2n(cid:0)1), n (cid:21) 1. While the (2n(cid:0)1)-weak amenabilityofT dependsonlyuponthe(2n(cid:0)1)-weakamenabilityofAandB,the situationfor(2n)-weakamenabilitymorecloselyresemblesthesituationexploredin [7]forderivationsfromT intoitself. Indeed,giventhatthe actionofT uponT(2n) mimics that of matrix multiplication, many of the calculations from that paper formally carry over intact to prove an analogue of [7], Thm. 2.8. For the sake of completeness, we shall include a detailed outline of the proof here, elaborating on the di(cid:11)erences which occur as a result of having changed the codomain of the derivations. 3.9. Proposition. Let n be a positive integer and suppose (cid:14) : T ! T(2n) is a continuous derivation. Then there exist (cid:13) 2 M(2n), and continuous derivations (cid:14) (cid:14) : A ! A(2n), (cid:14) : B ! B(2n) and a continuous map (cid:26) : M ! M(2n) which 1 4 satisfy: (cid:20) (cid:21) (cid:20) (cid:21) a 0 (cid:14) (a) a(cid:14)(cid:13) (i) (cid:14) = 1 (cid:14) ; (cid:20) 0 (cid:21) (cid:20) 0 (cid:21) 0 0 0 (cid:0)(cid:13) (cid:14)b (ii) (cid:14) = (cid:14) ; b (cid:14) (b) 4
Description: