ebook img

Waves and Rays in Elastic Continua PDF

470 Pages·2010·3.535 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Waves and Rays in Elastic Continua

WAVESANDRAYSINELASTICCONTINUA Secondedition MichaelA.Slawinski Professor DepartmentofEarthSciences MemorialUniversity 30-09-2007 Copyright(cid:13)c 2007byMichaelA.Slawinski ThisworkislicensedundertheCreativeCommonsAttribution-NoDerivativeWorks3.0License. Toview a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to Creative Commons,171SecondStreet,Suite300,SanFrancisco,California,94105,USA. Contents ListofFigures xiii Dedication xvii Acknowledgements xix Preface xxi Changestothisedition xxv Part1. Elasticcontinua 1 IntroductiontoPart1 3 Chapter1. Deformations 7 Preliminaryremarks 7 1.1. Notionofcontinuum 8 1.2. Rudimentsofcontinuummechanics 9 1.2.1. Axiomaticformat 9 1.2.2. Primitiveconceptsofcontinuummechanics 9 1.3. Materialandspatialdescriptions 11 1.3.1. Fundamentalconcepts 11 1.3.2. Materialtimederivative 13 1.3.3. Conditionsoflinearizedtheory 15 1.4. Strain 18 1.4.1. Introductorycomments 18 1.4.2. Derivationofstraintensor 18 1.4.3. Physicalmeaningofstraintensor 21 1.5. Rotationtensorandrotationvector 25 Closingremarks 26 1.6. Exercises 27 Chapter2. Forcesandbalanceprinciples 33 Preliminaryremarks 33 iii iv CONTENTS 2.1. Conservationofmass 33 2.1.1. Introductorycomments 33 2.1.2. Integralequation 34 2.1.3. Equationofcontinuity 35 2.2. Timederivativeofvolumeintegral 36 2.3. Stress 38 2.3.1. Stressasdescriptionofsurfaceforces 38 2.3.2. Traction 38 2.4. Balanceoflinearmomentum 39 2.5. Stresstensor 41 2.5.1. Tractiononcoordinateplanes 41 2.5.2. Tractiononarbitraryplanes 42 2.6. Cauchy’sequationsofmotion 46 2.6.1. Generalformulation 46 2.6.2. Example: Surface-forcesformulation 48 2.7. Balanceofangularmomentum 50 2.7.1. Introductorycomments 50 2.7.2. Integralequation 51 2.7.3. Symmetryofstresstensor 52 2.8. Fundamentalequations 55 Closingremarks 56 2.9. Exercises 57 Chapter3. Stress-strainequations 63 Preliminaryremarks 63 3.1. Rudimentsofconstitutiveequations 63 3.2. Formulationofstress-strainequations: Hookeansolid 65 3.2.1. Introductorycomments 65 3.2.2. Tensorform 66 3.2.3. Matrixform 68 3.3. Determinedsystem 70 3.4. Anelasticity: Example 70 3.4.1. Introductorycomments 70 3.4.2. Viscosity: Stokesianfluid 70 3.4.3. Viscoelasticity: Kelvin-Voigtmodel 71 Closingremarks 73 3.5. Exercises 74 CONTENTS v Chapter4. Strainenergy 79 Preliminaryremarks 79 4.1. Strain-energyfunction 80 4.2. Strain-energyfunctionandelasticity-tensorsymmetry 81 4.2.1. Fundamentalconsiderations 81 4.2.2. Elasticityparameters 82 4.2.3. Matrixformofstress-strainequations 83 4.2.4. Coordinatetransformations 83 4.3. Stabilityconditions 84 4.3.1. Physicaljustification 84 4.3.2. Mathematicalformulation 84 4.3.3. Constraintsonelasticityparameters 84 4.4. Systemofequationsforelasticcontinua 85 4.4.1. Elasticcontinua 85 4.4.2. Governingequations 86 Closingremarks 87 4.5. Exercises 89 Chapter5. Materialsymmetry 93 Preliminaryremarks 93 5.1. Orthogonaltransformations 93 5.1.1. Transformationmatrix 93 5.1.2. Symmetrygroup 94 5.2. Transformationofcoordinates 94 5.2.1. Introductorycomments 94 5.2.2. Transformationofstress-tensorcomponents 95 5.2.3. Transformationofstrain-tensorcomponents 98 5.2.4. Stress-strainequationsintransformedcoordinates 99 5.3. Conditionformaterialsymmetry 100 5.4. Pointsymmetry 102 5.5. Generallyanisotropiccontinuum 103 5.6. Monocliniccontinuum 103 5.6.1. Elasticitymatrix 103 5.6.2. Vanishingoftensorcomponents 104 5.6.3. Naturalcoordinatesystem 105 5.7. Orthotropiccontinuum 107 5.8. Trigonalcontinuum 109 vi CONTENTS 5.8.1. Elasticitymatrix 109 5.8.2. Naturalcoordinatesystem 110 5.9. Tetragonalcontinuum 111 5.10. Transverselyisotropiccontinuum 112 5.10.1. Elasticitymatrix 112 5.10.2. Rotationinvariance 112 5.11. Cubiccontinuum 116 5.12. Isotropiccontinuum 118 5.12.1. Elasticitymatrix 118 5.12.2. Lamé’sparameters 118 5.12.3. Tensorformulation 119 5.12.4. PhysicalmeaningofLamé’sparameters 120 5.13. Relationsamongsymmetryclasses 121 Closingremarks 122 5.14. Exercises 124 Part2. Wavesandrays 139 IntroductiontoPart2 141 Chapter6. Equationsofmotion: Isotropichomogeneouscontinua 143 Preliminaryremarks 143 6.1. Waveequations 143 6.1.1. Equationofmotion 143 6.1.2. WaveequationforP waves 146 6.1.3. WaveequationforS waves 147 6.2. Planewaves 148 6.3. Displacementpotentials 149 6.3.1. Helmholtz’sdecomposition 149 6.3.2. Gaugetransformation 150 6.3.3. Equationofmotion 151 6.3.4. P andS waves 152 6.4. Solutionsofwaveequationforsinglespatialdimension 154 6.4.1. d’Alembert’sapproach 154 6.4.2. Directionalderivative 157 6.4.3. Well-posedproblem 158 6.4.4. Causality,finitepropagationspeedandsharpnessofsignals 161 6.5. Solutionofwaveequationfortwoandthreespatialdimensions 163 CONTENTS vii 6.5.1. Introductorycomments 163 6.5.2. Threespatialdimensions 163 6.5.3. Twospatialdimensions 165 6.6. Onevolutionequation 166 6.7. Solutionsofwaveequationforone-dimensionalscattering 168 6.8. Onweaksolutionsofwaveequation 173 6.8.1. Introductorycomments 173 6.8.2. Weakderivatives 174 6.8.3. Weaksolutionofwaveequation 175 6.9. Reducedwaveequation 176 6.9.1. Harmonic-wavetrialsolution 176 6.9.2. Fourier’stransformofwaveequation 177 6.10. Extensionsofwaveequation 179 6.10.1. Introductorycomments 179 6.10.2. Standardwaveequation 179 6.10.3. Waveequationandellipticalvelocitydependence 180 6.10.4. Waveequationandweakinhomogeneity 183 Closingremarks 187 6.11. Exercises 189 Chapter7. Equationsofmotion: Anisotropicinhomogeneouscontinua 209 Preliminaryremarks 209 7.1. Formulationofequations 209 7.2. Formulationofsolutions 210 7.2.1. Introductorycomments 210 7.2.2. Trial-solutionformulation: Generalwave 210 7.2.3. Trial-solutionformulation: Harmonicwave 212 7.2.4. Asymptotic-seriesformulation 214 7.3. Eikonalequation 218 Closingremarks 220 7.4. Exercises 222 Chapter8. Hamilton’srayequations 229 Preliminaryremarks 229 8.1. Methodofcharacteristics 229 8.1.1. Level-setfunctions 229 8.1.2. Characteristicequations 231 8.1.3. Consistencyofformulation 233 viii CONTENTS 8.2. Timeparametrizationofcharacteristicequations 234 8.2.1. Generalformulation 234 8.2.2. Equationswithvariablescalingfactor 235 8.2.3. Equationswithconstantscalingfactor 236 8.2.4. FormulationofHamilton’srayequations 236 8.3. PhysicalinterpretationofHamilton’srayequationsandsolutions 237 8.3.1. Equations 237 8.3.2. Solutions 238 8.4. Relationbetweenpandx˙ 238 8.4.1. Generalformulation 238 8.4.2. Phaseandrayvelocities 239 8.4.3. Phaseandrayangles 241 8.4.4. Geometricalillustration 242 8.5. Example: Ellipticalanisotropyandlinearinhomogeneity 243 8.5.1. Introductorycomments 243 8.5.2. Eikonalequation 243 8.5.3. Hamilton’srayequations 245 8.5.4. Initialconditions 245 8.5.5. Physicalinterpretationofequationsandconditions 246 8.5.6. SolutionofHamilton’srayequations 247 8.5.7. Solutionofeikonalequation 250 8.5.8. Physicalinterpretationofsolutions 251 8.6. Example: Isotropyandinhomogeneity 252 8.6.1. Parametricform 252 8.6.2. Explicitform 252 Closingremarks 253 8.7. Exercises 255 Chapter9. Christoffel’sequations 267 Preliminaryremarks 267 9.1. ExplicitformofChristoffel’sequations 268 9.2. Christoffel’sequationsandanisotropiccontinua 271 9.2.1. Introductorycomments 271 9.2.2. Monocliniccontinua 272 9.2.3. Transverselyisotropiccontinua 275 9.3. Phase-slownesssurfaces 281 9.3.1. Introductorycomments 281 CONTENTS ix 9.3.2. Convexityofinnermostsheet 281 9.3.3. Intersectionpoints 282 Closingremarks 284 9.4. Exercises 285 Chapter10. Reflectionandtransmission 291 Preliminaryremarks 291 10.1. Anglesatinterface 291 10.1.1. Phaseangles 291 10.1.2. Rayangles 293 10.1.3. Example: Ellipticalvelocitydependence 294 10.2. Amplitudesatinterface 296 10.2.1. Kinematicanddynamicboundaryconditions 296 10.2.2. Reflectionandtransmissionamplitudes 300 Closingremarks 304 10.3. Exercises 306 Chapter11. Lagrange’srayequations 311 Preliminaryremarks 311 11.1. Legendre’stransformationofHamiltonian 311 11.2. FormulationofLagrange’srayequations 312 11.3. Beltrami’sidentity 314 Closingremarks 314 11.4. Exercises 315 Part3. Variationalformulationofrays 319 IntroductiontoPart3 321 Chapter12. Euler’sequations 323 Preliminaryremarks 323 12.1. Mathematicalbackground 323 12.2. FormulationofEuler’sequation 325 12.3. Beltrami’sidentity 327 12.4. GeneralizationsofEuler’sequation 327 12.4.1. Introductorycomments 327 12.4.2. Caseofseveralvariables 327 12.4.3. Caseofseveralfunctions 328 12.4.4. Higher-orderderivatives 329 x CONTENTS 12.5. SpecialcasesofEuler’sequation 329 12.5.1. Introductorycomments 329 12.5.2. Independenceofz 329 12.5.3. Independenceofxandz 330 12.5.4. Independenceofx 330 12.5.5. Totalderivative 331 12.5.6. Functionofxandz 331 12.6. Firstintegrals 333 12.7. Lagrange’srayequationsasEuler’sequations 334 Closingremarks 335 12.8. Exercises 336 Chapter13. Variationalprinciples 343 Preliminaryremarks 343 13.1. Fermat’sprinciple 343 13.1.1. StatementofFermat’sprinciple 344 13.1.2. PropertiesofHamiltonianH 344 13.1.3. VariationalequivalentofHamilton’srayequations 345 13.1.4. PropertiesofLagrangianL 345 13.1.5. Parameter-independentLagrange’srayequations 347 13.1.6. Rayvelocity 348 13.1.7. ProofofFermat’sprinciple 348 13.2. Hamilton’sprinciple: Example 349 13.2.1. Introductorycomments 349 13.2.2. Action 350 13.2.3. Lagrange’sequationsofmotion 352 13.2.4. Waveequation 353 Closingremarks 356 13.3. Exercises 357 Chapter14. Rayparameters 365 Preliminaryremarks 365 14.1. Traveltimeintegrals 366 14.2. Rayparametersasfirstintegrals 366 14.3. Example: Ellipticalanisotropyandlinearinhomogeneity 367 14.3.1. Introductorycomments 367 14.3.2. Rays 368 14.3.3. Traveltimes 371

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.