ebook img

Wavelets: approximation and statistical applications PDF

266 Pages·2000·1.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wavelets: approximation and statistical applications

Seminaire Paris-Berlin Seminar Berlin-Paris Wavelets, Approximation and Statistical Applications Wolfgang Ha¨rdle Gerard Kerkyacharian Dominique Picard Alexander Tsybakov Ein erstes Ergebnis des Seminars Berlin-Paris Un premier r´esultat du seminaire Paris-Berlin W. H¨ardle G. Kerkyacharian Humboldt-Universit¨at zu Berlin Universit´e Paris X Wirtschaftswissenschaftliche Fakulta¨t URA CNRS 1321 Modalx ¨ Institut fu¨r Statistik und Okonometrie 200, av. de la R´epublique Spandauer Straße 1 92001 Nanterre Cedex D 10178 Berlin France Deutschland D. Picard A. B. Tsybakov Universit´e Paris VII Universit´e Paris VI UFR Math´ematique Institut de Statistique URA CNRS 1321 URA CNRS 1321 2, Place Jussieu 4, pl. Jussieu F 75252 Paris cedex 5 F 75252 Paris France France 3 4 Contents 1 Wavelets 1 1.1 What can wavelets offer? . . . . . . . . . . . . . . . . . . . . . 1 1.2 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Data compression . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Local adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 Nonlinear smoothing properties . . . . . . . . . . . . . . . . . 13 1.6 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 The Haar basis wavelet system 17 3 The idea of multiresolution analysis 23 3.1 Multiresolution analysis . . . . . . . . . . . . . . . . . . . . . 23 3.2 Wavelet system construction . . . . . . . . . . . . . . . . . . . 25 3.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Some facts from Fourier analysis 29 5 Basic relations of wavelet theory 33 5.1 When do we have a wavelet expansion? . . . . . . . . . . . . . 33 5.2 How to construct mothers from a father . . . . . . . . . . . . 40 5.3 Additional remarks . . . . . . . . . . . . . . . . . . . . . . . . 42 6 Construction of wavelet bases 45 6.1 Construction starting from Riesz bases . . . . . . . . . . . . . 45 6.2 Construction starting from m . . . . . . . . . . . . . . . . . . 52 0 7 Compactly supported wavelets 57 7.1 Daubechies’ construction . . . . . . . . . . . . . . . . . . . . . 57 7.2 Coiflets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 i 7.3 Symmlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8 Wavelets and Approximation 67 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.3 Approximation kernels . . . . . . . . . . . . . . . . . . . . . . 71 8.4 Approximation theorem in Sobolev spaces . . . . . . . . . . . 72 8.5 Periodic kernels and projection operators . . . . . . . . . . . . 76 8.6 Moment condition for projection kernels . . . . . . . . . . . . 80 8.7 Moment condition in the wavelet case . . . . . . . . . . . . . . 85 9 Wavelets and Besov Spaces 97 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.2 Besov spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3 Littlewood-Paley decomposition . . . . . . . . . . . . . . . . . 102 9.4 Approximation theorem in Besov spaces . . . . . . . . . . . . 111 9.5 Wavelets and approximation in Besov spaces . . . . . . . . . . 113 10 Statistical estimation using wavelets 121 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.2 Linear wavelet density estimation . . . . . . . . . . . . . . . . 122 10.3 Soft and hard thresholding . . . . . . . . . . . . . . . . . . . . 134 10.4 Linear versus nonlinear wavelet density estimation . . . . . . . 143 10.5 Asymptotic properties of wavelet thresholding estimates . . . 158 10.6 Some real data examples . . . . . . . . . . . . . . . . . . . . . 166 10.7 Comparison with kernel estimates . . . . . . . . . . . . . . . . 173 10.8 Regression estimation . . . . . . . . . . . . . . . . . . . . . . . 177 10.9 Other statistical models . . . . . . . . . . . . . . . . . . . . . 183 11 Wavelet thresholding and adaptation 187 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.2 Different forms of wavelet thresholding . . . . . . . . . . . . . 187 11.3 Adaptivity properties of wavelet estimates . . . . . . . . . . . 191 11.4 Thresholding in sequence space . . . . . . . . . . . . . . . . . 195 11.5 Adaptive thresholding and Stein’s principle . . . . . . . . . . . 199 11.6 Oracle inequalities . . . . . . . . . . . . . . . . . . . . . . . . 204 11.7 Bibliographic remarks . . . . . . . . . . . . . . . . . . . . . . 206 ii 12 Computational aspects and software 209 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.2 The cascade algorithm . . . . . . . . . . . . . . . . . . . . . . 210 12.3 Discrete wavelet transform . . . . . . . . . . . . . . . . . . . . 214 12.4 Statistical implementation of the DWT . . . . . . . . . . . . . 216 12.5 Translation invariant wavelet estimation . . . . . . . . . . . . 221 12.6 Main wavelet commands in XploRe . . . . . . . . . . . . . . . 224 A Tables 229 A.1 Wavelet Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 229 A.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 B Software Availability 232 C Bernstein and Rosenthal inequalities 233 D A Lemma on the Riesz basis 238 Bibliography 252 iii iv Preface The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap- proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process- ing. Five years ago wavelet theory progressively appeared to be a power- ful framework for nonparametric statistical problems. Efficient computa- tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This text grew out of a French-German cooperation (S´eminaire Paris- Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994. We are confident that there will be future research work originating from this yearly seminar. This text would not have been possible without discussion and encour- agement from colleagues in France and Germany. We would like to thank in particular Lucien Birg´e, Christian Gourieroux, Yuri Golubev, Marc Hoff- mann, Sylvie Huet, Emmanuel Jolivet, Oleg Lepski, Enno Mammen, Pascal Massart, Michael Nussbaum, Michael Neumann, Volodja Spokoiny, Karine v Tribouley. The help of Yuri Golubev was particularly important. Our Sec- tions 11.5 and 12.5 are inspired by the notes that he kindly provided. The implementation in XploRe was professionally arranged by Sigbert Klinke and Clementine Dalelane. Steve Marron has established a fine set of test func- tions that we used in the simulations. Michael Kohler and Marc Hoffmann made many useful remarks that helped in improving the presentation. We had strong help in designing and applying our LATEX macros from Wolfram Kempe, Anja Bardeleben, Michaela Draganska, Andrea Tiersch and Kerstin Zanter. Un tr`es grand merci! Berlin-Paris, September 1997 Wolfgang H¨ardle Gerard Kerkyacharian, Dominique Picard Alexander Tsybakov vi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.