Department of Signal Processing and Acoustics A M Wavefield modeling and a lto-D ári D o 1 J 4 o signal processing for sensor 9 r /20 ge 13 C o st arrays of arbitrary geometry a W a v e fi e l d m Mário Jorge Costa o d e l i n g a n d s i g n a l p r o c e s s i n g f o r s e n s o r a r r a y s o f a r b i t r a r y g e o m e t r y ISBN 978-952-60-5346-2 BUSINESS + 9 ISBN 978-952-60-5347-9 (pdf) ECONOMY H ISSN-L 1799-4934 S ISSN 1799-4934 ART + T F ISSN 1799-4942 (pdf) DESIGN + M ARCHITECTURE G* Aalto University Aa afdegc SDwcewhpwoa.oartlam olteof n.Eftil eocf tSriicganl aEl nPgrionceeesrsiningg and Acoustics STCECRCIOEHSNNSCOOELV +OE GR Y lto Univ + er DOCTORAL DOCTORAL s DISSERTATIONS DISSERTATIONS ity Aalto University publication series DOCTORAL DISSERTATIONS 149/2013 Wavefield modeling and signal processing for sensor arrays of arbitrary geometry Mário Jorge Costa A doctoral dissertation completed for the degree of Doctor of Science in Technology to be defended, with the permission of the Aalto University School of Electrical Engineering, at a public examination held at the lecture hall S4 of the school on 1 November 2013 at 12 o'clock noon. Aalto University School of Electrical Engineering Department of Signal Processing and Acoustics Supervising professor Academy Prof. Visa Koivunen Thesis advisor Academy Prof. Visa Koivunen Preliminary examiners Prof. Marius Pesavento, Technische Universität Darmstadt, Germany Associate Prof. Mats Bengtsson, Kungliga Tekniska Högskolan, Sweden Opponents PPrrooff.. ALe. eL eSew Sinwdilnedhluerhsutr, sUt,n Uivneirvseirtys itCya oliff oCranliiafo arnt iIarv aint eIr, vUinSeA, USA PPrrooff.. MMaarriiuuss PPeessaavveennttoo,, TTeecchhnniisscchhee UUnniivveerrssiittäätt DDaarrmmssttaaddtt,, GGeerrmmaannyy Aalto University publication series DOCTORAL DISSERTATIONS 149/2013 © Mário Jorge Costa ISBN 978-952-60-5346-2 ISBN 978-952-60-5347-9 (pdf) ISSN-L 1799-4934 ISSN 1799-4934 (printed) ISSN 1799-4942 (pdf) http://urn.fi/URN:ISBN:978-952-60-5347-9 Unigrafia Oy Helsinki 2013 Finland Abstract Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Mário Jorge Costa Name of the doctoral dissertation Wavefield modeling and signal processing for sensor arrays of arbitrary geometry Publisher School of Electrical Engineering Unit Department of Signal Processing and Acoustics Series Aalto University publication series DOCTORAL DISSERTATIONS 149/2013 Field of research Signal Processing for Communications Manuscript submitted 7 June 2013 Date of the defence 1 November 2013 Permission to publish granted (date) 11 September 2013 Language English Monograph Article dissertation (summary + original articles) Abstract Sensor arrays and related signal processing methods are key technologies in many areas of engineering including wireless communication systems, radar and sonar as well as in biomedical applications. Sensor arrays are a collection of sensors that are placed at distinct locations in order to sense physical phenomena or synthesize wavefields. Spatial processing from the multichannel output of the sensor array is a typical task. Such processing is useful in areas including wireless communications, radar, surveillance and indoor positioning. In this dissertation, fundamental theory and practical methods of wavefield modeling for radio-frequency array processing applications are developed. Also, computationally-efficient high-resolution and optimal signal processing methods for sensor arrays of arbitrary geometry are proposed. Methods for taking into account array nonidealities are introduced as well. Numerical results illustrating the performance of the proposed methods are given using real- world antenna arrays. Wavefield modeling and manifold separation for vector-fields such as completely polarized electromagnetic wavefields and polarization sensitive arrays are proposed. Wavefield modeling is used for writing the array output in terms of two independent parts, namely the sampling matrix depending on the employed array including nonidealities and the coefficient vector depending on the wavefield. The superexponentially decaying property of the sampling matrix for polarization sensitive arrays is established. Two estimators of the sampling matrix from calibration measurements are proposed and their statistical properties are established. The array processing methods developed in this dissertation concentrate on polarimetric beamforming as well as on high-resolution and optimal azimuth, elevation and polarization parameter estimation. The proposed methods take into account array nonidealities such as mutual coupling, cross-polarization effects and mounting platform reflections. Computationally-efficient solutions based on polynomial rooting techniques and fast Fourier transform are achieved without restricting the proposed methods to regular array geometries. A novel expression for the Cramér-Rao bound in array processing that is tight for real-world arrays with nonidealities in the asymptotic regime is also proposed. A relationship between spherical harmonics and 2-D Fourier basis, called equivalence matrix, is established. A novel fast spherical harmonic transform is proposed, and a one-to-one mapping between spherical harmonic and 2-D Fourier spectra is found. Improvements to the minimum number of samples on the sphere that are needed in order to avoid aliasing are also proposed. Keywords Sensor array signal processing, parameter estimation, beamforming, manifold separation, harmonic analysis, array calibration, array nonidealities ISBN (printed) 978-952-60-5346-2 ISBN (pdf) 978-952-60-5347-9 ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 Location of publisher Helsinki Location of printing Helsinki Year 2013 Pages 204 urn http://urn.fi/URN:ISBN:978-952-60-5347-9 Acknowledgments Manypeoplehavecontributed,eitherdirectlyorindirectly,tothisdisser- tation. The research work presented herein has been carried out under thesupervisionofAcademyProf.VisaKoivunenattheDepartmentofSig- nalProcessingandAcoustics,AaltoUniversity(formerSignalProcessing Laboratory, Helsinki University of Technology) during the years 2008- 2013. The statistical signal processing group is led by Prof. Koivunen anditispartofSMARAD(SmartRadiosandWirelessResearch), acen- ter of excellence in research appointed by the Academy of Finland. This research work has also included an external-researcher position at the NokiaResearchCenterfromJanuarytoJuly2011. Firstandforemost, Iwouldliketoexpressmydeepestgratitudetomy supervisor Academy Prof. Visa Koivunen. The guidance, constructive criticism, and technical insight that have been given by Prof. Koivunen aretrulyremarkable. Secondly,Iwouldliketoexpressmysinceregrati- tudetoDr. AndreasRichterforallthediscussionswehad. Mostofthese discussionsweretechnicalbutsomeofthemwerelesspragmatic,though still extremely helpful. Both Prof. Koivunen and Dr. Richter have pro- vided valuable guidance and insight throughout the research work, and I have learned so much from them. Dr. Fabio Belloni is also acknowl- edged here for the great discussions during the course of this research. I am also indebted to Prof. Carlos Lima for all the useful advices and helpincontactingProf. Koivunen,allowingmetocontinuemystudiesin this outstanding research group. Nokia Foundation and Ulla Tuominen Foundationalsodeservemygratitudeforthefinancialsupport. IwouldliketothankthepreliminaryexaminersProf. MariusPesavento and Associate Prof. Mats Bengtsson. Their comments and suggestions have helped to improve the quality and clarity of the dissertation. The timeandefforttheyhaveputinreviewingthisdissertationisalsohighly i Acknowledgments acknowledged. Many thanks to my current and former colleagues at the Department of Signal Processing and Acoustics. It has been a great learning experi- enceworkingwithsuchexceptionalpeople. TheyincludeDr. JussiSalmi, Dr. TraianAbrudan, Dr. SachinChaudhari, Dr. AlexandraOborina, Dr. Jarmo Lunden, Dr. Jan Eriksson, Dr. Esa Ollila, Dr. Hyon-Jung Kim- Ollila, Jan Oksanen, Marian Micaˇ, Adriana Chis, Pramod Mathecken, TaneliRiihonen,TuomasAittomäki,Mei-YenCheong,AzadehHaghparast, Jayaprakash Rajasekharan, Hassan Naseri, among others. Dr. Stefan Werner,Prof.RistoWichman,Prof.SergiyVorobyov,andAbdullahAzremi also deserve my gratitude. The help of secretaries Mirja Lemetyinen, Heidi Koponen, and Marja Leppäharju in all the bureaucratic issues is greatlyappreciated. Also,specialthankstomygoodfriendsVarunSingh, JakubGronicz,andJavierMartinez. My family has had an important role during these years. I thank my parentsforhavingtaughtmetheimportanceofintegrityandhumanistic values. My sisters deserve my gratitude for all the good advices. I also thankmyuncleJoséMárioforhispersistenceinteachingmetheimpor- tance,andbeauty,oflínguaLusófona. Finally,IthankSusanaforhelping meunderstandingthathappinessisattainedthroughcommitmenttono- bleideals. Espoo,September19,2013, MárioJorgeCosta ii Contents Acknowledgments i Contents iii Listofpublications vii Listofabbreviations ix Listofsymbols xi 1. Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectivesandscope . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Dissertationstructure . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Summaryofthepublications . . . . . . . . . . . . . . . . . . 6 2. Arrayprocessingmodels 11 2.1 Signalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Idealarraymodelsandreal-worldarrays . . . . . . . . . . . 18 3. Arrayprocessinginthefaceofnonidealities 23 3.1 Auto-calibrationtechniques . . . . . . . . . . . . . . . . . . . 23 3.2 Uncertaintysetsonthearraysteeringvector . . . . . . . . . 25 3.3 Arraycalibrationmeasurements . . . . . . . . . . . . . . . . 27 3.4 Localinterpolationofthearraycalibrationmatrix . . . . . . 30 3.5 Arraymappingtechniques . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Arrayinterpolationbasedonvirtualarrays . . . . . . 31 3.5.2 Phase-modeexcitationandbeamspacetransform . . 32 3.6 Wavefieldmodelingandmanifoldseparation-summary . . 35 3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 iii Contents 4. Wavefieldmodelingandmanifoldseparation 39 4.1 Wavefieldmodelingandmanifoldseparationforscalar-fields 40 4.1.1 Relationship to local interpolation of the array cali- brationmatrix . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.2 Relationshiptoarraymappingtechniques. . . . . . . 43 4.2 Wavefieldmodelingandmanifoldseparationforvector-fields 45 4.3 Samplingmatrixestimation . . . . . . . . . . . . . . . . . . . 50 4.3.1 Least-squaresestimator . . . . . . . . . . . . . . . . . 50 4.3.2 Discretevectorsphericalharmonictransform. . . . . 52 4.4 Equivalencematrix . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.1 Conceptsanddefinitions . . . . . . . . . . . . . . . . . 58 4.4.2 Wavefield modeling and manifold separation based on2-DFourierbasis . . . . . . . . . . . . . . . . . . . 60 4.4.3 Relationshiptoeffectiveaperturedistributionfunction 65 4.4.4 Fastvectorsphericalharmonictransformby2-DFFT 66 4.5 Arraycalibrationexample . . . . . . . . . . . . . . . . . . . . 68 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5. Signalprocessingmethodsforarbitraryarraygeometries 75 5.1 Beamformingtechniques . . . . . . . . . . . . . . . . . . . . . 76 5.1.1 Conventionalbeamformer . . . . . . . . . . . . . . . . 77 5.1.2 Caponbeamformer . . . . . . . . . . . . . . . . . . . . 78 5.2 Subspacemethods . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.1 Multiplesignalclassification(MUSIC) . . . . . . . . . 82 5.2.2 Root-MUSIC . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.3 Weightedsubspacefitting(WSF) . . . . . . . . . . . . 86 5.3 StochasticCRBforreal-worldantennaarrays . . . . . . . . 87 5.4 Numericalexamples . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6. Conclusions 93 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Futureresearch . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A. Appendix 97 A.1 Derivationofexpression(4.25) . . . . . . . . . . . . . . . . . 97 A.2 Closed-formexpressionfortheequivalencematrix . . . . . . 99 A.3 Derivationofexpressions(4.45)and(4.46). . . . . . . . . . . 100 Bibliography 101 iv Contents Errata 117 Publications 119 v
Description: