Wave Propagation Analysis of Smart Nanostructures Wave Propagation Analysis of Smart Nanostructures Farzad Ebrahimi and Ali Dabbagh CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 (cid:13)c 2020 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-0-367-22695-4 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequencesoftheiruse.Theauthorsandpublishershaveattemptedtotracethecopyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my parents Farzad Ebrahimi To my parents and my sisters Ali Dabbagh Contents Preface xiii Acknowledgments xv Authors xvii 1 An Introduction to Wave Theory and Propagation Analysis 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Practical Applications of Waves . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Wave Propagation Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Beam-Type Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1.1 Classical Beams’ Solution . . . . . . . . . . . . . . . . . . . 4 1.3.1.2 Shear Deformable Beams’ Solution . . . . . . . . . . . . . . 4 1.3.2 Plate-Type Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2.1 Classical Plates’ Solution . . . . . . . . . . . . . . . . . . . 5 1.3.2.2 Shear Deformable Plates’ Solution . . . . . . . . . . . . . . 6 2 An Introduction to Nonlocal Elasticity Theories and Scale-Dependent Analysis in Nanostructures 7 2.1 Size Dependency: Fundamentals and Literature Review . . . . . . . . . . . 7 2.2 Mathematical Formulation of the Nonlocal Elasticity . . . . . . . . . . . . 9 2.2.1 Constitutive Equation for Linear Elastic Solids . . . . . . . . . . . . 9 2.2.2 Constitutive Equations of Piezoelectric Materials . . . . . . . . . . . 9 2.2.3 Constitutive Equations of Magnetoelectroelastic (MEE) Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Mathematical Formulation of the Nonlocal Strain Gradient Elasticity . . . 11 2.3.1 Constitutive Equation for Linear Elastic Solids . . . . . . . . . . . . 11 2.3.2 Constitutive Equations of Piezoelectric Materials . . . . . . . . . . . 12 2.3.3 Constitutive Equations of MEE Materials . . . . . . . . . . . . . . . 12 3 Size-Dependent Effects on Wave Propagation in Nanostructures 13 3.1 Importance of Wave Dispersion in Nanostructures . . . . . . . . . . . . . . 13 3.2 Wave Dispersion in Smart Nanodevices . . . . . . . . . . . . . . . . . . . . 14 3.3 Crucial Parameters in Accurate Approximation of the Wave Propagation Responses in Nanostructures . . . . . . . . . . . . . . . . . . . 15 4 Wave Propagation Characteristics of Inhomogeneous Nanostructures 17 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Functionally Graded Materials (FGMs) . . . . . . . . . . . . . . . . 17 4.1.2 FG Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Homogenization of FGMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Power-Law Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 vii viii Contents 4.2.2 Mori–Tanaka Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Analysis of FG Nanobeams . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.1 Kinematic Relations of Beams . . . . . . . . . . . . . . . . . . . . . 20 4.3.1.1 Euler–Bernoulli Beam Theory . . . . . . . . . . . . . . . . 20 4.3.1.2 Refined Sinusoidal Beam Theory . . . . . . . . . . . . . . . 20 4.3.2 Derivation of the Equations of Motion for Beams . . . . . . . . . . . 21 4.3.2.1 Equations of Motion of Euler–Bernoulli Beams . . . . . . . 22 4.3.2.2 Equations of Motion of Refined Sinusoidal Beams . . . . . 22 4.3.3 Constitutive Equations of FG Nanobeams . . . . . . . . . . . . . . . 23 4.3.4 The Nonlocal Governing Equations of FG Nanobeams . . . . . . . . 24 4.3.5 Wave Solution for FG Nanobeams . . . . . . . . . . . . . . . . . . . 25 4.3.5.1 Solution of Euler–Bernoulli FG Nanobeams . . . . . . . . . 25 4.3.5.2 Solution of Refined Sinusoidal FG Nanobeams . . . . . . . 25 4.3.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . 26 4.4 Analysis of FG Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4.1 Kinematic Relations of Plates . . . . . . . . . . . . . . . . . . . . . . 31 4.4.1.1 Classical Plate Theory. . . . . . . . . . . . . . . . . . . . . 31 4.4.1.2 Refined Sinusoidal Plate Theory . . . . . . . . . . . . . . . 32 4.4.2 Derivation of the Equations of Motion for Plates . . . . . . . . . . . 33 4.4.2.1 Equations of Motion for Classical Plates. . . . . . . . . . . 33 4.4.2.2 Equations of Motion for Refined Sinusoidal Plates . . . . . 34 4.4.3 Constitutive Equations of FG Nanoplates . . . . . . . . . . . . . . . 35 4.4.4 The Nonlocal Governing Equations of FG Nanoplates . . . . . . . . 37 4.4.5 Wave Solution for FG Nanoplates . . . . . . . . . . . . . . . . . . . 38 4.4.5.1 Solution of Classical FG Nanoplates . . . . . . . . . . . . . 39 4.4.5.2 Solution of Refined Sinusoidal FG Nanoplates . . . . . . . 39 4.4.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . 40 5 Porosity Effects on Wave Propagation Characteristics of Inhomogeneous Nanostructures 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.1 Porous FGM Structures . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1.2 Porous FGM Nanostructures . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Homogenization of Porous FGMs . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 Modified Power-Law Porous Model . . . . . . . . . . . . . . . . . . . 48 5.2.2 Coupled Elastic–Kinetic Porous Model . . . . . . . . . . . . . . . . . 49 5.3 Wave Propagation in Porous FG Nanostructures . . . . . . . . . . . . . . . 52 5.3.1 Analysis of Porous FG Nanobeams . . . . . . . . . . . . . . . . . . . 52 5.3.2 Analysis of Porous FG Nanoplates . . . . . . . . . . . . . . . . . . . 53 6 Wave Propagation Analysis of Smart Heterogeneous Piezoelectric Nanostructures 59 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Analysis of Piezoelectric FG Nanobeams . . . . . . . . . . . . . . . . . . . 61 6.2.1 Euler–Bernoulli Piezoelectric Nanobeams . . . . . . . . . . . . . . . 61 6.2.1.1 Motion Equations of Piezoelectric Euler–Bernoulli Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2.1.2 NonlocalStrainGradientPiezoelectricityfor Euler–Bernoulli Nanobeams . . . . . . . . . . . . . . . . . 63 6.2.1.3 GoverningEquationsofPiezoelectricEuler–Bernoulli Nanobeams . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Contents ix 6.2.1.4 WaveSolutionoftheEuler–BernoulliPiezoelectric Nanobeams . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2.2 Refined Sinusoidal Piezoelectric Nanobeams . . . . . . . . . . . . . . 65 6.2.2.1 MotionEquationsofPiezoelectricRefinedShear Deformable Beams . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.2.2 Nonlocal Strain Gradient Piezoelectricity for Refined Sinusoidal Nanobeams . . . . . . . . . . . . . . . . . . . . . 66 6.2.2.3 Governing Equations of Piezoelectric Refined Sinusoidal Nanobeams . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2.2.4 Wave Solution of the Refined Piezoelectric Nanobeams . . 67 6.2.3 Numerical Results for Piezoelectric Nanobeams . . . . . . . . . . . . 68 6.3 Analysis of FG Piezoelectric Nanoplates . . . . . . . . . . . . . . . . . . . . 72 6.3.1 Classical Piezoelectric Nanoplates . . . . . . . . . . . . . . . . . . . 73 6.3.1.1 MotionEquationsofPiezoelectricKirchhoff–Love Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.1.2 NonlocalStrainGradientPiezoelectricityforKirchhoff–Love Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.1.3 GoverningEquationsofPiezoelectricKirchhoff–Love Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.1.4 WaveSolutionfortheKirchhoff–LovePiezoelectric Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.2 Refined Sinusoidal Piezoelectric Nanoplates . . . . . . . . . . . . . . 77 6.3.2.1 Equations of Motion of Piezoelectric Refined Sinusoidal Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.2.2 Nonlocal Strain Gradient Piezoelectricity for Refined Sinusoidal Nanoplates . . . . . . . . . . . . . . . . . . . . . 78 6.3.2.3 Governing Equations of Piezoelectric Refined Sinusoidal Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.2.4 Wave Solution for the Refined Sinusoidal Piezoelectric Nanoplates . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.3 Numerical Results for Piezoelectric Nanoplates . . . . . . . . . . . . 82 7 Wave Dispersion Characteristics of Magnetostrictive Nanostructures 89 7.1 Magnetostriction and Magnetostrictive Materials . . . . . . . . . . . . . . . 89 7.2 Velocity Feedback Control System . . . . . . . . . . . . . . . . . . . . . . . 90 7.3 Constitutive Equations of Magnetostrictive Nanostructures . . . . . . . . . 91 7.4 Derivation of the Governing Equations . . . . . . . . . . . . . . . . . . . . 95 7.4.1 Governing Equations of Magnetostrictive Nanobeams . . . . . . . . 95 7.4.2 Governing Equations of Magnetostrictive Nanoplates . . . . . . . . . 96 7.5 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.5.1 Arrays of Damping Matrix of Nanobeams . . . . . . . . . . . . . . . 100 7.5.2 Arrays of Damping Matrix of Nanoplates . . . . . . . . . . . . . . . 100 7.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 101 8 Wave Propagation Analysis of Magnetoelectroelastic Heterogeneous Nanostructures 105 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.2 Analysis of MEE-FG Nanobeams . . . . . . . . . . . . . . . . . . . . . . . 107 8.2.1 Euler–Bernoulli MEE Nanobeams . . . . . . . . . . . . . . . . . . . 107 8.2.1.1 Motion Equations of MEE Euler–Bernoulli Beams . . . . . 107