Geophys.J.Int. (2006)167,1332–1352 doi:10.1111/j.1365-246X.2006.03132.x Wave-equation reflection tomography: annihilators and sensitivity kernels Maarten V. de Hoop,1 Robert D. van der Hilst2 and Peng Shen3 1CenterforComputationalandAppliedMathematics,PurdueUniversity,150N.UniversityStreet,WestLafayetteIN47907,USA 2DepartmentofEarth,AtmosphericandPlanetarySciences,MassachusettsInstituteofTechnology,Rm54-517A,Cambridge,MA02139,USA. E-mail:[email protected] 3TotalE&PUSA,800Gessner,Suite700,HoustonTX7024,USA Accepted2006July6.Received2006July2;inoriginalform2005December13 SUMMARY Inseismictomography,thefinitefrequencycontentofbroad-banddataleadstointerference effectsintheprocessofmediumreconstruction,whichareignoredintraditionalraytheoretical implementations. Various ways of looking at these effects in the framework of transmission tomographycanbefoundintheliterature.Here,weconsiderinversescatteringofbodywavesto developamethodofwave-equationreflectiontomographywithbroad-bandwaveformdata— whichinexplorationseismicsisidentifiedasamethodofwave-equationmigrationvelocity analysis.Inthetransitionfromtransmissiontoreflectiontomographytheusualcrosscorrelation betweenmodelledandobservedwaveformsofaparticularphasearrivalisreplacedbytheaction ofoperators(annihilators)totheobservedbroad-bandwavefields.Usingthegeneralizedscreen expansionforone-waywavepropagation,wedeveloptheFre´chet(orsensitivity)kernel,and showhowitcanbeevaluatedwithanadjointstatemethod.Wecastthereflectiontomography intoanoptimizationprocedure;thekernelappearsinthegradientofthisprocedure.Weinclude y g anumericalexampleofevaluatingthekernelinamodifiedMarmousimodel,whichillustrates o ol thecomplexdependencyofthekernelonfrequencybandand,hence,scale.Inheterogeneous m mediathekernelsreflectproperwavedynamicsanddonotrevealaself-similardependence s ei on frequency: low-frequency wave components sample preferentially the smoother parts of S themodel,whereasthehigh-frequencydataare—asexpected—moresensitivetothestronger I J heterogeneity.Wedeveloptheconceptforacousticwavesbuttherearenoinherentlimitations G fortheextensiontothefullyelasticcase. Keywords: migrationvelocityanalysis,reflectiontomography,sensitivitykernels. 1 INTRODUCTION Theevergrowingvolumesofdenselysampledbroad-banddata,bothinindustryapplicationsandinglobal(array)seismology,areproviding new opportunities and challenges for the development of techniques for subsurface imaging that exploit efficiently the rich information containedinseismicwaveforms.Here,weanalyseamethodofwave-equationreflectiontomographywithfinite-frequencydata(derivedfrom DeHoop&VanderHilst2003);inexplorationseismicsonereferstosuchmethodsingeneralaswave-equationmigrationvelocityanalysis (MVA,Biondi&Sava1999).Itmakesuseoftheredundancyinthescatteredwavefielddata;thescatteringisassumedtooccursomewhere inthesubsurface(Fig.1,bottom),butthelocationsofthescatterersneednotbeknown. Thegeneralobjectiveoflinearizedseismictomographyistofindbyinversionamodel,oraclassofmodels,ofelasticpropertiesthat throughforwardmodellingpredictsthedata.Thedatafitisusuallyevaluatedthroughaparticularcriterion,oftenexpressedasacostorpenalty functionalthatistobeoptimized.Intheprocessofoptimization,thekeyquantitytobefoundisthesocalledFre´chetorsensitivitykernel. Thecriterion—and,therefore,thecharacterofthesensitivitykernel—dependsonthetypeofobservationbeinginterpreted. Intraveltimetomographytheobserveddataarethemeasuredarrivaltimesofknownseismicphases,andtheinversiontypicallyinvolves a backprojection algorithm for estimating medium wave speeds relative to some reference model. In the idealized case of infinitely high frequencywavepropagationthetraveltimeandkernel(raypaths)arewelldefined.Withfinitefrequencydata,however,thedirectdetection ofthetraveltimeisoftenobscuredbywaveinterferenceanddiffractionsothatalternativewaysofcomparingmodelledandobserveddata mustbesought.Intheframeworkoftransmittedbodywavesvariouswaysofaccountingforfinitefrequencyeffectsintheprocessofmedium estimationhavebeenproposedandanalysed(Luo&Schuster1991;Woodward1992;Dahlenetal.2000;DeHoop&VanderHilst2005). Insuchapproachestofinite-frequencytomographyonecandistinguishbetweenmethodsbasedonexplicitbackprojectionoverFresnel-like 1332 (cid:2)C 2006TheAuthors Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1333 S S 410 410 SS 660 S S 660 CMB ScS SS S S 410 S S 660 S s ScS 410 S s 660 S s 660 S s 410 Figure1. Top:Examplesofreflectedwavefieldsthatcanbeconsideredinthewaveequationreflectiontomographydevelopedinthispaper.Themedium reconstruction(thatis,wavespeedestimation)takesplacewhereupanddowngoingwavefieldsinteract:thehigherthedensityofscatterers(e.g.reflectors),the moreconstrainedthesolution.Bottom:Cartoonofsourceandreceiverarrayconceptexploitedbythereflectiontomographyapproach. volumes(insteadofbackprojectionalonginfinitesimallynarrowrays),see,forinstance,Dahlenetal.(2000)andDeHoop&VanderHilst (2005),andthosecombiningthewaveequationwiththeBornapproximationusinganadjointstatemethod(Vascoetal.1995;Trompetal. 2005).Inwave-equationtomographythewavefieldsinthekernelcanbecomputeddirectlyfromthetime-domainwaveequation,usingGreen’s functionscalculated,forinstance,byspectralelements,normalmodesummation(Zhao&Jordan1998),orfrequency-domainone-waywave propagation. Herewefocusonamethodofwaveequationreflectiontomography,nottodetectandinvestigatereflectorsbuttoestimatesubsurface wavespeedvariations.Weuseafrequencydomainformulationandassumesinglescattering.Incontrasttotomographicapproachesthat interpretspecificphasearrivals—measured,forinstance,byphasepickingorwaveformcrosscorrelation—weconsidertheentire,broad-band wavefield(althoughsometimewindowingorotherprocessingmayneedtobeappliedtomutethepartsofthedatainfluencedbymultiple scattering).Insteadofmeasuringsingletime-shifts,itinvolvestheapplicationofannihilatorstotheobserveddata.Theseannihilatorsare operatorswhoseactiononthewavefieldvanishesifthewavespeedmodelpredictstheobservationsused:thelevelofannihilationisthus a measure for the accuracy of estimated wave speed variations. The annihilation criterion has a significant advantage over conventional traveltimemismatchcriteriainthatitexplicitlyaccountsfortheeffectsofscatteringinEarth’sinterior,whileitexploitstheredundancyin (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1334 M.V.deHoop,R.D.vanderHilstandP.Shen the(scattered)wavefield.Suchredundancycanarisefromobservationsatmultipleoffsets(inexplorationseismology)oratmultipleangular epicentraldistancesandazimuths(inglobalseismology).Forexample,inthestudiesofsedimentarybasinsonecanusewavesscatteredfrom themanysubsurfacereflectorsandfaultstoelucidatetheinterveningseismicvelocities(e.g.Zeltetal.2003),andonaglobalscaleonecould usethewavefieldsformedbyreflectionoffthecoremantleboundaryortheuppermantlediscontinuities(seeFig.1,top)tostudymantle heterogeneity(insteadofmantlelayering,whichhasbeendonebeforeSipkin&Jordan1976;Revenaugh&Jordan1991). Themethodpresentedhereinvolvesseveralsteps,whichalsodefinethestructureofthispaper.First,wedecomposethebroad-band wavefieldintoupanddowngoingwaves(Section2).Thisdirectionaldecomposition(e.g.Fishman&McCoy1984a,b)leadstoacoupled systemofone-waywaveequations.Second,weusethissystemtoobtainaso-calleddouble-square-root(DSR)equationforthedownward continuationofthedatatoselecteddepthsinthesubsurface(Clayton1978;Claerbout1985),simultaneouslyforthesourceandthereceiver side(Section3).Third,afterdownwardcontinuation,thedecomposedwavefieldsaresubjectedtoa(wave-equation)angletransform,which enablestheexploitationofredundancyassociatedwithdifferentscatteringanglesandazimuthsatthesedepths(Section4.1).Thistransform, whichisrelatedtobeamforming(Scherbaumetal.1997),isusedtogeneratecommon-image-pointgathers(DeBruinetal.1990);inSava etal.(1999)andSava&Fomel(2003)adifferentbutrelatedtransformimplementedasapost-processingoperatorisused.Thesegatherscan bere-arrangedintomultipleimagesofthesamepartofEarth’sreflectingstructurefromwavesscatteredoverarangeofangles(Stolk&De Hoop2006).Fourth,inSection4.2wediscusshowtheannihilationofthedownwardcontinueddata(again,atspecificdepthsinthemedium) formsthecriterionforselectingacceptablewavespeedmodels.InSection5wederivethesensitivitykernelsunderlyingtheoptimizationof thiswavefieldannihilation. InSection6weillustratethemultiscaleaspectsofthefinite-frequencysensitivitykernel,thecharacterofthecostfunctionalusedfor optimization,andtheeffectivenessoftheangletransform.Weshowthatinheterogeneousmediathedependenceofthekernelsonfrequency iscomplexandnotself-similar.Low-frequencydatasampleheterogeneousmodelsinwaysthatareverydifferentfromhigh-frequencydata. Itisthisfinitefrequencybehaviourthatallowsonetorelatescalesinthedata(frequencies)toscalesinthemodel(spatialscales)andinthe physicalprocessesthatcausethem. Theimagegathersproducedbytheangletransformarewithoutartefacts(thatis,falseevents)ifthemediumwavespeedsarecorrect, eveninthepresenceofcaustics.(ThiswasnotthecaseintheapproachfollowedbyBrandsberg-Dahletal.2003,whichistheprecursorof thedevelopmentpresentedhere).Forincorrectwavespeedmodels,however,theimagegatherswillrevealdependencyonscatteringangle andazimuth;thatis,therewillbearesidualmoveout.Thismoveoutistheunderlyingdiagnosticexploitedhereandisevaluatedusingdata annihilators(zeromoveoutanduniformamplitudeswillproduceperfectannihilation).Theannihilationoperatorsdependonthewavespeed modelanddeterminehowwellobservationsarematchedbymodelpredictions(Stolk&DeHoop2002);awavespeedmodelisacceptableif thedataareintherangeof,thatis,whentheycanbepredictedbyourmodellingoperator.1Thetomographicinversioncanthenbeformulated as the problem of minimizing the action of these annihilators on the data. An important and unique property of annihilators is that they smoothlydependonthewavespeed(Stolk&Symes2003). WedevelopthetheoryuptotheexplicitexpressionfortheFre´chetkernelunderlyingtheannihilatorapproach(Section5).Theevaluation ofthiskernelisformulatedasanadjointstatemethod.Suchmethodshavebeenexploitedinseismicimagingandinversescattering(see, forexample,Tarantola1987;Stolketal.2006)andhavebeguntobeusedinwaveequationtransmissiontomography(Trompetal.2005). Oncethekernelisavailable,standardoptimizationmethods(suchasconjugategradients)canbeinvokedtoselectaparticularwavespeed model.Weillustratethemethodanditseffectivenesswithasyntheticdataexample.Forsimplicityofformulationweconsiderhereacoustic (compressional) waves, possibly in transversely isotropic media with vertical symmetry axis, described by a scalar wave equation (see, e.g.Alkhalifah1998;Schoenberg&DeHoop2000),andweusetheflattenedEarthassumption.Therearenoobstructions,however,for extendingtheformalismtothefullelasticcase. Theannihilator-basedapproachtowave-equationreflectiontomography(ortoMVA)isakintothenotionofdifferentialsemblancein explorationseismics.Systematicmethodsforupdatingwavespeedmodelsbyoptimizationusingthedifferentialsemblancecriterionhave beenintroducedbySymes&Carazzone(1991),andfurtherdevelopedandappliedbyChauris&Noble(2001),Mulder&TenKroode(2002), andothers.Wave-equationMVAbasedonfocussinginsubsurfaceoffset(relatedtoannihilatorsofimagegathers,asexplainedinStolk& DeHoop2001,2006)andshortrecordmigrationratherthandownwardcontinuationmigrationwasmorerecentlydevelopedbyoneofthe authors(Peng2004).Theworkpresentedherebuildsonvariouspreviousdevelopments:ThegeneralizedBremmercouplingseriestomodel seismicreflectiondata(DeHoop1996),inversescatteringbaseduponthefirst-ordertermofthisseries,thewave-equationangletransform andannihilators(Stolk&DeHoop2001,2006),therelationbetweenwavefieldreciprocityandoptimization(DeHoop&DeHoop2000), andthegeneralizedscreenexpansionforone-waywavepropagation(DeHoopetal.2000;LeRousseau&DeHoop2001). 2 DIRECTIONAL WAVEFIELD DECOMPOSITION: SINGLE SQUARE-ROOT OPERATOR In our method for wave-equation reflection tomography the measure for selecting acceptable models is the successful annihilation of the observedwavefield.Theannihilatingactionis,here,carriedout—atselecteddepthsinthemodel—onimagegathersthatareconstructedfrom 1TheprincipleofcharacterizingtherangeofmodellingoperatorscanbefoundinGuillemin&Uhlmann(1981)andhasbeendevelopedforseismicbody-wave scatteringbyDe Hoop&Uhlmann(2005). (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1335 downwardcontinueddata(Section4).Thedownwardcontinuationoftheobservedwavefieldinvolvesdecompositionintoupanddowngoing constituents.Forthispurposeweintroduceheretheone-waywaveequationsandtheirassociatedwavefieldpropagators.Initially,wecarry outthedirectionaldecompositionforwavepropagationinasmoothbackgroundmodel(forthegeneralformulation,seeFishman&McCoy 1984a,b);inlatersectionsweaccountforscatteringofwavesoffreflectorssuperimposedonthisbackground. 2.1 Thewaveequation,evolutionindepth Wemakedepthz—insteadoftimet—theevolutionparameterforwavepropagationanddatacontinuation.Thehorizontalcoordinatesare collectedinx.ThepartialderivativesaredenotedbyD =−i∂ , D =−i∂ , D =−i∂ sothattheirFourierdomaincounterparts x1,...,n−1 x1,...,n−1 z z t t becomemultiplicationsbyξ1,...,n−1(thenegativeofhorizontalwavevector),ζ (thenegativeofverticalwavevector)andω(frequency).Here, n=2or3for2-Dor3-Dseismics,respectively.Analternativenotationforthewavevectorusedintheseismicliteratureis(k ,k ,k )for x y z (−ξ ,−ξ ,−ζ)(n=3). 1 2 (cid:2) Tobringouttheuseofzastheevolutionparameter,thescalarwaveequationforcompressionalwaves,(cid:6)u−c (x,z)−2u¨ ≡( n−1∂2 + ∂2−c (x,z)−2∂2)u= f,iswrittenasthefirst-ordersystem 0 i=1 xi z (cid:3) 0(cid:4) (cid:3) t (cid:4)(cid:5) (cid:6) (cid:3) (cid:4) ∂ u 0 1 u 0 = + , (1) ∂z ∂u −L(x,z,D ,D)0 ∂u f ∂z x t ∂z (cid:2) whereuisascalarwavefieldquantitysuchaspressure,thepartialdifferentialoperator L(x,z,D ,D) = c (x,z)−2D2− n−1D2 (see, x t 0 t i=1 xi e.g.Aki&Richards2002,p.25),c isthewavespeedinthe(background)medium,andf isasourceterm.(N.B.herewetakeforf avolume 0 injectionsource,butageneralbodyforcecanbetreatedinasimilarmanner.)Withexp[i(ξx +ωt)]representingaFourierfactorinaplane wave,L(x,z,ξ,ω)isdefinedas L(x,z,ξ,ω)=exp[−i(ξx+ωt)]L(x,z,D ,D)exp[i(ξx+ωt)]=c (x,z)−2ω2−(cid:4)ξ(cid:4)2. (2) x t 0 Forspacedimensionn>2,ξxisavectordotproduct.Wenotethat,forgivenz,(x,t,ξ,ω)arecoordinatesonphasespace,andeq.(2)defines afunctiononthisspace.Forwavepropagationinheterogeneousmedia,carryingouttheanalysisinphasespacehasimportantadvantages overanalysisinmoreconventional(n +1)-Dspace–time.Heuristically,itallowsadescriptionofwavesintermsoflocallyplanewaves. Theexplicitdefinitionandconstructionoftheone-waywaveequationsbelow,theircorrespondingfundamentalsolutions(orpropagators) in the form of path integrals, and the marching computational algorithms are all rooted in phase space (Fishman et al. 1987; Fishman 2004). 2.2 Thesystemofone-waywaveequations Inphasespace,therootsofL(x,z,ξ,ω)correspond,locally,totransitionsfrompropagating(L>0)toevanescent(L<0)waveconstituents. Awayfromtheseroots,inparticularinthepropagatingregime,system(1)canbetransformedintodiagonalform(e.g.Stolk&DeHoop 2005).WithDandUdenotingthedown-andupwardpropagatingconstituentsofthewavefield,respectively,operatormatricesQ(z)=Q(x, z,D ,D )canbeconstructedsuchthat (cid:3) (cid:4)x t (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:4) u u f 0 D =Q(z) , D =Q(z) , u ∂u f f U ∂z U effectivelysatisfytheone-waywaveequations (cid:3) (cid:4) (cid:3) (cid:4) ∂ ∂ +iB (x,z,D ,D) u = f , −iB (x,z,D ,D) u = f . (3) ∂z D x t D D ∂z U x t U U AnycouplingbetweenDandUconstituentsisoftheformQ(z)∂ Q(z)−1. ∂z Inthepropagatingwaveregime,theoperatorB(=B orB )admitsanintegralrepresentationofthetype (cid:7) (cid:7) (cid:7) (cid:7) U D (Bu)(x,t,z)=(2π)−n b(x(cid:5),z,ξ,ω)exp[iξ(x−x(cid:5))]exp[iω(t−t(cid:5))]u(x(cid:5),t(cid:5),z)dx(cid:5)dt(cid:5)dξdω. (4) Here b(x(cid:5), z, ξ, ω) is a smooth function on phase space2 and is, hence, better suited for manipulations (such a(cid:8)s taking the wave speed derivativesneededbelow)thantheoperatorBitself.Forsystem(1),forhighfrequencies,3 b = b(x,z,ξ,ω) = ω 1 −ω−2(cid:4)ξ(cid:4)2,and (cid:9) (cid:9) c0(x,z)2 forω>0,bcoincideswith L(x,z,ξ,ω)whileforω<0,bcoincideswith− L(x,z,ξ,ω).Forthisreason,Bisoftenreferredtoasthe ‘single-square-rootoperator’. 2Inthemathematicsliteratureb(x(cid:5),z,ξ,ω)wouldbereferredtoasthe(antistandard)symbolofoperatorB.Likewise,L(x,z,ξ,ω)ineq.(2)isthesymbolof L(x,z,Dx,Dt).Wedeviatefromthecalculusofstandardsymbolstofacilitatethedevelopmentofourpreferredrepresentationforthesensitivitykernel. 3ForhighfrequenciesthesymbolofBreducestowhatiscalledtheprincipalsymbol.Forsimplicity,wewilldenotetheprincipalsymbolofBbybfromnow on.Weemphasize,however,thattheprincipalsymbolexpressionforbisnotexact.ThefrequencydependenceofoperatorBwasdiscussedbyFishman& McCoy(1984a). (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1336 M.V.deHoop,R.D.vanderHilstandP.Shen Withbrepresentingtheverticalwavenumber,ω−1bhastheappearanceofaverticalwaveslownessatthepoint(x,z)whereasω−1ξ isa horizontalslowness.For(x,z,ξ,ω)suchthatbisreal,theone-waywaveequationsareofhyperbolictype,describingpropagatingwaves.4 (Weremarkthateventhoughtheseparationbetweenlocallypropagatingandevanescentwavesis,here,basedupontheanalysisofprincipal symbols,thebasicpictureoflocallypropagatingandevanescentphasespaceregimesremainsintactforamorecompletedescriptionofthe symbols.) Inthefrequencydomain,weintroducetheoperatornotationBˆ inaccordancewithBu= F−1 BˆF uwhereFdenotestheFouriertransform.5 ω→t t→ω WenotethatBˆ = Bˆ(x,z,D ,ω). x WechooseanormalizationforoperatorQ(z)suchthateq.(3)isself-adjoint;thus (cid:5) (cid:6) (Q∗)−1 −HQ Q= 1 D D , (5) 2 (Q∗)−1 HQ U U where ∗ denotes the adjoint, H denotes the Hilbert transform in time, and QD,U = QD,U(z) = QD,U(x, z, Dx, Dt) are operators with pverirnticciapla-lacsoyumsbtiocl-spo(wc0(eωxr2,zfl)2u−x((cid:4)Dξe(cid:4)2H)−o1o/p4.1T9h9e6p).hWysiitchalthmiseannoirnmgaolifztahtiiosnc,htohiececooufpQlinDg,UQis(zth)a∂tQth(ez)d−o1wbnetawnedenupDgoainndgUfiecldosnsatrietuneonrtmsbaleiczoemdeins ∂z asymptoticallyoflowerorderand,therefore,isneglectedhere;weget f =−1HQ f u= Q∗u +Q∗u , D 2 D D D U U fU= 12HQUf, (6) withQ∗u representingtheup-andQ∗u representingthedowngoingconstituentofwavefieldu. U U D D 2.3 One-waywavepropagators Ifsingularitiespropagatenowherehorizontallybetweenzandz ,withz<z ,thereisawell-definedsolutionoperatorG (z,z )oftheinitial 0 0 U 0 valueproblemforu givenbyeq.(3)with f =0(Stolk2004);thisoperatordescribespropagationinthe(upward)directionfromz toz U U 0 (Stolk&DeHoop2005,Section2).(Analternativedescriptionofone-waypropagators,inwhichistheissueofnowherehorizontalraysis suppressed,canbefoundinFishmanetal.1997;DeHoop&Gautesen2000).IntheIntermezzoinSection(4.1)webrieflyindicatehowthe full-wavesolutioncanbeusedaswell.Asolutionfortheinhomogeneouseq.(3)isthengivenby (cid:7) (cid:7) (cid:7) ∞ u (x,t,z)= (G (z,z ))(x,t−t ,x )f (x ,t ,z )dx dt dz , (7) U U 0 0 0 U 0 0 0 0 0 0 z or,inoperatorformby (cid:7) ∞ u (.,z)= G (z,z )f (.,z )dz . (8) U U 0 U 0 0 z Here,theGreen’sfunction(G (z,z )),relatingthewavefieldat(x,t)anddepthztotheforceat(x ,t )atdepthz ,isthekernelofone-way U 0 0 0 0 propagatorG (z,z ).6 Theadjoint G (z,z )∗ describesdownwardpropagationfromztoz ofeq.(3)orupwardfromz tozinreversed U 0 U 0 0 0 time.7 2.4 Modelrepresentationandperturbation Fortheoptimizationunderlyingourreflectiontomographyweneedthe(Fre´chet)derivativesoftheabovementionedsquare-rootoperators withrespecttothebackgroundwavespeedc (x,z).Suchderivatives,whicharederivedinAppendixA,aretypicallyexpressedintermsof 0 aperturbationδc andcanbeinterpretedasfollows.Weconsiderafinite-dimensionalsubspaceof(smooth)wavespeedmodelsc ,spanned 0 0 byafinitesetofbasisfunctions{φ }: k (cid:10)M E :(c )→c (x,z)= c φ (x,z)= E (c )(x,z). c k 0 k k c k k=1 Thissubspacecouldbegenerated,forexample,byexpandingthewavespeedintocubicB-splines.Thederivativesineq.(A4)canthenbe (cid:2) expressedintermsofderivativeswithrespecttothecoordinates{c }throughδc (x,z) = M δc φ (x,z).Theadjoint E∗ of E ,which k 0 k=1 k k c c satisfies (cid:11) (cid:12) (cid:9)Ec(ck),c0(cid:10)(x,z)=(cid:9)(ck), Ec∗c0 (cid:10)IRM, 4Intheregimewherebisreal,theprincipalsymbolsoftheone-waywaveoperators—ζ±b(x,z,ξ,ω)uptoafactori—canbeidentifiedasHamiltoniansfor downandupgoingwaves,andcanbeusedtotracerayswithzasevolutionparameter.Thenextordersymbolneedstobeaccountedfortoobtainthetransport equationleadingtothecorrectasymptoticsolutions. (cid:13) (cid:13) 5 Ft(cid:5)→ωu= exp(−iωt(cid:5))u(t(cid:5))dt(cid:5), Fω−→1tuˆ =(2π)−1 exp(iωt)uˆ(ω)dω, andsimilarlyforFx−(cid:5)→1ξand Fξ−→1x indimensionn−1. 6Theupgoingconstituent‘U’ofthefull-waveGreen’sfunctionisgeneratedby 12HQ∗U(z)GU(z,z0)QU(z0)(cf.6). 7Wenotethat,eventhoughtheprincipalsymbolapproximationisahigh-frequencyapproximation,itcanstillbeusedtoobtainanapproximationtothe propagatorrevealingawavebehaviour. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1337 istheprojection(interpolation) (cid:3)(cid:7) (cid:7) (cid:4) (cid:11) (cid:12) c → c (x,z)φ (x,z)dxdz = E∗c . 0 0 k c 0 k Thisadjointappearsintheapplicationoftheadjointstatemethodtoevaluatingthesensitivitykernel. 3 DATA CONTINUATION IN DEPTH: DOUBLE-SQUARE-ROOT OPERATOR Thebackgroundmediumc (withsmoothperturbationsδc )consideredintheprevioussectioncanproducecausticsbutnoscattering(such 0 0 asreflections).Wenowdescribehow,withtheBornapproximation,single-scatteredphasesaremodelledintheframeworkoftheone-way wavetheorydevelopedabove.Makinguseofreciprocity,wemodelthedatapurelybyupcomingpropagators.Whereasupanddowngoing wavesaremodelledwithasinglesquare-rootoperatorB(seeSection2.2),theinteractionofthesecontributions(throughatimeconvolution) yieldsaDSRoperator. 3.1 Upwardcontinuationandmodellingofreflectiondata Weassumewavefieldscatteringoffacontrastδcthatcontainssingularvariationsinmediumwavespeed(forinstance,reflectors).Thetotal mediumwavespeedfollowsthedecomposition(withδc−2(cid:11)−2c−3δc) (cid:14) (cid:15) 0 c−2(x,z)=γ−2(z)+ c−2(x,z)−γ−2(z) −2c−3(x,z)δc(x,z). 0 0 0 0 Toobtainadownward/upwardcontinuationrepresentationofthesinglescatteredwaves,weintroducetheextendedmediumcontrast(Stolk &DeHoop2005), (cid:3) (cid:4) 1 (cid:11) (cid:12) r(cid:5)+s(cid:5) R(s(cid:5),r(cid:5),t(cid:5),z(cid:5))= δ(t(cid:5))δ(r(cid:5)−s(cid:5)) c−3δc ,z(cid:5) . (9) 2 0 2 OnecanviewRasadata-likerepresentationofthecontrast.Usingthefootnotebeloweq.(8)concerningtherelationbetweenone-wayGreen’s functionsandtheGreen’sfunctionoftheoriginalwaveequationandusingthatH2=−I,thesingularpartofthedata(asrecordedatEarth’s surface,thatis,atz=0)canbemodelledas (cid:7) ∞ d(s,r,t)= Q∗U,s(0)Q∗U,r(0) (H(0,z(cid:5))QU,s(z(cid:5))QU,r(z(cid:5))Dt2R(.,z(cid:5)))(s,r,t)dz(cid:5), (10) 0 whereQU,s(z)isshortforQU(cid:7)(s,z,Ds,Dt)andQU,r(z)isshortforQU(r,z,Dr,Dt),andthekernelofH(z,z(cid:5))isgivenbythetimeconvolution (H(z,z(cid:5)))(s,r,t,s(cid:5),r(cid:5),t(cid:5))= (G (z,z(cid:5)))(s,t−t(cid:5)−t¯,s(cid:5),0)(G (z,z(cid:5)))(r,t¯,r(cid:5),0)dt¯, forz>z(cid:5). (11) U U IR ThroughH asineq.(11),werecognizeineq.(10)thetimeconvolution(integrationovert¯)ofanincomingGreen’sfunctionthatconnects thesourceats(atzerodepth)withthescatteringpointatr(cid:5)=s(cid:5)(atdepthz(cid:5))withtheoutgoingGreen’sfunctionthatconnectsthisscattering pointwiththereceiveratr(atzerodepth).ThisprocessgivesrisetoaDSRpropagator;thespatialnotationisillustratedinFig.2(seealso Stolk&DeHoop2005). Thedata,ineq.(10),canberegardedasthesolutiontoa(Cauchy)initialvalueproblem:atthesurface(z =0)thesinglescattered wavefieldurepresentsthedatad,thatis,d(s,r,t)=Q∗ (0)Q∗ (0)u(s,r,t,z=0).Forz>0,u=u(s,r,t,z)representsthe(decomposed) U,s U,r wavefield—treatedas‘virtual’data—asafunctionoftime,generatedatdepthzbelowthesurfacebyfictitioussourcessandobservedby fictitiousreceiversr: (cid:7) ∞ u(s,r,t,z)= (H(z,z(cid:5))QU,s(z(cid:5))QU,r(z(cid:5))Dt2R(.,z(cid:5)))(s,r,t)dz(cid:5). z Figure2. DSRpropagator(eq.11).Dataatdepthz(cid:5)arepropagatedtowardsthesurfaceatz=0;s(cid:5)andr(cid:5)indicatefictitioussourceandreceiverlocations whereassandrindicateactualsourceandreceiverlocations.Thesubsurfaceoffsethandmidpointxoccurringintheangletransformareindicatedaswell. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1338 M.V.deHoop,R.D.vanderHilstandP.Shen Then,usolvesaninhomogeneousDSRequation (cid:3) (cid:4) ∂ ∂z −iBU(s,z,Ds,Dt)−iBU(r,z,Dr,Dt) u=g, g= QU,s(z)QU,r(z)Dt2R(.,z). (12) Thisequationissolvedinthe(upward)directionofdecreasingz(withvanishinginitialconditionforsomelargez,say,atthebottomofthe model). TheDSRequationplaysarolelaterintheevaluationofthesensitivitykernelforreflectiontomography.Infact,H isthepropagator associatedwitheq.(12),andishencereferredtoastheDSRpropagator.Forlateruse,weintroducetheDSRoperator C(s,r,z,D ,D ,D)= B (s,z,D ,D)+B (r,z,D ,D), (13) s r t U s t U r t sothateq.(12)attainstheform(∂ −iC(s,r,z,D ,D ,D))u=g.TheDSRoperatorCdependsonthebackgroundmodel,andapertubation ∂z s r t δc inc yieldsaperturbationδCinC,whichisderivedfromtheresultsinAppendixA,SubsectionA2.8 0 0 3.2 Downwardcontinuationandimagingofreflectiondata TheadjointoperatorH(0,z)∗isusedtopropagatethedatabackwardtodepthz.Weconsider ψd (cid:12)→D= H(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd, (14) U,s U,r whereψ isa(source,receiver,andtime)taperthatsuppressesthepartsofthedatathatonedoesnotwanttoconsiderintheimagingprocess (suchasdataassociatedwithturningrays).Ineq.(14),Disafunctionof(s,r,t,z);fort >0,D(s,r,t,z)canbeidentifiedwithu(s,r,t,z) ineq.(12),andissometimesreferredtoasa‘sunkensurvey’.Indeed,Dcanbeobtainedbysolvingtheevolutionequation (cid:3) (cid:4) ∂ −iC(s,r,z,D ,D ,D)∗ u=0, (15) ∂z s r t inthedirectionofincreasingz(downward),subjecttotheinitialconditionu(s,r,t,z=0)=−Q∗ (0)−1Q∗ (0)−1ψd.Inthepropagating U,s U,r regime,C(s,r,z,D ,D ,D )∗=C(s,r,z,D ,D ,D ). s r t s r t FollowingClaerbout(1985),animageofδc—thatisthesingularwavespeedvariations(includingreflectors)—canbeobtainedfromD byapplyingimagingconditions: (cid:11) (cid:12) I(x,z)=D s =x− h2,r =x+ h2,t,z |h=0,t=0, (16) wherewehaveintroducedsubsurfacehorizontalmidpoint-offsetcoordinates,(x,h).Ourtomographyaimstoestimatewavespeedvariations inthebackground,butweuseimagegatherstoevaluateassociatedmodelupdates.Theseimagegathersareobtainedbyreplacingtheimaging conditionbyanangletransform(seethenextsection). 4 WAVE-EQUATION ANGLE TRANSFORM AND DATA ANNIHILATORS BuildingontheworkbyStolk&DeHoop(2001)andBrandsberg-Dahletal.(2003)wediscussherehowredundancyinthedatacanbe exploitedforthepurposeoftomography.Weassumethatwehavedatafrommultiplesourcesandmultiplereceivers(seeFig.1,bottom).In theimagingprocess,thereflectionpointbecomestheimagepoint,andtheredundancyinthedatabecomesmanifestinthemultipleimages thataregenerated(atthatimagepoint)fromthedifferentscatteringanglesandazimuths.Thisisaccomplishedbytheangletransform.In thistransform,weencounteravariablepthatisessentiallyhalfthedifferencebetweenthehorizontalslownessvectorsassociatedwithsource andreceiverraysatthedepthwherethetransformisapplied.TherelationbetweenpandscatteringangleandazimuthisdescribedbyDe Hoopetal.(2003,eqs88–90);byvirtueofthisrelation,inimaging,theangletransformcanbethoughtofasareplacementofthegeneralized Radontransform. Foranacceptablewavespeedmodeltheimagesareindependentofscatteringangleandazimuth.Equivalently,thewavespeedmodelis acceptableifthedataarepredictableby(inotherwords,theyareintherangeof)themodellingoperatorineq.(10).Inthissection,wederive theannihilatorsusedtoevaluatethiscriterion.(Weemphasizethatthenotionthatamodelisacceptabledoesnotimplythatitisuniquely determined;infact,theretypicallyisaclassofacceptablemodels.Itcanbeshown,however,thatthehigherthescattererdensity,thesmaller thecollectionofacceptablemodels). 8Forcompletenesssake,inAppendixBweshowthatgeneralizedscreenexpansionsforQU,s(z)andQU,r(z)leadtowavespeedderivativesinafashionsimilar totheonesforBU.Thesederivativesaresuppressedinthetreatmentpresentedhere,however. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1339 4.1 Angletransformandcommonimage-pointgathers With,asbefore,u=u(s,r,t,z),andhthehorizontaloffsetbetweenrands(Fig.2),weintroduce (cid:7) (cid:3) (cid:4) h h (Ru)(x,z,p)= u x− ,x+ ,ph,z χ(x,z,h)dh IRn−1 (cid:7) (cid:7) 2 (cid:3) 2 (cid:4) 1 h h = uˆ x− ,x+ ,ω,z exp(−iωph)χ(x,z,h)dhdω, (17) 2π IRn−1 2 2 (notethezerointercepttime:t =0+ ph,withphamultiplicationforn =2andadotproductforn ≥3;thistransformwasoriginally introducedbyDeBruinetal.1990).Here,χ(x,z,h)isataperinh,suchthatχ(x,z,0)=1.WeapplyRtothedownwardcontinueddata, D(s,r,t,z)(cf.eq.14),toobtainthewave-equationangletransform,A, Ad = RH(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd. (18) U,s U,r Theresultofthistransformappliedtothedatais ¯I(x,z,p)=(Ad)(x,z,p)=(RD)(x,z,p). (19) Foreachx,¯I(x,z,p)isacommonimage-pointgatherin(z,p).9Withanappropriatechoiceofχthecommonimage-pointgathersareartefact free(thatis,freeoffalseevents),eveninthepresenceofcaustics(Stolk&DeHoop2001,2006).Asmentionedabove,thedependenceon preflectstheredundancyinthedata(adimensioncountconfirmsthis:(s,r,t)∈IR2n−1 while(x,z)∈IRn and2n−1−n=n−1isthe dimensionofp).Foranacceptablemodelc ,Amapsdatadtoap-familyofreconstructionsofδc,andforeachpthesameimage(¯I(x,z,p)) 0 ofδc(x,z)isobtained. 4.2 Intermezzo:AngletransformforglobalEarthapplications InglobalEarthapplications,inparticularinviewofturningrays,theone-waywavepropagatorsintroducedinSection2maybereplacedby full-wavepropagators.Accordingtoeq.(12),the(fictitious)sourcessandreceiversrareatthesamedepth(z).Forapplicationtoearthquake data,however,weconsider(clusters)ofearthquakeswithhypocentresatz=z andstationsatz=0(seeFig.1,bottom).Then,wecanreplace s thekernel(H(0,z(cid:5)))(s,r,t,s(cid:5),r(cid:5),t(cid:5))ofH(0,z(cid:5))by (cid:7) (H(0,z(cid:5)))(s,r,t,s(cid:5),r(cid:5),t(cid:5)):= G(s,z ,t−t(cid:5)−t¯,s(cid:5),z(cid:5))G(r,0,t¯,r(cid:5),z(cid:5))dt¯. (20) s IR Inviewofreciprocitythekerneloftheadjointisthesame,sothattheangletransformbecomes (cid:3) (cid:4) (cid:7) (cid:3)(cid:7) (cid:3) (cid:4) (cid:3) (cid:4) (cid:4) h h h h D x− ,x+ ,t(cid:5),z = G s,z ,−(t(cid:5)−t+t¯),x− ,z G r,0,t¯,x+ ,z dt¯ (ψd)(s,r,t)dsdrdt, (21) 2 2 s 2 2 IR followedbyeq.(17);here,z >z foralls.WecanuseanynumericalmethodtocomputetheGreen’sfunctions,forexamplenormalmode s summation,leadingthentoa‘normalmodeangletransform’.Eq.(21)canberewritten,uponachangeofvariableofintegrationt¯¯=−(t¯−t), intheform (cid:3) (cid:4) (cid:7) (cid:16) (cid:3) (cid:4)(cid:16)(cid:7) h h h D x− ,x+ ,t(cid:5),z = G s,z ,t¯¯−t(cid:5),x− ,z 2 2 s 2 (cid:3) (cid:4) (cid:17) (cid:17) h G r,0,−(t¯¯−t),x+ ,z (ψd)(s,r,t)drdt dt¯¯ ds; (22) 2 att(cid:5)=0andh=0,thisformrevealsthestructureofshotrecordmigration,whileonerecognizesthenotionofdoublefocussing(Berkhout 1997;Thorbecke1997). Essentially, eq. (17) is a special case of beamforming with the downward continued data (cf. 18) in sources and receivers (see also Scherbaumetal.1997). 4.3 Annihilatorsofthedownwardcontinueddata Sincetheoutcome(Ad)(x,z,p)shouldbeindependentofpwecandefineannihilatorsW,whoseactiononthedatad istoyieldzero,as follows:fori =1,...,n−1,W =(∂)−1(cid:9)A−1(cid:10) ∂ A(where(cid:9)A−1(cid:10)indicatesaregularizedinverseofA),whichindeedyieldsWd=0.We considertheannihilatorsnotintiheda∂ttabutinth∂epiimagedomain.Therefore,removingthemapping(cid:9)A−1(cid:10)fromimagegatherstiodata,we considerthecompanionoperators ∂ A(∂)−1(notethat(∂)−1hastoactinthedatadomain),which,whenappliedtoeq.(17),bringsouta ∂pi ∂t ∂t (cid:13) 9Savaetal.(1999)usearelatedbutdifferenttransform,viz.,¯¯I(x,Z,p)= IRn−1D(x− h2,x+ h2,t,z)χ(x,z,h)|t=0,z=Z+phdh.UnlikeA,thistransform cannotbecast,withappropriatelychosenweights,intoanestimationofthereflectioncoefficientinducedbyc0,δc. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1340 M.V.deHoop,R.D.vanderHilstandP.Shen multiplicationbyfactorh : (cid:7) (cid:3)i (cid:4) h h (R(cid:5)u)(x,z,p)= u x− ,x+ ,ph,z h χ(x,z,h)dh i IRn−1 (cid:7) (cid:7) 2 (cid:3) 2 i (cid:4) 1 h h = uˆ x− ,x+ ,ω,z exp(−iωph)h χ(x,z,h)dhdω. (23) 2π IRn−1 2 2 i Theannihilationofthedataisthusreplacedbyanannihilationofthesetofsubsurfaceimagegathers,R(cid:5)D,parametrizedbyp. i Forthepurposeoftomographywealsoneedtheadjoint(R(cid:5) )∗ofR(cid:5) .LetIdenoteatrialimageasafunctionof(x,z,p),then i i (cid:7) (cid:3) (cid:7) (cid:7) 1 (cid:9)Ri(cid:5)u,I(cid:10)(x,p) = I(cid:3)R2n−2 2π IRn−1 (cid:4) (cid:4) h h uˆ x− ,x+ ,ω,z exp(−iωph)h χ(x,z,h)dhdω I(x,z,p)dxdp 2 2 i (cid:7) (cid:7) 1 = uˆ(s,r,ω,z) 2π IR2n−2 (cid:3)(cid:7) (cid:4) (cid:11) (cid:12) (r−s) exp[iωp(r−s)]I 1(s+r),z,p dp χ(1(s+r),z,r−s)dsdrdω IRn−1 i 2 2 =(cid:9)uˆ,(Rˆi(cid:5))∗I(cid:10)(s,r,ω) forgivenz, (24) sothat (cid:7) (cid:11) (cid:12) (Rˆ(cid:5))∗I(s,r,ω,z)= (r−s) exp[iωp(r−s)]I 1(s+r),z,p dp. (25) i IRn−1 i 2 Here, indicatescomplexconjugation.Wenotethat(Rˆ(cid:5))∗,ineq.(24),yieldsanextensionofa(differentiated)imagegathertofictitious i data,inthenatureofRdefinedineq.(9).Ineq.(24)wechangedvariablesofintegrationfrom(x,h)to(s,r).Byremovingthefactorh inthe i integrand,weimmediatelyobtainanexpressionforRˆ∗.ByParseval’stheorem,wealsofindR∗, (cid:7) (R∗I)(s,r,t,z)= δ(t− p(r−s))I(1(s+r),z,p)dp IRn−1 2 withthepropertythat(cid:9)Ru,I(cid:10)(x,p) = (cid:9)u,R∗I(cid:10)(s,r,t).NoticethatneitherRnor Ri(cid:5) dependsonc0 and,thus,thattheyareinsensitivetosmooth perturbationsδc inc . 0 0 5 AN OPTIMIZATION PROCEDURE FOR REFLECTION TOMOGRAPHY Withthereflectiontomographydevelopedhereweaimtoestimatethebackgroundmedium(c +δc ),withasameasureofsuccessthe 0 0 annihilationofimagegathers.Indeed,ifannihilationwithoperator R(cid:5) appliedtothedownwardcontinueddataineq.(23)occurs,thenthe i backgroundmediumisconsideredacceptable. 5.1 Costfunctional Withthisnotion,themodelestimationiscastintotheminimizationofthefunctional (cid:7) (cid:7) (cid:10) (cid:18) (cid:18) J[c ]= 1 (cid:18)(R(cid:5)H(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd)(x,z,p)(cid:18)2dxdzdp, (26) 0 2 i U,s U,r i whichcorrespondswiththeeffectivedataannihilationintegratedoverallimage(scattering)points(x,z)and‘angles’p.Here,H(0,z)∗(and ψ)dependonc andaresensitivetoperturbationsδc ;however,sinceweassumedthatδc vanishesnearz=0,weneednotconsiderwave 0 0 0 speedderivativesofQ∗ (0)−1Q∗ (0)−1.Comparedwithconventionaltomography,themeasureoftraveltimemismatch(orwaveformcross U,s U,r correlation)hasthusbeenreplacedbytheoveralleffectoftheannihilationoperatorR(cid:5). i 5.2 Gradientofcostfunctional;sensitivitykernel AstandardmethodforoptimizationcanbeinvokedtocarryouttheminimizationofJ.Here,wediscussamethodforevaluatingtheFre´chet kernelorgradientofJ.Themethodforevaluatingthegradientofafunctionalderivedfromthesolutionofapartial(orpseudo-)differential equationisknownastheadjointstatemethod(Wunsch1996).IthasbeenintroducedinseismologybyTarantola(1987)andusedbymany others.Thegradientisrequiredfortheoptimization,whereastheFre´chetorsensitivitykernelprovidesinformationabouttheresolutionof ourapproachtowave-equationreflectiontomography. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1341 TheperturbationofthefunctionalJ,underasmoothperturbationδc ofc ,isderivedfrom (cid:19) (cid:5) (cid:6) 0 0 (cid:7) (cid:7) (cid:10) δJ[c ]= (Rˆ(cid:5))∗R(cid:5)H(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd (s,r,ω,z) 0 i i U,s U,r i (cid:20) (cid:11) (cid:12) (δH 0,z)∗Q∗ (0)−1Q∗ (0)−1ψd ˆ(s,r,ω,z)dsdrdω dz, (27) U,s U,r and evaluated in Appendix C. The evaluation procedure, which is common to many different imaging schemes, consists of solving two evolutionequationsfollowedbyanimagingoperation.Weusetheobservationmadebeloweq.(14)andrelateDtosolutions,u,oftheDSR equation.Thefirstevolutionequationiseq.(15),whichissolvedinthedirectionofincreasingz(downward);inthefrequencydomainthis equationreads: (cid:3) (cid:4) ∂ (cid:11) (cid:12) −iCˆ(s,r,z,D ,D ,ω)∗ uˆ =0, uˆ(s,r,ω,z=0)=− Q∗ (0)−1Q∗ (0)−1ψd ˆ(s,r,ω). (28) ∂z s r U,s U,r Thesecondistheadjointfieldequation, (cid:3) (cid:4) ∂ (cid:10) −iCˆ(s,r,z,D ,D ,ω) vˆ = (Rˆ(cid:5))∗R(cid:5)u, (29) ∂z s r i i i whichissolvedinthe(upward)directionofdecreasingz(withvanishinginitialconditionforsomelargez,say,atthebottomofthemodel). Theright-handsidequantifiesthefailureofannihilationandrepresentsamism(cid:13)atchsourcedistribution. Thesolutionsuˆ andvˆ combinedformthekernel(or‘image’)KinδJ = K(x,z)δc (x,z)d(x,z),andisgivenby(cf.C12andA7) ⎡ 0 (cid:7) (cid:7) 1 ∞ (cid:10)N ⎢ K(x,z)∼ Re dω(−i) ⎣ uˆ(x,r,ω,z)S(cid:5)(x,z)F−1 A (σ,ω,z)F vˆ(.,r,ω,z)dr π (cid:24)j σ→x(cid:25)(cid:26)j s→σ(cid:27) 0 j=0 generalizedscreen ⎤ (cid:7) ⎥ + uˆ(s,x,ω,z)S(cid:5)(x,z)F−1 A (ρ,ω,z)F vˆ(s,.,ω,z)ds⎦. (30) (cid:24)j ρ→x (cid:25)(cid:26)j r→ρ(cid:27) generalizedscreen Here,S andA appearinthegeneralized-screenexpansionofthesingle-square-rootoperator,whichisexplainedindetailinAppendixA(cf. j j A1andA4).Weusedthesymmetryinfrequencytorestricttheevaluationtopositivevalues.InvokingthemodelrepresentationinSection2.4 yieldsδJ =(cid:9)K,δc0(cid:10)(x,z)=(cid:9)(δck),(Ec∗K)(cid:10)IRM. Eq.(30)isoftheformofatimecrosscorrelationofthedownwardcontinueddataandtheadjointfieldexcitedbyamismatchforce nestedinageneralizedscreenoperation.Itdiffersfromastandardimagingconditioninparticularthroughtheintegrationsoversandr.The proceduretoevaluateeq.(30)isillustratedinFig.3.Itconsistsofthefollowingsteps: (i) startingatthetop,downwardcontinuestep-by-stepthedata(inthefrequencydomain)allthewaytothebottom(cf.14)whilestoring theresultsatallintermediatedepths; (ii) startingatthebottom,evaluatethesuccessofannihilation,thatis,themismatchsource,withthedownwardcontinueddata, Figure3. Theevaluationofthekernel.Thesingleanddoublearrowsrefertothetwotermsinbetweenbracketsineq.(30);thegreyarrowsindicatethe generalizedscreenoperations.Thefieldvisupwardcontinuedwithsourcesdeterminedbythefailuretoannihilatethedataintheimagedomain;urepresents thedownwardcontinueddata.Atanydepth,z,ascreenactionisappliedtov(indicatedbygreyarrows)inparallelinthesourcevariable(left)andinthereceiver variable(right).Then,inparallel,theinnerproducts(includingtimecorrelation)aretakeninreceivers(left)andsources(right).Finally,thetwocontributions areaddedtogether. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS
Description: