ebook img

Wave-equation reflection tomography: annihilators and sensitivity kernels PDF

21 Pages·2006·0.86 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wave-equation reflection tomography: annihilators and sensitivity kernels

Geophys.J.Int. (2006)167,1332–1352 doi:10.1111/j.1365-246X.2006.03132.x Wave-equation reflection tomography: annihilators and sensitivity kernels Maarten V. de Hoop,1 Robert D. van der Hilst2 and Peng Shen3 1CenterforComputationalandAppliedMathematics,PurdueUniversity,150N.UniversityStreet,WestLafayetteIN47907,USA 2DepartmentofEarth,AtmosphericandPlanetarySciences,MassachusettsInstituteofTechnology,Rm54-517A,Cambridge,MA02139,USA. E-mail:[email protected] 3TotalE&PUSA,800Gessner,Suite700,HoustonTX7024,USA Accepted2006July6.Received2006July2;inoriginalform2005December13 SUMMARY Inseismictomography,thefinitefrequencycontentofbroad-banddataleadstointerference effectsintheprocessofmediumreconstruction,whichareignoredintraditionalraytheoretical implementations. Various ways of looking at these effects in the framework of transmission tomographycanbefoundintheliterature.Here,weconsiderinversescatteringofbodywavesto developamethodofwave-equationreflectiontomographywithbroad-bandwaveformdata— whichinexplorationseismicsisidentifiedasamethodofwave-equationmigrationvelocity analysis.Inthetransitionfromtransmissiontoreflectiontomographytheusualcrosscorrelation betweenmodelledandobservedwaveformsofaparticularphasearrivalisreplacedbytheaction ofoperators(annihilators)totheobservedbroad-bandwavefields.Usingthegeneralizedscreen expansionforone-waywavepropagation,wedeveloptheFre´chet(orsensitivity)kernel,and showhowitcanbeevaluatedwithanadjointstatemethod.Wecastthereflectiontomography intoanoptimizationprocedure;thekernelappearsinthegradientofthisprocedure.Weinclude y g anumericalexampleofevaluatingthekernelinamodifiedMarmousimodel,whichillustrates o ol thecomplexdependencyofthekernelonfrequencybandand,hence,scale.Inheterogeneous m mediathekernelsreflectproperwavedynamicsanddonotrevealaself-similardependence s ei on frequency: low-frequency wave components sample preferentially the smoother parts of S themodel,whereasthehigh-frequencydataare—asexpected—moresensitivetothestronger I J heterogeneity.Wedeveloptheconceptforacousticwavesbuttherearenoinherentlimitations G fortheextensiontothefullyelasticcase. Keywords: migrationvelocityanalysis,reflectiontomography,sensitivitykernels. 1 INTRODUCTION Theevergrowingvolumesofdenselysampledbroad-banddata,bothinindustryapplicationsandinglobal(array)seismology,areproviding new opportunities and challenges for the development of techniques for subsurface imaging that exploit efficiently the rich information containedinseismicwaveforms.Here,weanalyseamethodofwave-equationreflectiontomographywithfinite-frequencydata(derivedfrom DeHoop&VanderHilst2003);inexplorationseismicsonereferstosuchmethodsingeneralaswave-equationmigrationvelocityanalysis (MVA,Biondi&Sava1999).Itmakesuseoftheredundancyinthescatteredwavefielddata;thescatteringisassumedtooccursomewhere inthesubsurface(Fig.1,bottom),butthelocationsofthescatterersneednotbeknown. Thegeneralobjectiveoflinearizedseismictomographyistofindbyinversionamodel,oraclassofmodels,ofelasticpropertiesthat throughforwardmodellingpredictsthedata.Thedatafitisusuallyevaluatedthroughaparticularcriterion,oftenexpressedasacostorpenalty functionalthatistobeoptimized.Intheprocessofoptimization,thekeyquantitytobefoundisthesocalledFre´chetorsensitivitykernel. Thecriterion—and,therefore,thecharacterofthesensitivitykernel—dependsonthetypeofobservationbeinginterpreted. Intraveltimetomographytheobserveddataarethemeasuredarrivaltimesofknownseismicphases,andtheinversiontypicallyinvolves a backprojection algorithm for estimating medium wave speeds relative to some reference model. In the idealized case of infinitely high frequencywavepropagationthetraveltimeandkernel(raypaths)arewelldefined.Withfinitefrequencydata,however,thedirectdetection ofthetraveltimeisoftenobscuredbywaveinterferenceanddiffractionsothatalternativewaysofcomparingmodelledandobserveddata mustbesought.Intheframeworkoftransmittedbodywavesvariouswaysofaccountingforfinitefrequencyeffectsintheprocessofmedium estimationhavebeenproposedandanalysed(Luo&Schuster1991;Woodward1992;Dahlenetal.2000;DeHoop&VanderHilst2005). Insuchapproachestofinite-frequencytomographyonecandistinguishbetweenmethodsbasedonexplicitbackprojectionoverFresnel-like 1332 (cid:2)C 2006TheAuthors Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1333 S S 410 410 SS 660 S S 660 CMB ScS SS S S 410 S S 660 S s ScS 410 S s 660 S s 660 S s 410 Figure1. Top:Examplesofreflectedwavefieldsthatcanbeconsideredinthewaveequationreflectiontomographydevelopedinthispaper.Themedium reconstruction(thatis,wavespeedestimation)takesplacewhereupanddowngoingwavefieldsinteract:thehigherthedensityofscatterers(e.g.reflectors),the moreconstrainedthesolution.Bottom:Cartoonofsourceandreceiverarrayconceptexploitedbythereflectiontomographyapproach. volumes(insteadofbackprojectionalonginfinitesimallynarrowrays),see,forinstance,Dahlenetal.(2000)andDeHoop&VanderHilst (2005),andthosecombiningthewaveequationwiththeBornapproximationusinganadjointstatemethod(Vascoetal.1995;Trompetal. 2005).Inwave-equationtomographythewavefieldsinthekernelcanbecomputeddirectlyfromthetime-domainwaveequation,usingGreen’s functionscalculated,forinstance,byspectralelements,normalmodesummation(Zhao&Jordan1998),orfrequency-domainone-waywave propagation. Herewefocusonamethodofwaveequationreflectiontomography,nottodetectandinvestigatereflectorsbuttoestimatesubsurface wavespeedvariations.Weuseafrequencydomainformulationandassumesinglescattering.Incontrasttotomographicapproachesthat interpretspecificphasearrivals—measured,forinstance,byphasepickingorwaveformcrosscorrelation—weconsidertheentire,broad-band wavefield(althoughsometimewindowingorotherprocessingmayneedtobeappliedtomutethepartsofthedatainfluencedbymultiple scattering).Insteadofmeasuringsingletime-shifts,itinvolvestheapplicationofannihilatorstotheobserveddata.Theseannihilatorsare operatorswhoseactiononthewavefieldvanishesifthewavespeedmodelpredictstheobservationsused:thelevelofannihilationisthus a measure for the accuracy of estimated wave speed variations. The annihilation criterion has a significant advantage over conventional traveltimemismatchcriteriainthatitexplicitlyaccountsfortheeffectsofscatteringinEarth’sinterior,whileitexploitstheredundancyin (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1334 M.V.deHoop,R.D.vanderHilstandP.Shen the(scattered)wavefield.Suchredundancycanarisefromobservationsatmultipleoffsets(inexplorationseismology)oratmultipleangular epicentraldistancesandazimuths(inglobalseismology).Forexample,inthestudiesofsedimentarybasinsonecanusewavesscatteredfrom themanysubsurfacereflectorsandfaultstoelucidatetheinterveningseismicvelocities(e.g.Zeltetal.2003),andonaglobalscaleonecould usethewavefieldsformedbyreflectionoffthecoremantleboundaryortheuppermantlediscontinuities(seeFig.1,top)tostudymantle heterogeneity(insteadofmantlelayering,whichhasbeendonebeforeSipkin&Jordan1976;Revenaugh&Jordan1991). Themethodpresentedhereinvolvesseveralsteps,whichalsodefinethestructureofthispaper.First,wedecomposethebroad-band wavefieldintoupanddowngoingwaves(Section2).Thisdirectionaldecomposition(e.g.Fishman&McCoy1984a,b)leadstoacoupled systemofone-waywaveequations.Second,weusethissystemtoobtainaso-calleddouble-square-root(DSR)equationforthedownward continuationofthedatatoselecteddepthsinthesubsurface(Clayton1978;Claerbout1985),simultaneouslyforthesourceandthereceiver side(Section3).Third,afterdownwardcontinuation,thedecomposedwavefieldsaresubjectedtoa(wave-equation)angletransform,which enablestheexploitationofredundancyassociatedwithdifferentscatteringanglesandazimuthsatthesedepths(Section4.1).Thistransform, whichisrelatedtobeamforming(Scherbaumetal.1997),isusedtogeneratecommon-image-pointgathers(DeBruinetal.1990);inSava etal.(1999)andSava&Fomel(2003)adifferentbutrelatedtransformimplementedasapost-processingoperatorisused.Thesegatherscan bere-arrangedintomultipleimagesofthesamepartofEarth’sreflectingstructurefromwavesscatteredoverarangeofangles(Stolk&De Hoop2006).Fourth,inSection4.2wediscusshowtheannihilationofthedownwardcontinueddata(again,atspecificdepthsinthemedium) formsthecriterionforselectingacceptablewavespeedmodels.InSection5wederivethesensitivitykernelsunderlyingtheoptimizationof thiswavefieldannihilation. InSection6weillustratethemultiscaleaspectsofthefinite-frequencysensitivitykernel,thecharacterofthecostfunctionalusedfor optimization,andtheeffectivenessoftheangletransform.Weshowthatinheterogeneousmediathedependenceofthekernelsonfrequency iscomplexandnotself-similar.Low-frequencydatasampleheterogeneousmodelsinwaysthatareverydifferentfromhigh-frequencydata. Itisthisfinitefrequencybehaviourthatallowsonetorelatescalesinthedata(frequencies)toscalesinthemodel(spatialscales)andinthe physicalprocessesthatcausethem. Theimagegathersproducedbytheangletransformarewithoutartefacts(thatis,falseevents)ifthemediumwavespeedsarecorrect, eveninthepresenceofcaustics.(ThiswasnotthecaseintheapproachfollowedbyBrandsberg-Dahletal.2003,whichistheprecursorof thedevelopmentpresentedhere).Forincorrectwavespeedmodels,however,theimagegatherswillrevealdependencyonscatteringangle andazimuth;thatis,therewillbearesidualmoveout.Thismoveoutistheunderlyingdiagnosticexploitedhereandisevaluatedusingdata annihilators(zeromoveoutanduniformamplitudeswillproduceperfectannihilation).Theannihilationoperatorsdependonthewavespeed modelanddeterminehowwellobservationsarematchedbymodelpredictions(Stolk&DeHoop2002);awavespeedmodelisacceptableif thedataareintherangeof,thatis,whentheycanbepredictedbyourmodellingoperator.1Thetomographicinversioncanthenbeformulated as the problem of minimizing the action of these annihilators on the data. An important and unique property of annihilators is that they smoothlydependonthewavespeed(Stolk&Symes2003). WedevelopthetheoryuptotheexplicitexpressionfortheFre´chetkernelunderlyingtheannihilatorapproach(Section5).Theevaluation ofthiskernelisformulatedasanadjointstatemethod.Suchmethodshavebeenexploitedinseismicimagingandinversescattering(see, forexample,Tarantola1987;Stolketal.2006)andhavebeguntobeusedinwaveequationtransmissiontomography(Trompetal.2005). Oncethekernelisavailable,standardoptimizationmethods(suchasconjugategradients)canbeinvokedtoselectaparticularwavespeed model.Weillustratethemethodanditseffectivenesswithasyntheticdataexample.Forsimplicityofformulationweconsiderhereacoustic (compressional) waves, possibly in transversely isotropic media with vertical symmetry axis, described by a scalar wave equation (see, e.g.Alkhalifah1998;Schoenberg&DeHoop2000),andweusetheflattenedEarthassumption.Therearenoobstructions,however,for extendingtheformalismtothefullelasticcase. Theannihilator-basedapproachtowave-equationreflectiontomography(ortoMVA)isakintothenotionofdifferentialsemblancein explorationseismics.Systematicmethodsforupdatingwavespeedmodelsbyoptimizationusingthedifferentialsemblancecriterionhave beenintroducedbySymes&Carazzone(1991),andfurtherdevelopedandappliedbyChauris&Noble(2001),Mulder&TenKroode(2002), andothers.Wave-equationMVAbasedonfocussinginsubsurfaceoffset(relatedtoannihilatorsofimagegathers,asexplainedinStolk& DeHoop2001,2006)andshortrecordmigrationratherthandownwardcontinuationmigrationwasmorerecentlydevelopedbyoneofthe authors(Peng2004).Theworkpresentedherebuildsonvariouspreviousdevelopments:ThegeneralizedBremmercouplingseriestomodel seismicreflectiondata(DeHoop1996),inversescatteringbaseduponthefirst-ordertermofthisseries,thewave-equationangletransform andannihilators(Stolk&DeHoop2001,2006),therelationbetweenwavefieldreciprocityandoptimization(DeHoop&DeHoop2000), andthegeneralizedscreenexpansionforone-waywavepropagation(DeHoopetal.2000;LeRousseau&DeHoop2001). 2 DIRECTIONAL WAVEFIELD DECOMPOSITION: SINGLE SQUARE-ROOT OPERATOR In our method for wave-equation reflection tomography the measure for selecting acceptable models is the successful annihilation of the observedwavefield.Theannihilatingactionis,here,carriedout—atselecteddepthsinthemodel—onimagegathersthatareconstructedfrom 1TheprincipleofcharacterizingtherangeofmodellingoperatorscanbefoundinGuillemin&Uhlmann(1981)andhasbeendevelopedforseismicbody-wave scatteringbyDe Hoop&Uhlmann(2005). (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1335 downwardcontinueddata(Section4).Thedownwardcontinuationoftheobservedwavefieldinvolvesdecompositionintoupanddowngoing constituents.Forthispurposeweintroduceheretheone-waywaveequationsandtheirassociatedwavefieldpropagators.Initially,wecarry outthedirectionaldecompositionforwavepropagationinasmoothbackgroundmodel(forthegeneralformulation,seeFishman&McCoy 1984a,b);inlatersectionsweaccountforscatteringofwavesoffreflectorssuperimposedonthisbackground. 2.1 Thewaveequation,evolutionindepth Wemakedepthz—insteadoftimet—theevolutionparameterforwavepropagationanddatacontinuation.Thehorizontalcoordinatesare collectedinx.ThepartialderivativesaredenotedbyD =−i∂ , D =−i∂ , D =−i∂ sothattheirFourierdomaincounterparts x1,...,n−1 x1,...,n−1 z z t t becomemultiplicationsbyξ1,...,n−1(thenegativeofhorizontalwavevector),ζ (thenegativeofverticalwavevector)andω(frequency).Here, n=2or3for2-Dor3-Dseismics,respectively.Analternativenotationforthewavevectorusedintheseismicliteratureis(k ,k ,k )for x y z (−ξ ,−ξ ,−ζ)(n=3). 1 2 (cid:2) Tobringouttheuseofzastheevolutionparameter,thescalarwaveequationforcompressionalwaves,(cid:6)u−c (x,z)−2u¨ ≡( n−1∂2 + ∂2−c (x,z)−2∂2)u= f,iswrittenasthefirst-ordersystem 0 i=1 xi z (cid:3) 0(cid:4) (cid:3) t (cid:4)(cid:5) (cid:6) (cid:3) (cid:4) ∂ u 0 1 u 0 = + , (1) ∂z ∂u −L(x,z,D ,D)0 ∂u f ∂z x t ∂z (cid:2) whereuisascalarwavefieldquantitysuchaspressure,thepartialdifferentialoperator L(x,z,D ,D) = c (x,z)−2D2− n−1D2 (see, x t 0 t i=1 xi e.g.Aki&Richards2002,p.25),c isthewavespeedinthe(background)medium,andf isasourceterm.(N.B.herewetakeforf avolume 0 injectionsource,butageneralbodyforcecanbetreatedinasimilarmanner.)Withexp[i(ξx +ωt)]representingaFourierfactorinaplane wave,L(x,z,ξ,ω)isdefinedas L(x,z,ξ,ω)=exp[−i(ξx+ωt)]L(x,z,D ,D)exp[i(ξx+ωt)]=c (x,z)−2ω2−(cid:4)ξ(cid:4)2. (2) x t 0 Forspacedimensionn>2,ξxisavectordotproduct.Wenotethat,forgivenz,(x,t,ξ,ω)arecoordinatesonphasespace,andeq.(2)defines afunctiononthisspace.Forwavepropagationinheterogeneousmedia,carryingouttheanalysisinphasespacehasimportantadvantages overanalysisinmoreconventional(n +1)-Dspace–time.Heuristically,itallowsadescriptionofwavesintermsoflocallyplanewaves. Theexplicitdefinitionandconstructionoftheone-waywaveequationsbelow,theircorrespondingfundamentalsolutions(orpropagators) in the form of path integrals, and the marching computational algorithms are all rooted in phase space (Fishman et al. 1987; Fishman 2004). 2.2 Thesystemofone-waywaveequations Inphasespace,therootsofL(x,z,ξ,ω)correspond,locally,totransitionsfrompropagating(L>0)toevanescent(L<0)waveconstituents. Awayfromtheseroots,inparticularinthepropagatingregime,system(1)canbetransformedintodiagonalform(e.g.Stolk&DeHoop 2005).WithDandUdenotingthedown-andupwardpropagatingconstituentsofthewavefield,respectively,operatormatricesQ(z)=Q(x, z,D ,D )canbeconstructedsuchthat (cid:3) (cid:4)x t (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:4) u u f 0 D =Q(z) , D =Q(z) , u ∂u f f U ∂z U effectivelysatisfytheone-waywaveequations (cid:3) (cid:4) (cid:3) (cid:4) ∂ ∂ +iB (x,z,D ,D) u = f , −iB (x,z,D ,D) u = f . (3) ∂z D x t D D ∂z U x t U U AnycouplingbetweenDandUconstituentsisoftheformQ(z)∂ Q(z)−1. ∂z Inthepropagatingwaveregime,theoperatorB(=B orB )admitsanintegralrepresentationofthetype (cid:7) (cid:7) (cid:7) (cid:7) U D (Bu)(x,t,z)=(2π)−n b(x(cid:5),z,ξ,ω)exp[iξ(x−x(cid:5))]exp[iω(t−t(cid:5))]u(x(cid:5),t(cid:5),z)dx(cid:5)dt(cid:5)dξdω. (4) Here b(x(cid:5), z, ξ, ω) is a smooth function on phase space2 and is, hence, better suited for manipulations (such a(cid:8)s taking the wave speed derivativesneededbelow)thantheoperatorBitself.Forsystem(1),forhighfrequencies,3 b = b(x,z,ξ,ω) = ω 1 −ω−2(cid:4)ξ(cid:4)2,and (cid:9) (cid:9) c0(x,z)2 forω>0,bcoincideswith L(x,z,ξ,ω)whileforω<0,bcoincideswith− L(x,z,ξ,ω).Forthisreason,Bisoftenreferredtoasthe ‘single-square-rootoperator’. 2Inthemathematicsliteratureb(x(cid:5),z,ξ,ω)wouldbereferredtoasthe(antistandard)symbolofoperatorB.Likewise,L(x,z,ξ,ω)ineq.(2)isthesymbolof L(x,z,Dx,Dt).Wedeviatefromthecalculusofstandardsymbolstofacilitatethedevelopmentofourpreferredrepresentationforthesensitivitykernel. 3ForhighfrequenciesthesymbolofBreducestowhatiscalledtheprincipalsymbol.Forsimplicity,wewilldenotetheprincipalsymbolofBbybfromnow on.Weemphasize,however,thattheprincipalsymbolexpressionforbisnotexact.ThefrequencydependenceofoperatorBwasdiscussedbyFishman& McCoy(1984a). (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1336 M.V.deHoop,R.D.vanderHilstandP.Shen Withbrepresentingtheverticalwavenumber,ω−1bhastheappearanceofaverticalwaveslownessatthepoint(x,z)whereasω−1ξ isa horizontalslowness.For(x,z,ξ,ω)suchthatbisreal,theone-waywaveequationsareofhyperbolictype,describingpropagatingwaves.4 (Weremarkthateventhoughtheseparationbetweenlocallypropagatingandevanescentwavesis,here,basedupontheanalysisofprincipal symbols,thebasicpictureoflocallypropagatingandevanescentphasespaceregimesremainsintactforamorecompletedescriptionofthe symbols.) Inthefrequencydomain,weintroducetheoperatornotationBˆ inaccordancewithBu= F−1 BˆF uwhereFdenotestheFouriertransform.5 ω→t t→ω WenotethatBˆ = Bˆ(x,z,D ,ω). x WechooseanormalizationforoperatorQ(z)suchthateq.(3)isself-adjoint;thus (cid:5) (cid:6) (Q∗)−1 −HQ Q= 1 D D , (5) 2 (Q∗)−1 HQ U U where ∗ denotes the adjoint, H denotes the Hilbert transform in time, and QD,U = QD,U(z) = QD,U(x, z, Dx, Dt) are operators with pverirnticciapla-lacsoyumsbtiocl-spo(wc0(eωxr2,zfl)2u−x((cid:4)Dξe(cid:4)2H)−o1o/p4.1T9h9e6p).hWysiitchalthmiseannoirnmgaolifztahtiiosnc,htohiececooufpQlinDg,UQis(zth)a∂tQth(ez)d−o1wbnetawnedenupDgoainndgUfiecldosnsatrietuneonrtmsbaleiczoemdeins ∂z asymptoticallyoflowerorderand,therefore,isneglectedhere;weget f =−1HQ f u= Q∗u +Q∗u , D 2 D D D U U fU= 12HQUf, (6) withQ∗u representingtheup-andQ∗u representingthedowngoingconstituentofwavefieldu. U U D D 2.3 One-waywavepropagators Ifsingularitiespropagatenowherehorizontallybetweenzandz ,withz<z ,thereisawell-definedsolutionoperatorG (z,z )oftheinitial 0 0 U 0 valueproblemforu givenbyeq.(3)with f =0(Stolk2004);thisoperatordescribespropagationinthe(upward)directionfromz toz U U 0 (Stolk&DeHoop2005,Section2).(Analternativedescriptionofone-waypropagators,inwhichistheissueofnowherehorizontalraysis suppressed,canbefoundinFishmanetal.1997;DeHoop&Gautesen2000).IntheIntermezzoinSection(4.1)webrieflyindicatehowthe full-wavesolutioncanbeusedaswell.Asolutionfortheinhomogeneouseq.(3)isthengivenby (cid:7) (cid:7) (cid:7) ∞ u (x,t,z)= (G (z,z ))(x,t−t ,x )f (x ,t ,z )dx dt dz , (7) U U 0 0 0 U 0 0 0 0 0 0 z or,inoperatorformby (cid:7) ∞ u (.,z)= G (z,z )f (.,z )dz . (8) U U 0 U 0 0 z Here,theGreen’sfunction(G (z,z )),relatingthewavefieldat(x,t)anddepthztotheforceat(x ,t )atdepthz ,isthekernelofone-way U 0 0 0 0 propagatorG (z,z ).6 Theadjoint G (z,z )∗ describesdownwardpropagationfromztoz ofeq.(3)orupwardfromz tozinreversed U 0 U 0 0 0 time.7 2.4 Modelrepresentationandperturbation Fortheoptimizationunderlyingourreflectiontomographyweneedthe(Fre´chet)derivativesoftheabovementionedsquare-rootoperators withrespecttothebackgroundwavespeedc (x,z).Suchderivatives,whicharederivedinAppendixA,aretypicallyexpressedintermsof 0 aperturbationδc andcanbeinterpretedasfollows.Weconsiderafinite-dimensionalsubspaceof(smooth)wavespeedmodelsc ,spanned 0 0 byafinitesetofbasisfunctions{φ }: k (cid:10)M E :(c )→c (x,z)= c φ (x,z)= E (c )(x,z). c k 0 k k c k k=1 Thissubspacecouldbegenerated,forexample,byexpandingthewavespeedintocubicB-splines.Thederivativesineq.(A4)canthenbe (cid:2) expressedintermsofderivativeswithrespecttothecoordinates{c }throughδc (x,z) = M δc φ (x,z).Theadjoint E∗ of E ,which k 0 k=1 k k c c satisfies (cid:11) (cid:12) (cid:9)Ec(ck),c0(cid:10)(x,z)=(cid:9)(ck), Ec∗c0 (cid:10)IRM, 4Intheregimewherebisreal,theprincipalsymbolsoftheone-waywaveoperators—ζ±b(x,z,ξ,ω)uptoafactori—canbeidentifiedasHamiltoniansfor downandupgoingwaves,andcanbeusedtotracerayswithzasevolutionparameter.Thenextordersymbolneedstobeaccountedfortoobtainthetransport equationleadingtothecorrectasymptoticsolutions. (cid:13) (cid:13) 5 Ft(cid:5)→ωu= exp(−iωt(cid:5))u(t(cid:5))dt(cid:5), Fω−→1tuˆ =(2π)−1 exp(iωt)uˆ(ω)dω, andsimilarlyforFx−(cid:5)→1ξand Fξ−→1x indimensionn−1. 6Theupgoingconstituent‘U’ofthefull-waveGreen’sfunctionisgeneratedby 12HQ∗U(z)GU(z,z0)QU(z0)(cf.6). 7Wenotethat,eventhoughtheprincipalsymbolapproximationisahigh-frequencyapproximation,itcanstillbeusedtoobtainanapproximationtothe propagatorrevealingawavebehaviour. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1337 istheprojection(interpolation) (cid:3)(cid:7) (cid:7) (cid:4) (cid:11) (cid:12) c → c (x,z)φ (x,z)dxdz = E∗c . 0 0 k c 0 k Thisadjointappearsintheapplicationoftheadjointstatemethodtoevaluatingthesensitivitykernel. 3 DATA CONTINUATION IN DEPTH: DOUBLE-SQUARE-ROOT OPERATOR Thebackgroundmediumc (withsmoothperturbationsδc )consideredintheprevioussectioncanproducecausticsbutnoscattering(such 0 0 asreflections).Wenowdescribehow,withtheBornapproximation,single-scatteredphasesaremodelledintheframeworkoftheone-way wavetheorydevelopedabove.Makinguseofreciprocity,wemodelthedatapurelybyupcomingpropagators.Whereasupanddowngoing wavesaremodelledwithasinglesquare-rootoperatorB(seeSection2.2),theinteractionofthesecontributions(throughatimeconvolution) yieldsaDSRoperator. 3.1 Upwardcontinuationandmodellingofreflectiondata Weassumewavefieldscatteringoffacontrastδcthatcontainssingularvariationsinmediumwavespeed(forinstance,reflectors).Thetotal mediumwavespeedfollowsthedecomposition(withδc−2(cid:11)−2c−3δc) (cid:14) (cid:15) 0 c−2(x,z)=γ−2(z)+ c−2(x,z)−γ−2(z) −2c−3(x,z)δc(x,z). 0 0 0 0 Toobtainadownward/upwardcontinuationrepresentationofthesinglescatteredwaves,weintroducetheextendedmediumcontrast(Stolk &DeHoop2005), (cid:3) (cid:4) 1 (cid:11) (cid:12) r(cid:5)+s(cid:5) R(s(cid:5),r(cid:5),t(cid:5),z(cid:5))= δ(t(cid:5))δ(r(cid:5)−s(cid:5)) c−3δc ,z(cid:5) . (9) 2 0 2 OnecanviewRasadata-likerepresentationofthecontrast.Usingthefootnotebeloweq.(8)concerningtherelationbetweenone-wayGreen’s functionsandtheGreen’sfunctionoftheoriginalwaveequationandusingthatH2=−I,thesingularpartofthedata(asrecordedatEarth’s surface,thatis,atz=0)canbemodelledas (cid:7) ∞ d(s,r,t)= Q∗U,s(0)Q∗U,r(0) (H(0,z(cid:5))QU,s(z(cid:5))QU,r(z(cid:5))Dt2R(.,z(cid:5)))(s,r,t)dz(cid:5), (10) 0 whereQU,s(z)isshortforQU(cid:7)(s,z,Ds,Dt)andQU,r(z)isshortforQU(r,z,Dr,Dt),andthekernelofH(z,z(cid:5))isgivenbythetimeconvolution (H(z,z(cid:5)))(s,r,t,s(cid:5),r(cid:5),t(cid:5))= (G (z,z(cid:5)))(s,t−t(cid:5)−t¯,s(cid:5),0)(G (z,z(cid:5)))(r,t¯,r(cid:5),0)dt¯, forz>z(cid:5). (11) U U IR ThroughH asineq.(11),werecognizeineq.(10)thetimeconvolution(integrationovert¯)ofanincomingGreen’sfunctionthatconnects thesourceats(atzerodepth)withthescatteringpointatr(cid:5)=s(cid:5)(atdepthz(cid:5))withtheoutgoingGreen’sfunctionthatconnectsthisscattering pointwiththereceiveratr(atzerodepth).ThisprocessgivesrisetoaDSRpropagator;thespatialnotationisillustratedinFig.2(seealso Stolk&DeHoop2005). Thedata,ineq.(10),canberegardedasthesolutiontoa(Cauchy)initialvalueproblem:atthesurface(z =0)thesinglescattered wavefieldurepresentsthedatad,thatis,d(s,r,t)=Q∗ (0)Q∗ (0)u(s,r,t,z=0).Forz>0,u=u(s,r,t,z)representsthe(decomposed) U,s U,r wavefield—treatedas‘virtual’data—asafunctionoftime,generatedatdepthzbelowthesurfacebyfictitioussourcessandobservedby fictitiousreceiversr: (cid:7) ∞ u(s,r,t,z)= (H(z,z(cid:5))QU,s(z(cid:5))QU,r(z(cid:5))Dt2R(.,z(cid:5)))(s,r,t)dz(cid:5). z Figure2. DSRpropagator(eq.11).Dataatdepthz(cid:5)arepropagatedtowardsthesurfaceatz=0;s(cid:5)andr(cid:5)indicatefictitioussourceandreceiverlocations whereassandrindicateactualsourceandreceiverlocations.Thesubsurfaceoffsethandmidpointxoccurringintheangletransformareindicatedaswell. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1338 M.V.deHoop,R.D.vanderHilstandP.Shen Then,usolvesaninhomogeneousDSRequation (cid:3) (cid:4) ∂ ∂z −iBU(s,z,Ds,Dt)−iBU(r,z,Dr,Dt) u=g, g= QU,s(z)QU,r(z)Dt2R(.,z). (12) Thisequationissolvedinthe(upward)directionofdecreasingz(withvanishinginitialconditionforsomelargez,say,atthebottomofthe model). TheDSRequationplaysarolelaterintheevaluationofthesensitivitykernelforreflectiontomography.Infact,H isthepropagator associatedwitheq.(12),andishencereferredtoastheDSRpropagator.Forlateruse,weintroducetheDSRoperator C(s,r,z,D ,D ,D)= B (s,z,D ,D)+B (r,z,D ,D), (13) s r t U s t U r t sothateq.(12)attainstheform(∂ −iC(s,r,z,D ,D ,D))u=g.TheDSRoperatorCdependsonthebackgroundmodel,andapertubation ∂z s r t δc inc yieldsaperturbationδCinC,whichisderivedfromtheresultsinAppendixA,SubsectionA2.8 0 0 3.2 Downwardcontinuationandimagingofreflectiondata TheadjointoperatorH(0,z)∗isusedtopropagatethedatabackwardtodepthz.Weconsider ψd (cid:12)→D= H(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd, (14) U,s U,r whereψ isa(source,receiver,andtime)taperthatsuppressesthepartsofthedatathatonedoesnotwanttoconsiderintheimagingprocess (suchasdataassociatedwithturningrays).Ineq.(14),Disafunctionof(s,r,t,z);fort >0,D(s,r,t,z)canbeidentifiedwithu(s,r,t,z) ineq.(12),andissometimesreferredtoasa‘sunkensurvey’.Indeed,Dcanbeobtainedbysolvingtheevolutionequation (cid:3) (cid:4) ∂ −iC(s,r,z,D ,D ,D)∗ u=0, (15) ∂z s r t inthedirectionofincreasingz(downward),subjecttotheinitialconditionu(s,r,t,z=0)=−Q∗ (0)−1Q∗ (0)−1ψd.Inthepropagating U,s U,r regime,C(s,r,z,D ,D ,D )∗=C(s,r,z,D ,D ,D ). s r t s r t FollowingClaerbout(1985),animageofδc—thatisthesingularwavespeedvariations(includingreflectors)—canbeobtainedfromD byapplyingimagingconditions: (cid:11) (cid:12) I(x,z)=D s =x− h2,r =x+ h2,t,z |h=0,t=0, (16) wherewehaveintroducedsubsurfacehorizontalmidpoint-offsetcoordinates,(x,h).Ourtomographyaimstoestimatewavespeedvariations inthebackground,butweuseimagegatherstoevaluateassociatedmodelupdates.Theseimagegathersareobtainedbyreplacingtheimaging conditionbyanangletransform(seethenextsection). 4 WAVE-EQUATION ANGLE TRANSFORM AND DATA ANNIHILATORS BuildingontheworkbyStolk&DeHoop(2001)andBrandsberg-Dahletal.(2003)wediscussherehowredundancyinthedatacanbe exploitedforthepurposeoftomography.Weassumethatwehavedatafrommultiplesourcesandmultiplereceivers(seeFig.1,bottom).In theimagingprocess,thereflectionpointbecomestheimagepoint,andtheredundancyinthedatabecomesmanifestinthemultipleimages thataregenerated(atthatimagepoint)fromthedifferentscatteringanglesandazimuths.Thisisaccomplishedbytheangletransform.In thistransform,weencounteravariablepthatisessentiallyhalfthedifferencebetweenthehorizontalslownessvectorsassociatedwithsource andreceiverraysatthedepthwherethetransformisapplied.TherelationbetweenpandscatteringangleandazimuthisdescribedbyDe Hoopetal.(2003,eqs88–90);byvirtueofthisrelation,inimaging,theangletransformcanbethoughtofasareplacementofthegeneralized Radontransform. Foranacceptablewavespeedmodeltheimagesareindependentofscatteringangleandazimuth.Equivalently,thewavespeedmodelis acceptableifthedataarepredictableby(inotherwords,theyareintherangeof)themodellingoperatorineq.(10).Inthissection,wederive theannihilatorsusedtoevaluatethiscriterion.(Weemphasizethatthenotionthatamodelisacceptabledoesnotimplythatitisuniquely determined;infact,theretypicallyisaclassofacceptablemodels.Itcanbeshown,however,thatthehigherthescattererdensity,thesmaller thecollectionofacceptablemodels). 8Forcompletenesssake,inAppendixBweshowthatgeneralizedscreenexpansionsforQU,s(z)andQU,r(z)leadtowavespeedderivativesinafashionsimilar totheonesforBU.Thesederivativesaresuppressedinthetreatmentpresentedhere,however. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1339 4.1 Angletransformandcommonimage-pointgathers With,asbefore,u=u(s,r,t,z),andhthehorizontaloffsetbetweenrands(Fig.2),weintroduce (cid:7) (cid:3) (cid:4) h h (Ru)(x,z,p)= u x− ,x+ ,ph,z χ(x,z,h)dh IRn−1 (cid:7) (cid:7) 2 (cid:3) 2 (cid:4) 1 h h = uˆ x− ,x+ ,ω,z exp(−iωph)χ(x,z,h)dhdω, (17) 2π IRn−1 2 2 (notethezerointercepttime:t =0+ ph,withphamultiplicationforn =2andadotproductforn ≥3;thistransformwasoriginally introducedbyDeBruinetal.1990).Here,χ(x,z,h)isataperinh,suchthatχ(x,z,0)=1.WeapplyRtothedownwardcontinueddata, D(s,r,t,z)(cf.eq.14),toobtainthewave-equationangletransform,A, Ad = RH(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd. (18) U,s U,r Theresultofthistransformappliedtothedatais ¯I(x,z,p)=(Ad)(x,z,p)=(RD)(x,z,p). (19) Foreachx,¯I(x,z,p)isacommonimage-pointgatherin(z,p).9Withanappropriatechoiceofχthecommonimage-pointgathersareartefact free(thatis,freeoffalseevents),eveninthepresenceofcaustics(Stolk&DeHoop2001,2006).Asmentionedabove,thedependenceon preflectstheredundancyinthedata(adimensioncountconfirmsthis:(s,r,t)∈IR2n−1 while(x,z)∈IRn and2n−1−n=n−1isthe dimensionofp).Foranacceptablemodelc ,Amapsdatadtoap-familyofreconstructionsofδc,andforeachpthesameimage(¯I(x,z,p)) 0 ofδc(x,z)isobtained. 4.2 Intermezzo:AngletransformforglobalEarthapplications InglobalEarthapplications,inparticularinviewofturningrays,theone-waywavepropagatorsintroducedinSection2maybereplacedby full-wavepropagators.Accordingtoeq.(12),the(fictitious)sourcessandreceiversrareatthesamedepth(z).Forapplicationtoearthquake data,however,weconsider(clusters)ofearthquakeswithhypocentresatz=z andstationsatz=0(seeFig.1,bottom).Then,wecanreplace s thekernel(H(0,z(cid:5)))(s,r,t,s(cid:5),r(cid:5),t(cid:5))ofH(0,z(cid:5))by (cid:7) (H(0,z(cid:5)))(s,r,t,s(cid:5),r(cid:5),t(cid:5)):= G(s,z ,t−t(cid:5)−t¯,s(cid:5),z(cid:5))G(r,0,t¯,r(cid:5),z(cid:5))dt¯. (20) s IR Inviewofreciprocitythekerneloftheadjointisthesame,sothattheangletransformbecomes (cid:3) (cid:4) (cid:7) (cid:3)(cid:7) (cid:3) (cid:4) (cid:3) (cid:4) (cid:4) h h h h D x− ,x+ ,t(cid:5),z = G s,z ,−(t(cid:5)−t+t¯),x− ,z G r,0,t¯,x+ ,z dt¯ (ψd)(s,r,t)dsdrdt, (21) 2 2 s 2 2 IR followedbyeq.(17);here,z >z foralls.WecanuseanynumericalmethodtocomputetheGreen’sfunctions,forexamplenormalmode s summation,leadingthentoa‘normalmodeangletransform’.Eq.(21)canberewritten,uponachangeofvariableofintegrationt¯¯=−(t¯−t), intheform (cid:3) (cid:4) (cid:7) (cid:16) (cid:3) (cid:4)(cid:16)(cid:7) h h h D x− ,x+ ,t(cid:5),z = G s,z ,t¯¯−t(cid:5),x− ,z 2 2 s 2 (cid:3) (cid:4) (cid:17) (cid:17) h G r,0,−(t¯¯−t),x+ ,z (ψd)(s,r,t)drdt dt¯¯ ds; (22) 2 att(cid:5)=0andh=0,thisformrevealsthestructureofshotrecordmigration,whileonerecognizesthenotionofdoublefocussing(Berkhout 1997;Thorbecke1997). Essentially, eq. (17) is a special case of beamforming with the downward continued data (cf. 18) in sources and receivers (see also Scherbaumetal.1997). 4.3 Annihilatorsofthedownwardcontinueddata Sincetheoutcome(Ad)(x,z,p)shouldbeindependentofpwecandefineannihilatorsW,whoseactiononthedatad istoyieldzero,as follows:fori =1,...,n−1,W =(∂)−1(cid:9)A−1(cid:10) ∂ A(where(cid:9)A−1(cid:10)indicatesaregularizedinverseofA),whichindeedyieldsWd=0.We considertheannihilatorsnotintiheda∂ttabutinth∂epiimagedomain.Therefore,removingthemapping(cid:9)A−1(cid:10)fromimagegatherstiodata,we considerthecompanionoperators ∂ A(∂)−1(notethat(∂)−1hastoactinthedatadomain),which,whenappliedtoeq.(17),bringsouta ∂pi ∂t ∂t (cid:13) 9Savaetal.(1999)usearelatedbutdifferenttransform,viz.,¯¯I(x,Z,p)= IRn−1D(x− h2,x+ h2,t,z)χ(x,z,h)|t=0,z=Z+phdh.UnlikeA,thistransform cannotbecast,withappropriatelychosenweights,intoanestimationofthereflectioncoefficientinducedbyc0,δc. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS 1340 M.V.deHoop,R.D.vanderHilstandP.Shen multiplicationbyfactorh : (cid:7) (cid:3)i (cid:4) h h (R(cid:5)u)(x,z,p)= u x− ,x+ ,ph,z h χ(x,z,h)dh i IRn−1 (cid:7) (cid:7) 2 (cid:3) 2 i (cid:4) 1 h h = uˆ x− ,x+ ,ω,z exp(−iωph)h χ(x,z,h)dhdω. (23) 2π IRn−1 2 2 i Theannihilationofthedataisthusreplacedbyanannihilationofthesetofsubsurfaceimagegathers,R(cid:5)D,parametrizedbyp. i Forthepurposeoftomographywealsoneedtheadjoint(R(cid:5) )∗ofR(cid:5) .LetIdenoteatrialimageasafunctionof(x,z,p),then i i (cid:7) (cid:3) (cid:7) (cid:7) 1 (cid:9)Ri(cid:5)u,I(cid:10)(x,p) = I(cid:3)R2n−2 2π IRn−1 (cid:4) (cid:4) h h uˆ x− ,x+ ,ω,z exp(−iωph)h χ(x,z,h)dhdω I(x,z,p)dxdp 2 2 i (cid:7) (cid:7) 1 = uˆ(s,r,ω,z) 2π IR2n−2 (cid:3)(cid:7) (cid:4) (cid:11) (cid:12) (r−s) exp[iωp(r−s)]I 1(s+r),z,p dp χ(1(s+r),z,r−s)dsdrdω IRn−1 i 2 2 =(cid:9)uˆ,(Rˆi(cid:5))∗I(cid:10)(s,r,ω) forgivenz, (24) sothat (cid:7) (cid:11) (cid:12) (Rˆ(cid:5))∗I(s,r,ω,z)= (r−s) exp[iωp(r−s)]I 1(s+r),z,p dp. (25) i IRn−1 i 2 Here, indicatescomplexconjugation.Wenotethat(Rˆ(cid:5))∗,ineq.(24),yieldsanextensionofa(differentiated)imagegathertofictitious i data,inthenatureofRdefinedineq.(9).Ineq.(24)wechangedvariablesofintegrationfrom(x,h)to(s,r).Byremovingthefactorh inthe i integrand,weimmediatelyobtainanexpressionforRˆ∗.ByParseval’stheorem,wealsofindR∗, (cid:7) (R∗I)(s,r,t,z)= δ(t− p(r−s))I(1(s+r),z,p)dp IRn−1 2 withthepropertythat(cid:9)Ru,I(cid:10)(x,p) = (cid:9)u,R∗I(cid:10)(s,r,t).NoticethatneitherRnor Ri(cid:5) dependsonc0 and,thus,thattheyareinsensitivetosmooth perturbationsδc inc . 0 0 5 AN OPTIMIZATION PROCEDURE FOR REFLECTION TOMOGRAPHY Withthereflectiontomographydevelopedhereweaimtoestimatethebackgroundmedium(c +δc ),withasameasureofsuccessthe 0 0 annihilationofimagegathers.Indeed,ifannihilationwithoperator R(cid:5) appliedtothedownwardcontinueddataineq.(23)occurs,thenthe i backgroundmediumisconsideredacceptable. 5.1 Costfunctional Withthisnotion,themodelestimationiscastintotheminimizationofthefunctional (cid:7) (cid:7) (cid:10) (cid:18) (cid:18) J[c ]= 1 (cid:18)(R(cid:5)H(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd)(x,z,p)(cid:18)2dxdzdp, (26) 0 2 i U,s U,r i whichcorrespondswiththeeffectivedataannihilationintegratedoverallimage(scattering)points(x,z)and‘angles’p.Here,H(0,z)∗(and ψ)dependonc andaresensitivetoperturbationsδc ;however,sinceweassumedthatδc vanishesnearz=0,weneednotconsiderwave 0 0 0 speedderivativesofQ∗ (0)−1Q∗ (0)−1.Comparedwithconventionaltomography,themeasureoftraveltimemismatch(orwaveformcross U,s U,r correlation)hasthusbeenreplacedbytheoveralleffectoftheannihilationoperatorR(cid:5). i 5.2 Gradientofcostfunctional;sensitivitykernel AstandardmethodforoptimizationcanbeinvokedtocarryouttheminimizationofJ.Here,wediscussamethodforevaluatingtheFre´chet kernelorgradientofJ.Themethodforevaluatingthegradientofafunctionalderivedfromthesolutionofapartial(orpseudo-)differential equationisknownastheadjointstatemethod(Wunsch1996).IthasbeenintroducedinseismologybyTarantola(1987)andusedbymany others.Thegradientisrequiredfortheoptimization,whereastheFre´chetorsensitivitykernelprovidesinformationabouttheresolutionof ourapproachtowave-equationreflectiontomography. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS Onwave-equationreflectiontomography 1341 TheperturbationofthefunctionalJ,underasmoothperturbationδc ofc ,isderivedfrom (cid:19) (cid:5) (cid:6) 0 0 (cid:7) (cid:7) (cid:10) δJ[c ]= (Rˆ(cid:5))∗R(cid:5)H(0,z)∗Q∗ (0)−1Q∗ (0)−1ψd (s,r,ω,z) 0 i i U,s U,r i (cid:20) (cid:11) (cid:12) (δH 0,z)∗Q∗ (0)−1Q∗ (0)−1ψd ˆ(s,r,ω,z)dsdrdω dz, (27) U,s U,r and evaluated in Appendix C. The evaluation procedure, which is common to many different imaging schemes, consists of solving two evolutionequationsfollowedbyanimagingoperation.Weusetheobservationmadebeloweq.(14)andrelateDtosolutions,u,oftheDSR equation.Thefirstevolutionequationiseq.(15),whichissolvedinthedirectionofincreasingz(downward);inthefrequencydomainthis equationreads: (cid:3) (cid:4) ∂ (cid:11) (cid:12) −iCˆ(s,r,z,D ,D ,ω)∗ uˆ =0, uˆ(s,r,ω,z=0)=− Q∗ (0)−1Q∗ (0)−1ψd ˆ(s,r,ω). (28) ∂z s r U,s U,r Thesecondistheadjointfieldequation, (cid:3) (cid:4) ∂ (cid:10) −iCˆ(s,r,z,D ,D ,ω) vˆ = (Rˆ(cid:5))∗R(cid:5)u, (29) ∂z s r i i i whichissolvedinthe(upward)directionofdecreasingz(withvanishinginitialconditionforsomelargez,say,atthebottomofthemodel). Theright-handsidequantifiesthefailureofannihilationandrepresentsamism(cid:13)atchsourcedistribution. Thesolutionsuˆ andvˆ combinedformthekernel(or‘image’)KinδJ = K(x,z)δc (x,z)d(x,z),andisgivenby(cf.C12andA7) ⎡ 0 (cid:7) (cid:7) 1 ∞ (cid:10)N ⎢ K(x,z)∼ Re dω(−i) ⎣ uˆ(x,r,ω,z)S(cid:5)(x,z)F−1 A (σ,ω,z)F vˆ(.,r,ω,z)dr π (cid:24)j σ→x(cid:25)(cid:26)j s→σ(cid:27) 0 j=0 generalizedscreen ⎤ (cid:7) ⎥ + uˆ(s,x,ω,z)S(cid:5)(x,z)F−1 A (ρ,ω,z)F vˆ(s,.,ω,z)ds⎦. (30) (cid:24)j ρ→x (cid:25)(cid:26)j r→ρ(cid:27) generalizedscreen Here,S andA appearinthegeneralized-screenexpansionofthesingle-square-rootoperator,whichisexplainedindetailinAppendixA(cf. j j A1andA4).Weusedthesymmetryinfrequencytorestricttheevaluationtopositivevalues.InvokingthemodelrepresentationinSection2.4 yieldsδJ =(cid:9)K,δc0(cid:10)(x,z)=(cid:9)(δck),(Ec∗K)(cid:10)IRM. Eq.(30)isoftheformofatimecrosscorrelationofthedownwardcontinueddataandtheadjointfieldexcitedbyamismatchforce nestedinageneralizedscreenoperation.Itdiffersfromastandardimagingconditioninparticularthroughtheintegrationsoversandr.The proceduretoevaluateeq.(30)isillustratedinFig.3.Itconsistsofthefollowingsteps: (i) startingatthetop,downwardcontinuestep-by-stepthedata(inthefrequencydomain)allthewaytothebottom(cf.14)whilestoring theresultsatallintermediatedepths; (ii) startingatthebottom,evaluatethesuccessofannihilation,thatis,themismatchsource,withthedownwardcontinueddata, Figure3. Theevaluationofthekernel.Thesingleanddoublearrowsrefertothetwotermsinbetweenbracketsineq.(30);thegreyarrowsindicatethe generalizedscreenoperations.Thefieldvisupwardcontinuedwithsourcesdeterminedbythefailuretoannihilatethedataintheimagedomain;urepresents thedownwardcontinueddata.Atanydepth,z,ascreenactionisappliedtov(indicatedbygreyarrows)inparallelinthesourcevariable(left)andinthereceiver variable(right).Then,inparallel,theinnerproducts(includingtimecorrelation)aretakeninreceivers(left)andsources(right).Finally,thetwocontributions areaddedtogether. (cid:2)C 2006TheAuthors,GJI,167,1332–1352 Journalcompilation(cid:2)C 2006RAS

Description:
Such methods have been exploited in seismic imaging and inverse in subsurface offset (related to annihilators of image gathers, as explained in z, p) in p (at selected horizontal positions x displayed at the centre on top of The mismatch force can attain non-vanishing values only in regions that
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.