UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa DDiiggiittaall CCoommmmoonnss @@ UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 3-1-2012 WWaatteerr QQuuaalliittyy MMoonniittoorriinngg iinn aa PPiilloott MMaarriinnee IInntteeggrraatteedd AAqquuaaccuullttuurree SSyysstteemm Alex W. Kruglick University of South Florida, [email protected] Follow this and additional works at: https://digitalcommons.usf.edu/etd Part of the American Studies Commons, and the Environmental Engineering Commons SScchhoollaarr CCoommmmoonnss CCiittaattiioonn Kruglick, Alex W., "Water Quality Monitoring in a Pilot Marine Integrated Aquaculture System" (2012). USF Tampa Graduate Theses and Dissertations. https://digitalcommons.usf.edu/etd/4110 This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact [email protected]. Water Quality Monitoring in a Pilot Marine Integrated Aquaculture System by Alex Kruglick A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering Department of Civil and Environmental Engineering College of Engineering University of South Florida Co-Major Professor: Maya Trotz, Ph.D. Co-Major Professor: Sarina Ergas, Ph.D. Kevan Main, Ph.D. Date of Approval: March 1, 2012 Keywords: Recirculating, Wetlands, Pompano, Sustainable, Food Copyright © 2012, Alex Kruglick ACKNOWLEDGEMENTS The 2010 National Oceanic and Atmospheric Administration (NOAA) Sea Grant Aquaculture Program provided funding for this project through a grant (NOAA Award # NA10OAR4170079 and Florida SeaGrant Project #R/LR-A-48) awarded to Mote Marine Laboratory for the project entitled, “Evaluating Performance of Pilot and Commercial Wastewater Systems Associated with Inland Production of High-Value Marine Fish”. TABLE OF CONTENTS LIST OF TABLES .................................................................................................. iii! LIST OF FIGURES ................................................................................................ v! ABSTRACT .......................................................................................................... ix! CHAPTER 1: INTRODUCTION ............................................................................. 1! CHAPTER 2: LITERATURE REVIEW ................................................................... 7! Description of Solid Fish Feed Composition ............................................... 8! Wastewater Treatment in Integrated Aquaculture Systems ....................... 9! Nutrients (Nitrogen and Phosphorous) ..................................................... 11! Ammonia Toxicity and Treatment Methods .............................................. 14! Ammonification .............................................................................. 15! Nitrification ..................................................................................... 15! Denitrification ................................................................................. 16! Ozonation ....................................................................................... 16! Phosphorous Removal Biological Mechanisms ........................................ 17! Heavy Metals and Trace Elements ........................................................... 17! Suspended Solids Removal ..................................................................... 18! Aquaculture Sludge Treatment ................................................................. 19! Constructed Wetlands .............................................................................. 21! Vertical Flow Constructed Wetlands (VFCWs) .............................. 22! Horizontal Flow Constructed Wetlands (HFCWs) .......................... 22! CHAPTER 3: MATERIALS AND METHODS ...................................................... 24! Field Site Description ................................................................................ 24! Fish Tanks ..................................................................................... 25! Moving Bed Bioreactor (MBBR) ..................................................... 27! Solids Tank .................................................................................... 28! Plant Beds ...................................................................................... 29! Geotubes ....................................................................................... 32 Bead Filter & Ozonation Unit ......................................................... 32 i Materials and Equipment .......................................................................... 33! Water Sampling ........................................................................................ 34! Elemental Analysis ................................................................................... 37! CHAPTER 4: RESULTS AND DISCUSSION ...................................................... 39! System Dissolved Oxygen, pH, and Temperature ................................... 40! COD, Nutrients (N,P), TSS, and VSS ....................................................... 43! Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) ..... 47! Total Nitrogen, Nitrate, and Ammonia ...................................................... 50! Total Phosphorous and Orthophosphate .................................................. 55! Elemental Analyses .................................................................................. 59! Water Quality Data Over the Course of 18 Hours .................................... 63! CHAPTER 5: CONCLUSIONS ............................................................................ 66! CHAPTER 6: RECOMMENDATIONS ................................................................. 69! REFERENCES .................................................................................................... 72! APPENDIX A: ANALYTICAL TECHNIQUES ...................................................... 79! ii LIST OF TABLES Table 1: Major inorganic nitrogen species involved in aquaculture systems with the oxidation state of N (OS) and examples of reactions. .......... 12! Table 2: Equilibrium constants for redox 1/2 reactions of pertinent nitrogen species. .............................................................................................. 13! Table 3: Summary of pompano fish stock since start of system at MOTE Aquaculture Research Park, FL. ........................................................ 26! Table 4: Chemicals required to make stock and standard solutions at listed concentrations. ......................................................................... 34! Table 5: Summary of methods and preservation techniques used for analysis of water samples. ................................................................. 36! Table 6: Water quality analytical range, chloride interference, and dilution factors. ............................................................................................... 37! Table 7: Surface water quality data, Dissolved Oxygen (DO) in mg/L, pH, and Temperature (oC) collected with a Quanta Hydrolab probe. ....... 40! Table 8: Summary of water quality data in mg/L for unfiltered (U) and filtered (F) concentrations of Chemical Oxygen Demand (COD), Total Nitrogen (TN), Nitrate as Nitrogen (NO --N), Ammonia as 3 Nitrogen (NH -N), Total Phosphorous (TP), Orthophosphate 3 (OP), Total Suspended Solids (TSS), and Volatile Suspended Solids (VSS) ....................................................................................... 45! Table 9: Elemental water quality results for Ca, Mg, Sr, K, Li, B, Mn, Ni, Se, Hg, Mo, Fe, B sampled on 5/17/11; 6/24/11; and 9/7/11. ............ 59 Table A: 5/17/11 Raw data. ................................................................................. 83 Table B: 6/23/11 Raw data. ................................................................................. 88 Table C: 9/7/11 Raw data. ................................................................................... 91 iii Table D: 10/12/11 Raw data. ............................................................................... 97 Table E: 12/3/11 Raw data. ............................................................................... 103 Table F: 1/14/12 Raw data. ............................................................................... 108 Table G: 2/1/12 18 Hour sampling raw data. ..................................................... 114 iv LIST OF FIGURES Figure 1: Global fish production and human growth. ............................................. 2! Figure 2: A systems level look at an Integrated Aquaculture System ................... 4! Figure 3: Key nitrogen transformations in an IAS as well as the major inputs to and outputs from the system. .............................................. 13! Figure 4: pE-pH diagram for nitrogen showing equilibrium between NO -, 3 NO -, NH +, and NH .. ....................................................................... 14! 2 4 3 Figure 5: Representation of water flow through the marine Integrate Aquaculture system at Mote Aquaculture Research Park in Sarasota Florida. ................................................................................ 25! Figure 6: Fish tanks used to grow pompano at Mote Aquaculture Research Park, FL. ............................................................................ 26! Figure 7: Grams of fish feed added to entire pompano system at Mote Aquaculture Research Park as a function of time since the system started. ................................................................................... 27! Figure 8: Salinity (ppt) data measured at SBe, NBe, and fish tanks A-1 over project duration. ......................................................................... 27! Figure 9: Drum filter, Moving Bed Bio-Reactor (MBBR) and ultraviolet (UV) disinfection. ........................................................................................ 28! Figure 10: Solids collection tank which accumulates waste from the drum filter effluent. ...................................................................................... 29! Figure 11: South plant bed (left) and north plant bed (right). .............................. 30! Figure 12: Photograph of the sand filter that feeds the north plant bed. ............. 31! Figure 13: Sample collection point from the north plant bed. .............................. 31! v Figure 14: Image of the geotube (taken December, 2010). ................................ 33! Figure 15: Dissolved oxygen concentration measurement taken each sampling day over project duration. ................................................... 42! Figure 16: System pH measurement taken each sampling day over project duration. ............................................................................................. 42! Figure 17: System temperature measurement taken each sampling day over project duration. ......................................................................... 42! Figure 18: Average values of Dissolved Oxygen (DO) in mg/L on 5/17/11, 9/7/11, 10/15/11, 12/3/11, and 1/14/12. ............................................. 43! Figure 19: Unfiltered COD (UCOD) in mg/L from STe, SFe, NBe, and SBe during each sampling date over project duration. .............................. 46! Figure 20: Filtered COD (FCOD) in mg/L from STe, SFe, NBe, and SBe during each sampling date over project duration. .............................. 46! Figure 21: Average values of unfiltered Chemical Oxygen Demand (UCOD), Filtered Chemical Oxygen Demand (FCOD) in mg/L and the ratio of FCOD/UCOD from 5/17/11 to 1/14/12 for 5 sampling times. .................................................................................. 47! Figure 22: TSS in mg/L from STe, SFe, NBe, and SBe during each sampling date over project duration. .................................................. 47! Figure 23: VSS in mg/L from STe, SFe, NBe, and SBe during each sampling date over project duration. .................................................. 48! Figure 24: Ratio of VSS to TSS from STe, SFe, NBe, and SBe during each sampling date over project duration. ......................................... 48! Figure 25: Average Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) in mg/L shown on system diagram. ........... 49! Figure 26: Unfiltered Total Nitrogen (TN) in mg/L from STe, SFe, NBe, and SBe at each sampling date over project duration. ............................. 54! Figure 27: Filtered Total Nitrogen (TN) in mg/L from STe, SFe, NBe, and SBe at each sampling date over project duration. ............................. 54! vi Figure 28: Filtered nitrate in mg/L as NO --N from STe, SFe, NBe, and 3 SBe at each sampling date over project duration. ............................. 54! Figure 29: Filtered ammonia in mg /L as NH -N from STe, SFe, NBe, and 3 SBe at each sampling date over project duration. ............................. 54! Figure 30: Average filtered ammonia (NH ) in mg /L as NH -N, filtered 3 3 nitrate (NO -)in mg/L as NO --N, filtered total nitrogen (TN) in 3 3 mg/L and unfiltered total nitrogen in mg/L shown on a system level diagram. ..................................................................................... 55! Figure 31: Unfiltered TP in mg/L from STe, SFe, NBe, and SBe at each sampling date over project duration. .................................................. 57! Figure 32: Filtered TP in mg/L from STe, SFe, NBe, and SBe at each sampling date over project duration. .................................................. 57! Figure 33: Filtered ortho-phosphate as P in mg/L from STe, SFe, NBe, and SBe at each sampling date over project duration. ...................... 57! Figure 34: Unfiltered total phosphorus (UTP) as mg/L P, filtered total phosphorous (FTP) as mg/L P, and filtered reactive phosphorous or ortho-phosphate (FOP) as mg/L PO 3--P 4 shown on system diagram from 5/17/11 to 1/14/12 for 5 sampling times. .................................................................................. 58! Figure 35: Filtered total potassium (K) in ppm or mg/L lithium (Li) in ppb or µg/L shown on system diagram as average values from 5/17/11, 6/24/11 and 9/7/11 sampling times. ..................................... 60! Figure 36: Filtered total calcium (Ca), magnesium (Mg), and strontium (Sr) in ppm or mg/L shown on system diagram as average values from 5/17/11, 6/24/11 and 9/7/11 sampling times. ............................. 61! Figure 37: Filtered total manganese (Mn), nickel (Ni), selenium (Se), iron (Fe), and boron (B) ppb or µg/L shown on system diagram as average values from 5/17/11, 6/24/11 and 9/7/11 sampling times. ................................................................................................. 62! Figure 38: Unfiltered COD from STe, SFe, NBe, and SBe over the course of 18 hours on 2/1/12. ........................................................................ 64! vii
Description: