Cwd©olwiAim:w1u..0tchP.l5oiam1rs(-9tsp4)Da/2ciss0ptc-1ddu4-iss1.sc0C.u,-C1s11s0A.5,nt31etr-1ti2/b510u301t–/i4o11n115373.80/,2L20i01c14e4/nse. of thCDeilsi cmPusasaiotsnest Open Access Discussio n P a Thisdiscussionpaperis/hasbeenunderreviewforthejournalClimateofthePast(CP). p e PleaserefertothecorrespondingfinalpaperinCPifavailable. r | Water pH and temperature in Lake Biwa D is c from MBT0/CBT indices during the last us s io n 282000years P a p e r T.Ajioka1,M.Yamamoto1,2,K.Takemura3,andA.Hayashida4 | 1GraduateSchoolofEnvironmentalScience,HokkaidoUniversity,Kita-10,Nishi-5,Kita-ku, D is Sapporo060-0810,Japan c u 2FacultyofEnvironmentalEarthScience,HokkaidoUniversity,Kita-10,Nishi-5,Kita-ku, ss Sapporo060-0810,Japan ion 3InstituteforGeothermalScience,KyotoUniversity,Noguchihara,Beppu, P a Ohita874-0903,Japan pe 4FacultyofScienceandEngineering,DoshishaUniversity,1-3TataraMiyakodani,Kyotanabe, r Kyoto612-0321,Japan | D Received:25February2014–Accepted:11March2014–Published:26March2014 is c u Correspondenceto:T.Ajioka([email protected]) s s io PublishedbyCopernicusPublicationsonbehalfoftheEuropeanGeosciencesUnion. n P a p e r 1153 | Abstract D is c u Wegenerateda282000-yearrecordofwaterpHandtemperatureinLakeBiwa,cen- s s tral Japan, by analysing the methylation index (MBT0) and cyclisation ratio (CBT) of io n branched tetraethers in sediments from piston and borehole cores to understand the P a 5 responsesofprecipitationandairtemperatureincentralJapantotheEastAsianmon- pe r soonvariabilityontheorbitaltimescale.BecausewaterpHinLakeBiwaisdetermined by phosphorus input driven by precipitation, the record of water pH should indicate | changes in summer precipitation in central Japan. The estimated pH showed signifi- D is cant periodicity at 19 and 23ka (precession) and at 41ka (obliquity). The variation in c u 10 theestimatedpHagreeswithvariationinthepollentemperatureindex.Thisindicates ssio synchronous variation in summer air temperature and precipitation in central Japan, n P which contradicts the conclusions of previous studies. The variation in estimated pH a p was also synchronous with the variation of oxygen isotopes in stalagmites in China, e r suggestingthatEastAsiansummermonsoonprecipitationwasgovernedbyNorthern | Hemisphere summer insolation on orbital timescales. However, the estimated winter 15 D temperatures were higher during interglacials and lower during glacials, showing an is eccentricity cycle. This suggests that the temperature variation reflected winter mon- cu s soonvariability. s io n P a p 1 Introduction e r The East Asian monsoon governs the climate of East Asia (Wang et al., 2003), and | 20 EastAsianmonsoonvariabilityonorbitaltimescaleshasbeenthetopicofmanystud- D ies, which have revealed that it has responded to precession; however, the timing of isc u monsoon variability continues to be debated. Kutzbach (1981) hypothesised that the ss Asian monsoon responds to insolation changes at low latitudes, which are regulated ion by precession. According to this hypothesis, the summer monsoon is maximal when P 25 a p Northern Hemisphere summer insolation is maximal in the precession cycle. Indeed, e r 1154 | oxygenisotoperecordsfromcave stalagmitesinChinahavedemonstratedthatsum- D is mermonsoonvariabilitywaspronouncedattheprecessioncycleandmaximalatJuly– c u August precession (e.g., Wang et al., 2001, 2008; Yuan et al., 2004; Dykoski et al., ss io 2005).However,someproxyrecordsarenotconsistentwiththishypothesis.Clemens n P 5 andPrell(2003)reportedthatIndiansummermonsoonvariabilityshowedbothpreces- a p sionandobliquitycyclesandwasmaximalattheNovemberperiheliononthepreces- e r sion band. The pollen record in the north-western Pacific off of central Japan shows | thattheEastAsianmonsoonhasbeenstrongestattheOctober–Novemberperihelion D in precession cycles (Heusser and Morley, 1985; Igarashi and Oba, 2006). Thus, the is 10 conclusionshavevariedaccordingtotheproxyrecordused. cu s Lake sediments provide a good, widely available palaeoclimate archive. Proxies s io applicable to lake sediments include pollen and diatom fossils, δD of long-chain n- n P alkanes,lignin,biogenicopal,andpigments,amongothers.Additionally,theMBT0/CBT a p andTEX86 indicesofglyceroldialkylglyceroltetraethers(GDGTs)havebeenapplied er recently to lake sediments for palaeotemperature reconstruction (e.g. Powers et al., 15 | 2004;Niemannetal.,2012).InLakeBiwa,sedimentcoreshavebeeninvestigatedus- D ing pollen fossils (Miyoshi et al., 1999; Nakagawa et al., 2008), lignin (Ishiwatari and is c Uzaki,1987;Ishiwatarietal.,2009;Ohiraetal.,2013),diatomfrustules(Kuwaeetal., u s s 2004), biogenic opal (Xiao et al., 1997), pigments (Ishiwatari et al., 2009), and δD of io n 20 long-chainn-alkanes(Sekietal.,2012). P a GDGTsinnaturalenvironmentsincludeisoprenoidandbranchedGDGTs(Appendix; p e NishiharaandKoga,1987;SinningheDamstéetal.,2000),whichareproducedbyAr- r chaea(DeRosaandGambacota,1988)andAcidobacteria(SinningheDamstéetal., | 2000, 2011; Weijers et al., 2006), respectively. Branched GDGTs contain cyclopen- D taneringsand/oradditionalmethylbranches(SinningheDamstéetal.,2000;Weijers is 25 c u et al., 2006). Weijers et al. (2007b) reported that the relative abundance of branched s s GDGTs in soils reflects soil pH and mean annual air temperature (MAAT). Addition- io n ally, the cyclisation ratio of branched tetraethers (CBT) is correlated with soil pH, and P a themethylationindexofbranchedtetraethers(MBTandMBT0)iscorrelatedwithboth p e r 1155 | soil pH and MAAT (Weijers et al., 2007b; Peterse et al., 2012). Based on these em- D is pirical relationships, the MBT/CBT palaeotemperature index was proposed (Weijers c u etal.,2007b).Thisindexhasbeenappliedsuccessfullyinmarinesedimentsfromthe ss io CongoRiverfan(Weijersetal.,2007a),butmostapplicationsinlakesedimentshave n P 5 beenunsuccessful(e.g.TierneyandRussel,2009;Tyleretal.,2010;Zinketal.,2010; a p Wangetal.,2012).TierneyandRussel(2009)arguedthattheunrealisticMAATsare e r attributabletoinsituproductionofbranchedGDGTsinlakewater.Tierneyetal.(2010) | noted that the correlation between MBT/CBT from sediments and MAAT for 46 lakes inEastAfricadifferedfromthatoftheglobalsoilsetandproposedacalibrationappli- Dis 10 cableinlakeenvironments.Ajiokaetal.(2014)investigatedthedistributionofGDGTs cu s insoilsandriverandlakesedimentsintheLakeBiwadrainagebasinandshowedthat s io thedistributionofbranchedGDGTsinthelakesedimentswasdifferentfromthatinthe n P catchment soils, suggesting in situ production of branched GDGTs in the lake. They a p alsofound,incontrasttotheconclusionofTierneyetal.(2010),thattherelationships er amongsoilpH,MAAT,andMBT0/CBTinsoilsarenotdifferentfromthoseoflakewater 15 | pH, temperature, and MBT0/CBT in lake sediments, implying that the soil calibration D is applicable without modification to the study of lake sediments to obtain lake water is c temperatureandpH. u s s Inthisstudy,weinvestigatedbranchedGDGTsinsedimentsfromboreholeBIW08- io n 20 BandpistoncoreBIW07-6inLakeBiwa,centralJapan,toreconstructlakewaterpH P a andtemperatureduringthelast282000years.Wethenevaluatedthevariabilityofthe p e East Asian summer and winter monsoons based on estimated summer precipitation r andwinterlakewatertemperature. | D is c u s s io n P a p e r 1156 | 2 Materialsandmethods D is c u 2.1 EnvironmentalsettingofLakeBiwa s s io n LakeBiwaincentralJapanisatanelevationof84mandissurroundedbymountains P ca. 1000m high. With an area of 674km2 and a watershed area of 3850km2, Lake ap e BiwaisthelargestlakeinJapan(Fig.1).Morethan118riversflowintothelake,and r 5 theSetaRiverdischargesfromit.TheclimateoftheareaisaffectedbytheEastAsian | monsoon (Yoshino, 1965): summer monsoon brings warm and humid conditions and D winter monsoon brings snowfall to the northern part of the area and dryness to the isc u southernpart. s s 10 The MAAT is 14.7◦C at Hikone Meteorological Observatory (elevation of 87m; ion from1981–2010)(JapanMeteorologicalAgency,availableathttp://www.jma.go.jp/jma/ P a index.html). Water temperature and pH data were obtained from the Lake Biwa Envi- pe r ronmentalResearchInstitute(http://www.pref.shiga.lg.jp/biwako/koai/hakusyo/). | 2.2 Samples D is c u 15 Piston core BIW07-6 (18.42m long) was taken from the central part of Lake Biwa ss (35◦13059.0200N, 136◦02051.8900E; water depth of 55m) in 2007 (Fig. 1; Takemura io n etal.,2010).Thesedimentsinthecoreconsistedofhomogenousdark-greysiltyclay P a (Fig.2).Theage–depthmodelforcoreBIW07-6wascreatedusingcalendaragescon- p e r vertedfromradiocarbondatesof13terrestrialplantremainsandradiogenicagesoffive volcanicashlayers(Fig.3a;Takemuraetal.,2010;Kitagawa,personalcommunication, | 20 2014),andtheaveragesedimentationratewasfoundtobe0.4mka−1.Thesediment D was stored at 4◦C for 0.5years. Then, 137 samples (1cm thick) were collected from isc u 0.30m(0.6ka)to18.29m(46ka)andimmediatelyfreeze-dried.Theaveragesampling ss intervalwas∼0.3ka. ion Borehole core BIW08-B (100.3m long) was collected from its site (35◦13041.1500N, P 25 a 136◦03021.1900E; water depth of 53) in 2008 (Fig. 1). The sediments consisted of pe r 1157 | dark-grey massive silty clay from 0 to 89m, sandy silt containing abundant sand and D is plant debris from 89 to 99m, and dark-grey massive silty clay from 99 to 100.3m c u (Fig.2;Sato,personalcommunication,2014).Theage–depthmodelforcoreBIW08-B ss io was created from the radiogenic ages of 18 volcanic ash layers (Fig. 3b; Takemura, n P 5 personalcommunication,2014),andtheaveragesedimentationratewasfoundtobe a 0.3mka−1.Thesedimentwasstoredat4◦Cfor0.5years.Then,152samples(2.5cm pe r thick)werecollectedfrom13m(43ka)to88m(282ka),andthesampleswereimme- | diatelyfreeze-dried.Theaveragesamplingintervalwas∼1.9ka. D is 2.3 Analyticalmethod c u s s 10 Lipids were extracted (3×) from a freeze-dried sample using a DIONEX ASE-200 at ion 100◦C and 1000 psi for 10min with 11mL CH Cl /CH OH (6:4 v/v) and concen- P 2 2 3 a p trated. The extract was separated into four fractions using column chromatography e r (SiO with5%distilledwater;5.5mm×45mm):F1(hydrocarbons)with3mLhexane; 2 F2 (aromatic hydrocarbons) with 3mL hexane-toluene (3:1 v/v); F3 (ketones) with | 4mLtoluene;F4(polarcompounds)with3mLtoluene/CH OH(3:1v/v).Analiquot D 15 3 is ofF4wasdissolvedinhexane/propan-2-ol(99:1v/v)andfiltered.TheGDGTswere c u s analyzed using high performance liquid chromatography-mass spectrometry (HPLC- s io MS) with a Shimadzu SIL-20AD system connected to a Bruker Daltonics micrOTOF- n P HStime-of-flightmassspectrometer.APrevailCyanocolumn(2.1×150mm,3µm;All- a tech)at30◦Cwasused,followingthemethodssetoutbyHopmansetal.(2000)and pe 20 r Schoutenetal.(2007).Theconditionswere:flowrate0.2mLmin−1,isocraticwith99% | hexaneand1%propan-2-ol(5min)followedbyalineargradientto1.8%propan-2-ol D over 45min. Detection was achieved using atmospheric pressure chemical ionization is c (APCI) MS in positive ion mode. The spectrometer was run in full scan mode (m/z u s 25 500–1500). Compounds were assigned from comparison of mass spectra and reten- sio tion times with GDGT standards (from the main phospholipids of Thermoplasma aci- n P dophilumviaacidhydrolysis)andvaluesfromapreviousstudy(Hopmansetal.,2000). a p Quantification was achieved by integrating the summed peak areas in the (M+H)+ er 1158 | and(M+H+1)+ chromatogramsandcomparingthemwiththepeakareafromanin- D ternal standard (C46 GDGT; Patwardhan and Thompson, 1999) in the (M+H)+ ion iscu s chromatogram, according to the method set out by Huguet et al. (2006). The cor- s io rection value for the ionization efficiency between GDGTs and the internal standard n P 5 wasobtainedbycomparingthepeakareasfromT.acidophilum-derivedmixedGDGTs ap withthatfromC GDGT.Thestandarddeviationofareplicateanalysiswas3.0%of e 46 r theconcentrationforeachcompound.TheBITindexwascalculatedasperHopmans | etal.(2004): D BIT=([GDGTI]+[GDGTII]+[GDGTIII])/([GDGTI]+[GDGTII]+[GDGTIII] isc u s +[crenarchaeol]). s 10 io n Themethaneindex(MI)wascalculatedasperZhangetal.(2011): Pa p e MI=([GDGT-1]+[GDGT-2]+[GDGT-3])/([GDGT-1]+[GDGT-2]+[GDGT-3] r +[crenarchaeol]+[crenarchaeolregioisomer]). | 15 D CBTandMBT0werecalculatedasperWeijersetal.(2007b)andPeterseetal.(2012): is c u s CBT=−log([GDGTIb]+[GDGTIIb])/([GDGTI]+[GDGTII]), sio n MBT0=([GDGTI]+[GDGTIb]+[GDGTIc])/([GDGTI]+[GDGTIb]+[GDGTIc] P a +[GDGTII]+[GDGTIIb]+[GDGTIIc]+[GDGTIII]). pe 20 r ThepHandMAATwerecalculatedaccordingtothefollowingequationsbasedonthe | datasetofLakeBiwawatershedsoils(Ajiokaetal.,2014): D is c pH=7.90−2.08×CBT, u s s MAAT=1.28−5.77×CBT+26.4×MBT0. io 25 n P The analytical accuracy of CBT and MBT0 was 0.034 and 0.015, respectively, in this ap e study. r 1159 | 3 Results D is c u TheconcentrationsofisoprenoidandbranchedGDGTsvariedbetween0.01and2.55 s s andbetween0.05and12.58µgg−1,respectively(Fig.4).CBT-basedpHrangedfrom io n 6.0 to 7.6 (Fig. 4). The measured pH value in the surface water of Lake Biwa has an P a 5 annual average of 8.1 and is lowest (∼7.6) in winter and highest (∼8.8) in summer, pe r whereas the pH of the bottom water at a depth of 59m ranges from 7.2 to 7.7 with an average value of ∼7.5 (off Minami-Hira: 35◦1103900N, 135◦5903900E; data from the | Lake Biwa Environmental Research Institute, http://www.pref.shiga.lg.jp/biwako/koai/ D is hakusyo/).TheCBT-basedpHvaluesofthecoresedimentsarelowerthanthoseinthe c u 10 presentlakewater.CBT-basedpHwasmaximalat6,25,45,75,100,120,137,162, ssio 202,216,245,253,and280kaandminimalat16,30,52,91,112,131,154,184,206, n 226,251,and268ka.Theintervalsbetweenthesepeaksaveraged23ka.MBT0/CBT- Pa based temperature ranged from 4 to 11◦C and was lower during glacials and higher pe r during interglacials (Fig. 4). The modern measured temperature of surface water in Lake Biwa has an annual average of 16.9◦C and is lowest (∼7.6◦C) in winter and | 15 highestin(∼27.9◦C)insummer,whereasthetemperatureofbottomwateratadepth Dis of59mrangesfrom7.2to8.2◦Cwithanannualaverageof∼7.7◦C(offMinami-Hira; cu s datafromtheLakeBiwaEnvironmentalResearchInstitute,http://www.pref.shiga.lg.jp/ s io biwako/koai/hakusyo/). n P Thebranchedandisoprenoidtetraether(BIT)indexrangedfrom0.83to0.99(Fig.4). a 20 p e BITvaluesexceeded0.95inmostintervals,butBITvalueslowerthan0.9werefound r at243,215,115,30,and6–0ka(Fig.4). | Themethaneindex(MI)rangedfrom0.1to0.9(Fig.4).TheMIvaluewasmaximal D at 257, 232, 199, 137, 91, 52, and 15ka and minimal at 242, 215, 178, 115, 73, and is c 20ka(Fig.4).Theaverageintervalbetweenthesepeakswas40ka. u 25 s s io n P a p e r 1160 | 4 Discussion D is c u 4.1 CBT-basedpHanditscontrollingfactor s s io n Lake water pH depends on the geology of the drainage basin, evaporation, the pho- P a tosynthesisofphytoplanktonandsubmergedplants,therespirationoforganisms,and p e the decomposition of organic matter by microbes (Wetzel, 2001). In volcanic regions, r 5 lakewaterreceivesstrongmineralacids,particularlysulphuricacid,whichdecreases | pH to less than 4 (Wetzel, 2001). There is, however, no active volcano in the Lake D Biwa watershed. Thus, this factor is not important for pH of Lake Biwa water. In con- isc trast, Ca2+ supplied from limestone increases lake water pH (Wetzel, 2001). In the us s 10 Lake Biwa drainage basin, limestone is exposed only in the Mt. Ibuki area, and its ion contributiontowardcontrollinglakewaterpHshouldbeminor.Evaporationoflakewa- P a terincreaseswaterpH(Wetzel,2001),butpollenrecordsinLakeBiwacoressuggest pe r moist environments throughout the last 430ka (Miyoshi et al., 1999), so evaporation has not been a factor controlling lake water pH. Consumption of CO by the pho- | 2 tosynthesis of phytoplankton and submerged plants increases lake water pH (e.g., D 15 is Talling, 1976). On the other hand, regeneration of CO by the respiration of organ- c 2 u s isms and degradation of organic matter by microbes decreases lake water pH (Wet- s io zel, 2001). Because of the balance of the CO budget, the lake’s surface water pH n 2 P values range from 7.6 in winter to 8.8 in summer (Data from the Lake Biwa Environ- a p mentalResearchInstitute,http://www.pref.shiga.lg.jp/biwako/koai/hakusyo/).Atripling e 20 r of the concentration of chlorophyll from winter to spring in Lake Biwa increases | lake water pH by 0.85 (data from the Lake Biwa Environmental Research Institute, D http://www.pref.shiga.lg.jp/biwako/koai/hakusyo/). Thus, we conclude that photosyn- is c thesisinthelakewateristhemajorfactorcontrollingwaterpHinLakeBiwa. u s s io n P a p e r 1161 | 4.2 Changesinprecipitationduringthelast282ka D is c u Spectral analysis revealed that the variation in CBT-based pH during the last 282ka s s hassignificantperiodicitiesat∼41ka(obliquity)andat∼23and∼19ka(precession) io n (Fig. 5a). The strong precession signal agrees with that postulated by the hypothesis P a 5 thatthemonsoonisregulatedbyinsolationvariationatlowlatitudes(Kutzbach,1981). pe r Cross-spectral analysis indicated that the CBT-based pH delayed behind precession minimumby56±11◦ (3.6±0.7ka)at23kaband(Fig.6). | Variation in CBT-based pH was synchronous with variation of warm pollen species D is in cores BIW95-4 and Takashima-oki BT in Lake Biwa (Fig. 7; Hayashi et al., 2010a, c u 10 b)andtheTpvalue,warm/(warm+cool)pollenratio,inmarinecoreMD01-2421offof ssio centralJapan(Figs.6and7;IgarashiandOba,2006).Thissuggeststhatsummerpre- n P cipitationvariedsynchronouslywithsummertemperatureincentralJapan.Igarashiand a p Oba (2006) reported that variation in the Tp value preceded the abundance of Cryp- e r tomeria,whichtheyassumedasaproxyofsummerprecipitation,byseveralthousand | years,andpointedoutatimelagbetweenorbital-timescaleair-temperatureandprecip- 15 D itation variations (Fig. 6). Yamamoto (2009) interpreted that this time lag was caused is the latitudinal shift of the Baiu Front (early summer rain front). Clemens et al. (2010) cu s stressedthattheEastAsiansummermonsoonwassynchronisedwiththeIndiansum- s io mer monsoon (Fig. 6). However, our new record of CBT-based pH was synchronised n P with the Tp record, implying synchronous variation of precipitation and temperature. a 20 p e ChangesintheintensityoftheEastAsiansummermonsooninducedchangesinboth r summer precipitation and air temperature. The variation in CBT-based pH was also | synchronous with that of δ18O in stalagmites in China (Figs. 6 and 7; Wang et al., D 2001, 2008). This correspondence indicates that both records reflect variation in the is c EastAsiansummermonsoon. u 25 s s io n P a p e r 1162 | 4.3 Changesinwinterairtemperatureduringthelast282ka D is c In Lake Biwa, MBT0/CBT-based temperatures from surface sediments agree with the us s watertemperatureinwinter(Ajiokaetal.,2014),indicatingthattheMBT0/CBTreflects io n the water temperature in winter. Variation in the estimated winter temperature is con- P a 5 sistentwiththatestimatedfromthepollenassemblageinLakeBiwa(Nakagawaetal., pe 2008).However,theMBT0/CBT-basedtemperatures(3to10◦C)aremorerealisticthan r the pollen-based temperatures (−10 to 5◦C; Nakagawa et al., 2008). Spectral analy- | sis the MBT0/CBT-based temperatures indicates the eccentricity cycle rather than the D is obliquity or precession cycle (Fig. 5b). The water temperature in Lake Biwa is con- c u 10 trolled by winter cooling (data from the Lake Biwa Environmental Research Institute, ssio http://www.pref.shiga.lg.jp/biwako/koai/hakusyo/, Japan Meteorological Agency; avail- n P ableathttp://www.jma.go.jp/jma/index.html)andreflectstheintensityoftheAsianwin- a p ter monsoon. Thus, this result suggests that the East Asian winter monsoon in the e r climateofcentralJapanexhibitsastrongeccentricitycycle. | Kuwae et al. (2004) reported that the abundance of planktonic diatom frustules in 15 D a core from Lake Biwa varied in response to glacial-interglacial changes and inter- is pretedthattheabundancevariationsreflectedchangesinprecipitation.Theirvariation cu s isdifferentfromourprecipitationrecordbutsimilartoourtemperaturerecord(Fig.8). s io Kuwae et al. (2004) suggested that the diatom flux was influenced not only by pre- n P cipitation, but also by water ventilation which is controlled by winter temperature and a 20 p e snowfall. We, however, suppose that the diatom record reflects temperature change r ratherthanprecipitationchangesbecausewarmerclimategenerallyenhanceschem- | ical weathering, which produces more dissolved silica that can be used for diatom D productioninthelake(Kilham,1971). is c u s s io n P a p e r 1163 | 5 Conclusions D is c We analysed the MBT0/CBT indices in sediment cores retrieved from Lake Biwa to us s reconstructchangesinsummerprecipitationandwintertemperatureincentralJapan io n during the last 282ka. Summer precipitation varied in response to obliquity and pre- P a 5 cession and was higher when summer insolation was maximal. The periodicity and pe r timing of the variation are consistent with those in summer temperature records from central Japan and summer precipitation records from China. This suggests that sum- | mer precipitation and temperature co-varied under the control of East Asian summer D is monsoon variability. This perspective contradicts the conclusions of previous studies c u 10 (Igarashi and Oba, 2006; Yamamoto, 2009) that the temperature variation preceded ssio the precipitation variation in central Japan. Winter temperature varied in response to n P eccentricityandwashigherduringinterglacials,presumablyreflectingthevariabilityof a p theEastAsianwintermonsooninthenorth-westernPacificarea. e r Acknowledgements. WewouldliketothankallofthemembersofLakeBiwadrillingproject,T. | 15 OkinoandK.Ohnishi(HokkaidoUniversity)foranalyticalassistance,R.Hayashi(LakeBiwa D Museum) and Hiroyuki Kitagawa (Nagoya University) for providing valuable information. The is c studywascarriedoutunderaGrant-in-AidforScientificResearch(A)ofJSPSno.19204051 us s (toM.Y.). io n P a p References e r 20 Ajioka, T., Yamamoto, M., and Murase, J.: Branched and isoprenoid glycerol dialkyl glycerol | tetraethersinsoilsandlake/riversedimentsinLakeBiwabasinandimplicationsforMBT/CBT D proxies,Org.Geochem.,submitted,2014. isc Clemens,S.C.andPrell,W.L.:A350,000yearsummer-monsoonmulti-proxystackfromthe us s OwnRidge,NorthernArabianSea,Mar.Geol.,201,35–51,2003. io n 25 Clemens, S. C., Prell, W. L., and Sun, Y.: Orbital-scale timing and mechanisms driving Late P Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O, Paleo- ap ceanography,25,1–19,2010. er 1164 | DeRosa,M.andGambacota,A.:Thelipidsofarchaeabacteria,Prog.LipidRes.,27,153–175, D 1988. isc u Dykoski,C.A.,Edwards,R.L.,Cheng,H.,Yuan,D.,Cai,Y.,Zhang,M.,Lin,Y.,Qing,J.,An,Z., s s and Revenaugh, J.: A high-resolution, absolute-dated Holocene and deglacial Asian mon- io n 5 soonrecordfromDonggeCave,China,EarthPlanet.Sc.Lett.,233,71–86,2005. P Hayashi, R., Takahara, H., Hayashida, A., and Takemura, K.: Millennial-scale vegetation ap e changes during the last 40,000yr based on a pollen record from Lake Biwa, Japan, Qua- r ternaryRes.,74,91–99,2010a. | Hayashi, R., Takahara, H., Yoshikawa, S., and Inouchi, Y.: Orbital-scale vegetation variability 10 duringMIS6,5,4,and3basedonapollenrecordfromtheTakashima-okicoreinLakeBiwa, Dis westernJapan,Jap.J.Palynol.,56,5–12,2010b. c u Heusser,L.E.andMorley,J.J.:Pollenandradiolarianrecordsfromdeep-seacoreRC14-103: ss climaticreconstructionsofnortheastJapanandnorthwestPacificforthelast90,000years, io n QuaternaryRes.,24,60–72,1985. P a 15 Hopmans,E.C.,Schouten,S.,Pancost,R.,vanderMeer,M.T.J.,andSinningheDamsté,J.S.: pe Analysis of intact tetraether lipids in archaeal cell material and sediments by high perfor- r manceliquidchromatography/atmosphericpressurechemicalionizationmassspectrometry, | RapidCommun.MassSp.,14,585–589,2000. D Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and is 20 Schouten,S.:Anovelproxyforterrestrialorganicmatterinsedimentsbasedonbranched cu s andisoprenoidtetraetherlipids,EarthPlanet.Sc.Lett.,24,107–116,2004. s io Huguet,C.,Hopmans,E.C.,Febo-Ayala,W.,Thompson,D.H.,SinningheDamsté,J.S.,and n Schouten,S.:Animprovedmethodtodeterminetheabsoluteabundanceofglyceroldibiphy- P a tanylglyceroltetraetherlipids,Org.Geochem.,37,1036–1041,2006. pe 25 Igarashi,Y.andOba,T.:FluctuationsofmonsoonsandinsolationinthenorthwestPacificduring r the last 144kyr from a high resolution pollen analysis of the IMAGES core MD01-2421, | QuaternarySci.Rev.,25,1447–1459,2006. D Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., is c Prell,W.L.,andShackleton,N.J.:TheorbitaltheoryofPleistoceneclimate:supportfrom u s 30 arevisedchronologyofthemarineδ18Orecord,in:MilankovitchandClimate,PartI,edited sio by:Berger,A.,Imbrie,J.,Hays,H.,Kukla,G.,andSaltzman,B.,Reidel:Dordrecht,269–305, n P 1984. a p e r 1165 | Imbrie,J.,Boyle,E.A.,Clemens,S.C.,Duffy,A.,Howard,W.R.,Kukla,G.,Kutzbach,J.,Mar- D tinson,D.G.,McIntyre,A.,Mix,A.C.,Molfino,B.,Morley,J.J.,Peterson,L.C.,Pisias,N.G., isc u Prell,W.L.,Raymo,M.E.,Shackleton,N.J.,andToggweiler,J.R.:Onthestructureandori- s s ginofmajorglaciationcycles1.LinearresponsestoMilankovitchforcing,Paleoceanography, io n 5 7,701–738,1992. P Ishiwatari,R.andUzaki,M.:Diageneticchangesoflignincompoundsinamorethan0.6million- ap e year-oldlacustrinesediment(LakeBiwa,Japan),Geochim.Cosmochim.Ac.,51,321–328, r 1987. | Ishiwatari, R., Negishi, K., Yoshikawa, H., and Yamamoto, S.: Glacial-interglacial productivity 10 andenvironmentalchangesinLakeBiwa,Japan:asedimentcorestudyoforganiccarbon, Dis chlorinsandbiomarkers,Org.Geochem.,40,520–530,2009. c u Kilham, P.: A hypothesis concerning silica and the freshwater planktonic diatoms, Limnol. ss Oceanogr.,16,10–18,1971. io n Kutzbach,J.:MonsoonclimateoftheEarlyHolocene:climateexperimentwiththeEarth’sor- P a 15 bitalparametersfor9000yearsago,Science,214,59–61,1981. pe Kuwae,M.,Yoshikawa,S.,Tsugeki,N.,andInouchi,Y.:Reconstructionofaclimaterecordfor r thepast140kyrbasedondiatomvalvefluxdatafromLakeBiwa,Japan,J.Paleolimnol.,32, | 19–39,2004. D Miyoshi,N.,Fujiki,T.,andMorita,Y.:Palynologyofa250mcorefromLakeBiwa:a430,000- is 20 yearrecordofglacial-interglacialvegetationchangeinJapan,Rev.Palaeobot.Palynol.,104, cu s 267–283,1999. s io Nakagawa, T., Okuda, M., Yonenobu, H., Norio, M., Toshiyuki, F., Gotanda, K., Tarasov, P., n Yoshimune,M.,Takemura,K.,andShoji,N.:Regulationofthemonsoonclimatebytwodif- P a ferentorbitalrhythmsandforcingmechanisms,Geology,36,491–494,2008. pe 25 Niemann,H.,Stadnitskaia,A.,Wirth,S.B.,Gilli,A.,Anselmetti,F.S.,SinningheDamsté,J.S., r Schouten,S.,Hopmans,E.C.,andLehmann,M.F.:BacterialGDGTsinHolocenesediments | and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer, D Clim.Past,8,889–906,doi:10.5194/cp-8-889-2012,2012. is c Nishihara, M. and Koga, Y.: Extraction and composition of polar lipids from the archaebac- u s 30 terium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by sio anacidifiedsolvent,J.Biochem.,101,997–1005,1987. n P a p e r 1166 | Ohira, F., Yamamoto, M., Takemura, K., and Hayashida, A.: Response of vegetation in cen- D tralJapantoprecessionduringthelast147,000years:aligninrecordfromLakeBiwacore isc u BIW08-B,Quatern.Int.,inpress,2013. s s Paillard,D.,Labeyrie,L.,andYion,P.:Macintoshprogramperformstime-seriesanalysis,EOS io n 5 Trans.AGU,77,379,1996. P Patwardhan,A.P.andThompson,D.H.:Efficientsynthesisof40-and48-memberedtetraether ap e macrocyclicbisphosphocholines,Org.Lett.,1,241–243,1999. r Peterse,F.,vanderMeer,J.,Schouten,S.,Weijers,J.W.H.,Fierer,N.,Jackson,R.B.,Kim,J.- | K.,andSinningheDamsté,J.S.:RevisedcalibrationoftheMBT-CBTpaleotemperatureproxy 10 basedonbranchedtetraethermembranelipidsinsurfacesoils,Geochim.Cosmochim.Ac., Dis 96,215–229,2012. c u Powers, L. A., Werne, J. P., Johnson, T. C., Hopmans, E. C., Sinninghe Damsté, J. S., and ss Schouten, S.: Crenarchaeotal lipids in lake sediments: a new paleotemperature proxy for io n continentalpaleoclimatereconstruction?,Geology,32,613–616,2004. P a 15 Schouten,S.,Huguet,C.,Hopmans,E.C.,Kienhuis,M.V.M.,andSinningheDamsté,J.S.: pe AnalyticalmethodologyforTEX paleothermometrybyhighperformanceliquidchromatog- r 86 raphy/atmosphericpressurechemicalionization-massspectrometry,Anal.Chem.,79,2940– | 2944,2007. D Seki,O.,Kawamura,K.,andIshiwatari,R.:Assessmentofhydrogenisotopiccompositionsof is 20 n-fatty acids as paleoclimate proxies in Lake Biwa sediments, J. Quat. Sci., 27, 884–890, cu s 2012. s io Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S., and n Geenevasen, J. A. J.: Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids P a insediments,J.Chem.Soc.Chem.Comm.,23,1683–1684,2000. pe 25 SinningheDamsté,J.S.,Rijpstra,W.I.C.,Hopmans,E.C.,Weijers,J.W.H.,Foesel,B.U., r Overmann,J.,andDedysh,S.N.:13,16-Dimethyloctacosanedioicacid(iso-diabolicacid): | acommonmembrane-spanninglipidofAcidobacteriasubdivisions1and3,Appl.Environ. D Microb.,77,4147–4154,2011. is c Takemura,K.,Iwabe,C.,Hayashida,A.,Danhara,T.,Kitagawa,H.,Haraguchi,T.,Sato,T.,and u s 30 Ishikawa, N.: Stratigraphy of marker tephras and sediments during the past 50,000years sio from multiple sites in Lake Biwa, Japan, Daiyonkikenkyu (The Quaternary Res.), 49, 147– n P 160,2010(inJapanese). a p e r 1167 | Talling,S.J.:Thedepletionofcarbondioxidefromlakewaterbyphytoplankton,J.Ecol.,64, D 79–121,1976. isc u Tierney,J.E.andRussell,J.M.:DistributionsofbranchedGDGTsinatropicallakesystem: s s implicationsforlacustrineapplicationoftheMBT/CBTpaleoproxy,Org.Geochem.,40,1032– io n 5 1036,2009. P Tierney,J.E.,Russell,J.M.,Eggemont,H.,Hopmans,E.C.,Verschuren,D.,andSinninghe ap e Damsté, J. S.: Environmental controls on branched tetraether lipid distributions in tropical r East African lake sediments: a new lacustrine paleothermometer?, Geochim. Cosmochim. | Ac.,74,4902–4918,2010. 10 Tyler, J. J., Nederbragt, A. J., Jones, V. J., and Thurow, J. W.: Assessing past tem- Dis perature and soil pH estimated from bacterial tetraether membrane lipids: evidence c u from the recent lake sediments of Lochnar, Scotland, J. Geophys. Res., 115, G01015, ss doi:10.1029/2009JG001109,2010. io n Wang,G.,Clemens,S.C.,andLiu,P.:ContrastingtheIndianandEastAsianmonsoons:impli- P a 15 cationsongeologictimescales,Mar.Geol.,201,5–21,2003. pe Wang,H.,Liu,W.,Zhang,C.,Wang,Z.,Wang,J.,Liu,Z.,andDong,H.:Distributionofglycerol r dialkylglyceroltetraethersinsurfacesedimentsofLakeQinghaiandsurroundingsoil,Org. | Geochem.,47,78–87,2012. D Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and Dorale, J. A.: is 20 Ahigh-resolutionabsolute-datedlatePleistocenemonsoonrecordfromHuluCave,China, cu s Science,294,2345–2348,2001. s io Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., n Wang,X.,andAn,Z.:Millennial-andorbital-scalechangesintheEastAsianmonsoonover P a thepast224,000years,Nature,451,1090–1093,2008. pe 25 Weijers, J. W. H., Schouten, S., Geenevasen, J. A. J., David, O. R. P., Coleman, J., Pan- r cost,R.D.,andSinningheDamsté,J.S.:Membranelipidsofmesophilicanaerobicbacteria | thrivinginpeatshavetypicalarchaealtraits,Environ.Microbiol.,8,648–657,2006. D Weijers,J.W.H.,Schefuß,E.,Schouten,S.,andSinningheDamsté,J.S.:Coupledthermaland is c hydrologicalevolutionoftropicalAfricaoverthelastdeglaciation,Science,315,1701–1704, u s 30 2007a. sio Weijers, J. W. H., Schouten, S., van Den Donker, J. C., Hopmans, E. C., and Sinninghe n P Damsté, J. S.: Environmental controls on bacterial tetraether membrane lipid distribution a p insoils,Geochim.Cosmochim.Ac.,71,703–713,2007b. e r 1168 | Wetzel,R.G.:Limnology:LakeandRiverEcosystems,3rdedn.,AcademicPress,San.Diego, D USA,1006pp.,2001. isc u Xiao, J., Inouchi, Y., Kumai, H., Yoshikawa, S., Kondo, Y., Liu, T., and An, Z.: Biogenic silica s s record in Lake Biwa of central Japan over the past 145,000years, Quaternary Res., 47, io n 5 277–283,1997. P Yamamoto,M.:Responseofmid-latitudeNorthPacificsurfacetemperaturestoorbitalforcing ap e and linkage to the East Asian summer monsoon and tropical ocean–atmosphere interac- r tions,J.Quat.Sci.,24,836–847,2009. | Yoshino, M. M.: Four stages of the rainy season in early summer over East Asia (part I), J. 10 Meteorol.Soc.Jpn.,43,231–245,1965. Dis Yuan,D.,Cheng,H.,Edwards,R.L.,Dykoski,C.A.,Kelly,M.J.,Zhang,M.,Qing,J.,Lin,Y., c u Wang,Y.,Wu,J.,Dorale,J.A.,An,Z.,andCai,Y.:Timing,duration,andtransitionsofthe ss lastinterglacialAsianmonsoon,Science,304,575–578,2004. io n Zhang, Y. G., Zhang, C. L., Liu, X. L., Li, L., Hinrichs, K. U., and Noakes, J. E.: Methane In- P a 15 dex:atetraetherarchaeallipidbiomarkerindicatorfordetectingtheinstabilityofmarinegas pe hydrates,EarthPlanet.Sc.Lett.,307,525–534,2011. r Zink,K.G.,Vandergoes,M.J.,Mangelsdorf,K.,Dieffenbacher-Krall,A.C.,andSchwark,L.: | Applicationofbacterialglyceroldialkylglyceroltetraethers(GDGTs)todevelopmodernand D pasttemperatureestimatesfromNewZealandlakes,Org.Geochem.,41,1060–1066,2010. is c u s s io n P a p e r | D is c u s s io n P a p e r 1169 | D is c u s s io n P a p e r | D is c u s s io n P a p e r | D is c u s s io n 483 P a Fig4.841 .MFaigp. s1 howingthestudysites. pe r | D is c u s s io n P a p e r 1170 | 21 D is c u s s io n P a p e r | D is c u s s io n P a p e r | D is c u s s io n P a p e r | D is c 485 us s 486 Fig. 2 io Fig.2.Lithologiccolumnsof(a)coreBIW07-6(Takemuraetal.,2010)and(b)boreholecore n 22 BIW08-B(Sato,personalcommunication,2014). P a p e r 1171 | D is c u s s io n P a p e r | D is c u s s io n P a p e r | D is c u s s io n P a p e r | 487 488 Fig. 3 D Fig.3.Age–depthmodel sof(a)coreBIW07-62(3 Kitagawa,personalcommunication,2014)and isc u (b)boreholecoreBIW08-B(Takemura,personalcommunication,2014).Theredandorange s s areasshowthe64%and95%confidenceintervals,respectively.Theblackcircleswith95% io n errorbarsareradiometricandmodel-obtainedagesofvolcanicashlayersusedasagecon- P straintsforconstructionoftheagemodels. ap e r 1172 |
Description: