ebook img

Water-based suspension of Polymer Nanoclay - SMARTech PDF

179 Pages·2007·5.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Water-based suspension of Polymer Nanoclay - SMARTech

Water-based suspension of Polymer Nanoclay Composite Prepared via Miniemulsion Polymerization A Thesis Presented to The Academic Faculty by Zhaohui Tong In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of Chemical and Biomolecular Engineering Georgia Institute of Technology December 2007 Water-based suspension of Polymer Nanoclay Composite Prepared via Miniemulsion Polymerization Approved by: Dr. Yulin Deng, Advisor Dr. Jeffery S. Hsieh School of Chemical and Biomolecular School of Chemical and Biomolecular Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. J. Carson Meredith Dr. Timothy Patterson School of Chemical and Biomolecular School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Howard (Jeff) L. Empie School of Chemical and Biomolecular Engineering Georgia Institute of Technology Date Approved: October 11, 2007 To my husband Guanghui Lan and my son,Jesse and To my parents Duanxiang Tong and Hexiang Long, iii ACKNOWLEDGEMENTS There are many people who have helped me through my graduation education. First, I would like to thank my adviser, Dr. Yulin Deng, for providing me instruction, dedication, support, and encouragement through the entire PhD studying. I am also grateful for all of my committee members. Dr. Howard (Jeff) L. Empie, Dr. Jeffery S. Hsieh and Dr. J. Carson Meredith give me an invaluable source of advice and support for my research. I appreciate that Dr.Timothy Patterson takes his time to serve as one of my committee members for my defense and keep my science sound. I also thank Dr. Joseph Schork who is one of my committee members for my PhD proposal, and his advice and guidance are very important input of this research. Next, I would like to thank all of my lab colleagues Dr. Zegui Yan, Dr. Qunhui Sun, Dr. Yunlin Zhao, Dr. Myungchul Park, Ying, Delong, Zhengzhi, Seyoung, Jihoon, Kim and Brett for the assistance for my lab work. I also thank Ms. Yolande Berta, Dr. Yong Ding and Mr. Shaobo Pan for their help for the TEM and SEM training and measurements. The fellowship from IPST member companies and the support from NSF(Grant Number CTS-0244371) is gratefully acknowledged. Then, sincerely thanks go to Ms. Janet L. Webb for her grammar check of my dissertation. I also enjoy talking with her at all the time. Finally, I would like to thank my family. I am deeply indebted to my lovely hus- band, guanghui Lan, for his always understanding, support, love and encouragement during my PhD studying and spend the hardest and happiest time in my life with me together, and my lovely son, jesse, for always bringing me the most happiness in my life. I would like to thank my parents, for their love, understanding and en- couragement. This dissertation is especially for my lovely father, who has given me iv his deepest love and provides me the freedom to do everything I like. In addition, Sincerely thanks go to my two brothers, who take their responsibility for taking care of my parents and support me at all the time. I also thank my parents-in-law to take care of my son for almost one year during my graduation study. v TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OF ABBREVIATIONS AND SYMBOLS . . . . . . . . . . . . . xii SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Water-based barrier coating . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Development of coating technology . . . . . . . . . . . . . . 5 2.1.2 Waterborne Coating . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Water-based barrier paper coating . . . . . . . . . . . . . . . 12 2.2 Emulsion and miniemulsion polymerization . . . . . . . . . . . . . . 15 2.2.1 Emulsion polymerization . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Miniemulsion polymerization . . . . . . . . . . . . . . . . . . 21 2.3 Polymer nanoclay composite . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 Surface modification of nanoclay . . . . . . . . . . . . . . . . 38 2.3.2 Synthesis methods of polymer nanoclay hybrid . . . . . . . . 41 2.3.3 Properties of polymer nanoclay composite . . . . . . . . . . . 44 2.3.4 The characterization of polymer nanolcay composite . . . . . 45 2.4 Synthesisofpolymernanocompositeswithsymmetricandasymmetric morphologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.1 Synthesis of polymer encapsulated nanoparticle composite . . 49 2.4.2 Synthesisofpolymernanocompositewithanasymmetricstruc- ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 III PROBLEM ANALYSIS AND OBJECTIVES . . . . . . . . . . . . 55 3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 vi 3.1.1 The synthesis of a stable water-based latex of polystyrene en- capsulated nanoclay composite . . . . . . . . . . . . . . . . . 56 3.1.2 The impact of reaction conditions on final latex stability, en- capsulation degree and the intercalation or exfoliation degree of nanoclay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.3 The fundamental understanding of the impact of nanoclay on the styrene miniemulsion polymerization kinetics . . . . . . . 57 3.1.4 The impact of nanoclay on the properties of polystyrene(PS) and polystyrene butylacrylate (PSBA) copolymer films . . . 57 3.2 Approach determination . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.1 Surface modification of clay . . . . . . . . . . . . . . . . . . . 58 3.2.2 Sythesis method determination . . . . . . . . . . . . . . . . . 59 IV THE APPROACHES SCREENING TO SYNTHESIZE A STA- BLE WATER-BASED SUSPENSION OF POLYMER MMT-KSF COMPOSITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Experiment, Result and Discussion . . . . . . . . . . . . . . . . . . . 65 4.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.2 Miniemulsion polymerization . . . . . . . . . . . . . . . . . . 66 4.2.3 High solid miniemulsion polymerization . . . . . . . . . . . . 67 4.2.4 Miniemulsion polymerization with initiator grafting on the clay surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.5 Conventional emulsion polymerization . . . . . . . . . . . . . 70 4.2.6 Seeded emulsion polymerization . . . . . . . . . . . . . . . . 71 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4 Recommendation - screening clay varieties . . . . . . . . . . . . . . . 72 V SYNTHESISOFWATER-BASEDPOLYSTYRENE-NANOCLAY(NSC) COMPOSITE SUSPENSION VIA MINI-EMULSION POLYMER- IZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 vii 5.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.3 Characterizations . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.1 Modification and dispersion of NSC . . . . . . . . . . . . . . 80 5.3.2 Distribution of the clay in water and oil phase . . . . . . . . 81 5.3.3 Effect of hexadecane co-stabilizer on the particle size and final latex stability . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.4 Effect of nanoclay particles on polymerization conversion . . 83 5.3.5 Characterization morphology and stability of the latex in the presence of pristine saponite or pre-modified saponite . . . . 84 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 VI POLYSTYRENEENCAPSULATEDNANOSAPONITECOMPOS- ITE LATEX VIA MINIMEULSION POLYMERIZATION AND THEIR MORPHOLOGIES . . . . . . . . . . . . . . . . . . . . . . . . 90 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3.1 Modification and dispersion of nanosaponite . . . . . . . . . 95 6.3.2 Morphologyofpolystyreneencapsulatedorgano-saponitecom- posite latex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.3 Morphologies of final latex particles . . . . . . . . . . . . . . 102 6.4 The mechanism to form a variety of morphologies of polystyrene/SSC composite latex particles via miniemulsion polymerization . . . . . . 105 6.4.1 Theformationofhemisphericalpolystyrene/nanoclaycompos- ite particles via a single-step miniemulsion polymerization us- ing Nano-saponite particles as a template . . . . . . . . . . . 107 6.4.2 The mechanisms for the formation of hemispherical particles in the absence and the presence of nanosaponite . . . . . . . 111 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 viii VIIKINETICSOFMINIEMUSLIONPOLYMERIZATIONOFSTYRENE IN THE PRESENCE OF ORGANOCLAY . . . . . . . . . . . . . 118 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.2.4 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.3.1 Styrene miniemulsion kinetics in the absence and the presence of different clay contents . . . . . . . . . . . . . . . . . . . . 123 7.3.2 Polymerizationparametersbeforeandafterminiemulsionpoly- merization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.3.3 Theeffectsofnanoclaychemistryandsizeontheminiemulsion polymerization of styrene . . . . . . . . . . . . . . . . . . . . 132 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 VIIITHE THERMALANDPHYSICALPROPERTIESOFPOLYSTYRENE ANDPOLYSTYRENE-BUTYLACRYLATE COPOLYMERNANOS- APONITE COMPOSITE FILMS . . . . . . . . . . . . . . . . . . . . 136 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.3 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.3.1 Physical properties of composite films . . . . . . . . . . . . . 140 8.3.2 Thermal properties of composite films . . . . . . . . . . . . . 142 8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 IX OVERALL CONCLUSIONS AND RECOMMENDATIONS . . . 147 9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ix REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 x

Description:
2.4.1 Synthesis of polymer encapsulated nanoparticle composite 49 . composite latex particles via miniemulsion polymerization 105 .. acrylic, styrene-acrylic, and styrene-butadiene latexes, are their superior resistance to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.