0470849134_01_pre01.fm Page i Tuesday, November 30, 2004 7:45 PM Waste Treatment and Disposal Waste Treatment and Disposal, Second Edition Paul T. Williams © 2005 John Wiley & Sons, Ltd ISBNs: 0-470-84912-6 (HB); 0-470-84913-4 (PB) 0470849134_01_pre01.fm Page iii Tuesday, November 30, 2004 7:45 PM Waste Treatment and Disposal Second Edition PAUL T. WILLIAMS Professor of Environmental Engineering The University of Leeds, UK 0470849134_01_pre01.fm Page iv Tuesday, November 30, 2004 7:45 PM Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Library of Congress Cataloging in Publication Data Williams, Paul T. Waste treatment and disposal/Paul T. Williams. — 2nd ed. p. cm. ISBN 0-470-84912-6 1. Refuse and refuse disposal—Great Britain. 2. Refuse and refuse disposal—Government policy— Great Britain. I. Title. TD789.G7W54 2005 363.72′8′094—dc22 2004016990 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0-470-84912-6 (HB) ISBN 0-470-84913-4 (PB) Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. 0470849134_01_pre01.fm Page v Tuesday, November 30, 2004 7:45 PM This book is dedicated with lots of love to Lesley, Christopher, Simon and Nicola 0470849134_01_pre01.fm Page vii Tuesday, November 30, 2004 7:45 PM Contents Preface ix Chapter 1: Introduction 1 1.1 History of Waste Treatment and Disposal 1 1.2 European Union Waste Management Policy 5 1.3 Waste Strategy of the European Union 8 1.4 Policy Instruments 13 1.5 EU Waste Management Legislation 15 1.6 The Economics of Waste Management 38 1.7 Options for Waste Treatment and Disposal 49 Chapter 2: Waste 63 2.1 Definitions of Waste 63 2.2 Waste Arisings 66 2.3 Municipal Solid Waste (MSW) 74 2.4 Hazardous Waste 93 2.5 Sewage Sludge 104 2.6 Other Wastes 110 2.7 Waste Containers, Collection Systems and Transport 119 Chapter 3: Waste Recycling 127 3.1 Introduction 127 3.2 Waste Recycling 130 3.3 Examples of Waste Recycling 143 3.4 Economic Considerations 159 3.5 Life Cycle Analysis of Materials Recycling 162 0470849134_01_pre01.fm Page viii Tuesday, November 30, 2004 7:45 PM viii Contents Chapter 4: Waste Landfill 171 4.1 Introduction 171 4.2 EC Waste Landfill Directive 174 4.3 Site Selection and Assessment 180 4.4 Considerations for Landfills 181 4.5 Types of Waste Landfilled 184 4.6 Landfill Design and Engineering 185 4.7 Landfill Liner Materials 187 4.8 Landfill Liner Systems 192 4.9 Processes Operating in Waste Landfills 197 4.10 Other Landfill Design Types 207 4.11 Landfill Gas 212 4.12 Landfill Leachate 220 4.13 Landfill Capping 227 4.14 Landfill Site Completion and Restoration 227 4.15 Energy Recovery from Landfill Gas 230 4.16 Old Landfill Sites 236 Chapter 5: Waste Incineration 245 5.1 Introduction 245 5.2 EC Waste Incineration Directive 248 5.3 Incineration Systems 251 Chapter 6: Other Waste Treatment Technologies: Pyrolysis, Gasification, Combined Pyrolysis–Gasification, Composting, Anaerobic Digestion 325 6.1 Introduction 325 6.2 Pyrolysis 326 6.3 Gasification 337 6.4 Combined Pyrolysis–Gasification 342 6.5 Composting 346 6.6 Anaerobic Digestion 357 Chapter 7: Integrated Waste Management 367 7.1 Integrated Waste Management 367 Index 375 0470849134_01_pre01.fm Page ix Tuesday, November 30, 2004 7:45 PM Preface This second edition arises from the 1998 first edition (published by John Wiley & Sons, Ltd 1998) which was largely based on the UK. This new book has been substantially revised and rewritten to cover waste treatment and disposal with particular emphasis on Europe. Increasingly in Europe the European Commission legislation has had a major influence on the management of solid waste and hence the need for a European focussed text. The book is aimed at undergraduate and postgraduate students undertaking courses in Environmental Science and Environmental, Civil, Chemical and Energy Engineering, with a component of waste treatment and disposal. It is also aimed at professional people in the waste man- agement industry. The first chapter is an historical introduction to waste treatment and disposal. The major legislative and regulatory measures emanating from the European Commission dealing with waste treatment and disposal are described. Chapter 2 discusses the different definitions of waste. Estimates of waste arisings in Europe and the rest of the world are discussed as well as the methods used in their estimation. Various trends in waste generation and influences on them are also discussed. Several categories of waste are discussed in terms of arisings, and treatment and disposal options. The wastes described in detail are: municipal solid waste; hazardous waste; sewage sludge; clinical waste; agricultural waste; industrial and commercial waste. Other wastes described are: construction and demolition waste; mines and quarry waste; end-of-life vehicles and scrap tyres. The chapter ends with a discussion of the different types of waste containers, collection systems and waste transport. Chapter 3 is concerned with waste reduction, re-use and recycling, with the emphasis on recycling. Municipal solid waste and industrial and commercial waste recycling are discussed in detail. Examples of recycling of particular types of waste, i.e., plastics, glass, paper, metals and tyres are discussed. Economic considerations of recycling are discussed. 0470849134_01_pre01.fm Page x Tuesday, November 30, 2004 7:45 PM x Preface Chapter 4 is concerned with waste landfill, the main waste disposal option in many countries throughout Europe. The EC Waste Landfill Directive is covered in detail. Landfill design and engineering, the various considerations for landfill design and operational practice, are described. The different main types of waste which are landfilled, i.e., hazardous, non-hazardous and inert wastes and the processes operating within and outside the landfill are discussed. The major different landfill design types are discussed in detail. The formation of landfill gas, landfill gas migration, management and monitoring of landfill gas are discussed, as is landfill leachate formation and leachate management and treatment. The final stages of landfilling of wastes, i.e., landfill capping, landfill site completion and restoration are described. The recovery of energy through landfill gas utilisation is discussed in detail. The problems of old landfill sites are highlighted. Chapter 5 is concerned with incineration, the second major option for waste treatment and disposal in Europe. The EC Waste Incineration Directive is described in detail and the various incineration systems are discussed. Concentration is made on mass burn incineration of municipal solid waste, following the process through waste delivery, the bunker and feeding system, the furnace, and heat recovery systems. Emphasis on emissions formation and control is made with discussion of the formation and control of particulate matter, heavy metals, toxic and corrosive gases, products of incomplete combustion, such as polycyclic aromatic hydrocarbons (PAHs), dioxins and furans. The contaminated waste- water and contaminated bottom and flyash arising from waste incineration is discussed. Energy recovery via district heating and electricity generation are described. Other types of incineration including fluidised bed incinerators, starved air incinerators, rotary kiln incinerators, cement kilns, liquid and gaseous waste incinerators and the types of waste incinerated in each different type is discussed. Chapter 6 discusses other options for waste treatment and disposal. Pyrolysis of waste, the types of product formed during pyrolysis and their utilisation as well as the different pyrolysis technologies, are discussed. Gasification of waste, gasification technologies and utilisation of the product gas, are described. Combined pyrolysis–gasification technologies are discussed. Composting of waste is described, including the composting process and the different types of composter. Anaerobic digestion of waste, the degradation process and operation and technology for anaerobic digestion are discussed. Examples of the different types of pyrolysis, gasification, combined pyrolysis–gasification, composting and anaerobic digestion systems are described throughout. The concluding chapter discusses the integration of the various waste treatment and disposal options described in the previous chapters to introduce the concept of ‘integrated waste management’. The different approaches to integrated waste management are described. 0470849134_02_cha01.fm Page 1 Tuesday, November 30, 2004 7:45 PM 1 Introduction Summary This chapter is an historical introduction to waste treatment and disposal. The development of waste management in the European Union through the use of various policy, strategy and legislative measures are discussed. The adoption of sustainable development by the EU through the various Environment Action Programmes is presented. The main EU Directives, Decisions and Regulations in relation to waste management are described. The Waste Strategy of the EU is presented and the policy initiatives related to its implementation are discussed. The economics of waste management across Europe are discussed. The main treatment and disposal routes for wastes in the European Union are briefly described. 1.1 History of Waste Treatment and Disposal The need for adequate treatment and disposal of waste by man, arose as populations moved away from disperse geographical areas to congregate together in communities. The higher populations of towns and cities resulted in a concentration of generated waste, such that it became a nuisance problem. Waste became such a problem for the citizens of Athens in Greece that, around 500 BC, a law was issued banning the throwing of rubbish into the streets. It was required that the waste be transported by scavengers to an open dump one mile outside of the city. The first records that waste was being burned as a disposal route appear in the early years of the first millennium in Palestine. The Valley of Waste Treatment and Disposal, Second Edition Paul T. Williams © 2005 John Wiley & Sons, Ltd ISBNs: 0-470-84912-6 (HB); 0-470-84913-4 (PB) 0470849134_02_cha01.fm Page 2 Tuesday, November 30, 2004 7:45 PM 2 Waste Treatment and Disposal Gehenna outside Jerusalem contained a waste dump site at a place called Sheol where waste was regularly dumped and burned. The site became synonymous with hell. Throughout the Middle Ages, waste disposal continued to be a nuisance problem for city populations. Waste was often thrown onto the streets causing smells and encouraging vermin and disease. For example, in 1297 a law was passed in England requiring house- holders to keep the front of their houses clear of rubbish. More than a 100 years later, in 1408, Henry IV ruled that waste should be kept inside houses until a ‘raker’ came to cart away the waste to pits outside the city (Project Integra 2002). In 1400 in Paris, the huge piles of waste outside the city walls began to interfere with the city defences. In Europe, the industrial revolution between 1750 and 1850 led to a further move of the population from rural areas to the cities and a massive expansion of the population living in towns and cities, with a consequent further increase in the volume of waste aris- ing. The increase in production of domestic waste was matched by increases in industrial waste from the burgeoning new large-scale manufacturing processes. The waste gener- ated contained a range of materials such as broken glass, rusty metal, food residue and human waste. Such waste was dangerous to human health and, in addition, attracted flies, rats and other vermin which, in turn, posed potential threats through the transfer of disease. This led to an increasing awareness of the link between public health and the environment. To deal with this potential threat to human health, legislation was introduced on a local and national basis in many countries. For example, in the UK, throughout the latter half of the nineteenth century, a series of Nuisance Removal and Disease Prevention Acts were introduced in the UK which empowered local authorities to set up teams of inspectors to deal with offensive trades and to control pollution within city limits. These Acts were reinforced by the Public Health Acts of 1875 and 1936, which covered a range of meas- ures some of which were associated with the management and disposal of waste. The 1875 Act placed a duty on local authorities to arrange for the removal and disposal of waste. The 1936 Act introduced regulation to control the disposal of waste into water and defined the statutory nuisance associated with any trade, business, manufacture or process which might lead to degradation of health or of the neighbourhood (British Medical Association 1991; Reeds 1994; Clapp 1994). In the US, early legislation included the 1795 Law introduced by the Corporation of Georgetown, Washington DC, which prohibited waste disposal on the streets and required individuals to remove waste them- selves or hire private contractors. By 1856, Washington had a city-wide waste collection system supported by taxes. In 1878, the Mayor of Memphis organised the collection of waste from homes and businesses and removal to sites outside the city. By 1915, 50% of all major US cities provided a waste collection system which had risen to 100% by 1930 (Neal and Schubel 1989; McBean etal 1995). One of the main constituents in domestic dust bins in the late nineteenth century was cinders and ash from coal fires, which represented a useful source of energy. The waste also contained recyclable materials such as old crockery, paper, rags, glass, iron and brass and was often sorted by hand by private contractors or scavengers to remove the useful items. Much household waste would also be burnt in open fires in the living room and kitchen as a ‘free fuel’ supplement to the use of coal. The combustible content of the waste was recognised as a potential source of cheap energy for the community as a whole and the move away from private waste contractors to municipally organised waste collection,