Waste to Sustainable Energy MFCs – Prospects through Prognosis Editors Lakhveer Singh Biological and Ecological Engineering Oregon State University, Corvallis, Oregon, USA Durga Madhab Mahapatra Biological & Ecological Engineering Oregon State University, Corvallis, Oregon, USA p, A SCIENCE PUBLISHERS BOOK Cover Illustrations The cattle figure was sourced from the editor’s personal figures collection. Reproduced with the permission of the editor, Prof. R.A. Hill. The lower five panels are from: Acharya, S. and Hill, R.A. (2014). High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection iCnR CC 2PCre1s2s myoblasts and myotubes. Nanomedicine: Nanotechnology, Biology and Medicine. 10:329-337. CRTeaopyvlreoorrd i&ull cuFersdat rnwactiitisho G nprseo rrumeppirsosidounc ferdo mby t hkein pdu cboliushreter sayn odf tShuep aruityhaonrk.a Rana, Lakhveer Singh, Zularisam bin ab Wahid. C60R0C0 PBrroesksen Sound Parkway NW, Suite 300 TBaoyclao Rr a&to Fnr, aFnLc 3is3 4G8r7o-2u7p42 6C0R0C0 PBrreosksen Sound Parkway NW, Suite 300 BT©oa 2yc0lao1 r7R &abty Fo Trnaa,n yFlcoLisr 3 G&3r 4Fo8rua7pn-2c7is4 G2roup, LLC 6C0R0C0 PBrreoskse ins aSno uimndp rPianrtk owf aTya NylWor ,& S uFirtaen 3c0is0 Group, an Informa business ©Bo 2c0a1 R8a btoyn T, aFyLl o3r3 4&8 7F-r2a7n4c2is Group, LLC CNRo Ccl aPirmes tso i os raigni nimalp Ur.iSn.t G oof vTearynlmore n&t wFroarnkscis Group, an Informa business © 22001197 by Taylor & Francis Group, LLC NCPrRoin Cct lePadrim eosns t ioasc oaidrn-i gfirmienpea rpli anUpt. eoSrf. TGaoyvloerr n&m Ferannt cwiso Grkrsoup, an Informa business Version Date: 20170119 PNroi nctleaidm o tno aocriidg-infraele U p.Sa.p Gerovernment works International Standard Book Number-13: 978-1-4987-4799-8 (Hardback) Version Date: 20160627 Printed on acid-free paper VTehrissi bono oDka ctoen: 222ta000i111n778s010 i612n010f996ormation obtained from authentic and highly regarded sources. Reasonable efforts have been Imntaedren taot ipounballi Sshta rnedliaarbdle B doaotka Nanudm ibnefor-r1m3a: t9i7o8n-, 1b-u4t9 8th7e-7 a1u6t7h-o2r (aHnadr dpbuabcliks)her cannot assume responsibility for the Ivnatleidrnitayt ioofn aall lS mtaantdearriadl Bs ooor kt hNeu cmobnesre-q13u:e 999n777c888e---s111 --o-144f39 9t888h-77e3--i244r87 7u2981s95e---1.81 T(Hhea radubtahcokr)s and publishers have attempted to trace the Tcohpiys rbigohotk h oclodnetras ionfs a ilnl mfoartmeraiatilo rnep orbodtauicneedd i nfr tohmis pauubthliecnattiiocn a anndd hapigohlolyg irzeeg taor cdoepdy rsioguhrtc heosl.d Reresa isfo pnearbmleis seifofno rttos hTpauhvbiesli bsbhoe oienkn tc hominsat fadoiernm st oihn afposu rnmboltai sbthieo enrn eo olbibattabailinene eddd af.r tIoaf maan nayud ct ohinpeynfortiirgcm hatan mtdi oahntieg,r hibalyul thr eatgsha nerod ate udbt esheoonur ra ccaeknsn.d oR wpealuesbdolgniesadhb elperl e ecaffsaoenr wntsor hitt aeav asens bude mleente rmuessa kpdnoeo ntwos i spbouil bwitleyis mhfo arrey tlrihaeebc tlveif adyl iaidntai ta aynn yod ff uiantluflo rmrem raeatpetirroiinantl, .sb ourt tthhee acuotnhsoerq aunedn pcuesb loisfh tehre cira nunsoet. aTshsue maue trheosprso nasnidbi lpituyb floisrh tehres hvaalvied iattyt eomf apllt emda ttoe rtiraalsc eo rt hthe ec ocopnysreigqhute nhcoelsd eorf st hoef iarl ul mse.a tTehreia al urtehporrosd auncde dp uinbl tishhies rps uhbalviec aattitoenm apntedd a tpoo tlroagciez eth teo ccEooxppcyeyprriitgg ahhstt hphoeorldlmdeeirtsrt seo diff a upllne mdrmeart ieUsrs.iiSao.l n rC etopopr opyrduiubgchlietsd hL i aniwn t ,ht nhisoi s pp ufaobrrltim coa fht itaohsni s na obntod o bakep eomnloa ogyb izbteea itrnoe epcdroi.p nIytfre aidgn,h yrt e chpoorpoldyderuricsg eihdf t,p mterraamnteissrmsiiaiotln the tdaos, npooru tbu lbtiiselhiez nien da t chinkis na fonowyr mlfeo dhrgmaes dbn yop tla ebnaeyse ene l weocbrttirtaoeinn aeincd,d . mI lfe eatcn huyas c nkoincpaoylrw,i go shro to mwtheae tmre rmaiayel a rhneacss,t ninfooytw ibn ek eannno yawc fnku notour wrhelee rrdeegapefrdtie nprt lei.navseen wteridt,e ianncdlu lde-t uinsg k pnhoowt oscoo wpey imnga,y m reiccrtioffyi limn ianngy, fauntdu rree croerpdriinngt., or in any information storage or retrieval system, without written Epxercmepists aios np ferrommi tttheed p uunbdlieshr eUrs.S.. Copyright Law, no part of this book may be reprinted, reproduced, transmit- tEexdc,e oprt uatsi lpiezremd iitnte adn uy nfodremr U b.yS .a Cnoy peylericgthrto nLiacw, ,m neoc phaarnt iocaf lt,h oirs obtohoekr mmaeya nbes , rneopwrin ktnedo,w rnep orro dhuecreedaf, tterra ninsvmeinttteedd,, ioFnroc rul utpideliirznmegdi s pisnhio oantn oytco fo opprhymoin tbogyc, oampnyyi c oerlore fcuitlsrmeo nimnicga,t, emarneiacdlh earleneciccotarrlod, nionircg ao, ltlohyre frir nmo meaa ntnyhs i,i snn fwooworr mkkn,a otpiwloenna s oesrt oahcrecaregeseas f otwerr w riwent.vcreionepvtyeardli ,g sihyntsc.tcleuomdm-, wi(nhigttt hppoh:/uo/wtt owwcrowip.tcytoeinpngy pr, iemgrhimctr.icosofsmiilom/n)i onfrrgo c, moann ttdha rceet cptohurebd Cliinsoghp,ey orrsrig .ihnt aCnlye ainrafonrcme Cateionnte sr,t oInracg. (eC oCr Cre),t r2i2e2v aRlo ssyeswteomod, w Dirtihvoeu, Dt wanrivtetresn, pMeArm 0i1s9si2o3n, 9fr7o8m-7 t5h0e- 8p4u0b0li.s CheCrCs. is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment For permission to photocopy or use material electronically from this work, please access www.copyright. Fhoasr bpeeernm airsrsaionng etdo. photocopy or use material electronically from this work, please access www.copyright.com com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, DMTrrAaivd 0ee1,m 9D2aa3rn,k 9v Ne7r8os-t,7i c5Me0:-AP8 r40o01d09u. 2cC3tC ,o Cr9 7c io8s r-ap7 5nor0oat--t8efo4 nr0-a0pm.r oeCfsi Ctm Coar ygi sba nea i tznraaotditoe-fmno atrh-rpkarts opofrri otr veoigdrigestase nlriieczdean ttsrioeadsn ea mtnhdaa rrtk epsg,ri asotnvrdiad taierosen ul fiscoeerd na os venaslry ia efnotydr roidefeg unisstetifrrisac.t aiFtooionrn fo oarrng adan veixazparitleaiotnnya sto itofh nua swte hirtashv. oeFu obtr ei neontre ggnartna tniozt aientdif orain npsgh etoh.taotc ohpayv eli cbeenesne gbrya tnhtee dC aC Cph, oa tsoecpoaprayt eli cseynstseem b oy ft phaey CmCenCt, ah asse pbaeerant aer sryasntgeemd. of payment has been arranged. TTrraaddeemmaarrkk N Nootitcice:e P: rPordoudcutc otLr o icbror rcapororyrp oaotfre Ca ntoaenm ngearsem smse asCy m abteaa ylto rbagedi netmrga‑aidnrek‑msP ouarbr krleiscg oaistrti eorerneg dDis tatretaardeedm tarrakdse, manadr kasre, aunsedd a orne luy sfoedr oidnelnyt fiofirc aidtieonnt aifnicda etxiopnla nanatdio enx wpliathnoautito inn twenitt htoo uint firnintegnet. to infringe. Names: Liu, Jian (Chemical engineer), editor. | Jiang, San Ping, editor. Title: Mesoporous materials for advanced energy storage and conversion technologies / editLoriLsb,i rbJairaranyr Lyo iofu fC, CDooenpngagrrretemsssse CnCtaa ottafa Clloohggeiimnnggi‑c‑iainnl ‑E‑PPnugubibnlilecieacrtaiintoigno, nD Dataata Faculty of Science Lanibdr Eanrgyi noef eCrionngg, Creusrst iCn aUtnailvoegrsiintyg,- Piner-tPhu, WblAic,ation Data NNANuaaammsmtreeaessls:: i :LaJ Sa,i ucSn,aa iJnâniace Pn,s i,M n (CCgi. hl JaGieanm.n,, igeac,du aFitlt uheoeonrl.rgs .| ia nHnediel rlE,) ,nR eeodrdgitnyo erT.y e| Ac Jhi.a,n neogdlo,i tSgoayrn .I nPsitnitgu, teed &itor. TTDTiieittptllleeaeN::r : M TtaBmrmeiaoesenlonospstg: po oySorf i oorCnutfgh sdshe ymom,s mLatietcaeemaskrltih siaEc vl:n s eamg efnioronir,m ed eaeeaddrllviilsntia no/gn rge,c .C,d e |pidu tMl oraetrnnaisnehn, r CUaignpyonga lis ivtatnreon arrGds,a i .Dgte Syevu, c aaPranlgenudarea t csMtho,i, o UnaWnvdn eA/hirv ,Msaeibori,sn lieatdyn i otJaof nr.iâc, DtAWeuecpshistanTcrroaoitlltnmoilaseg.ie:in enW,s t D /ao eesf tpdTeait rrtoatormn sss,e upJnisoattnr aot iL fn& iBau iPb,o Dllleaoe ngepnniacierantrlmgg S,y ecF ni: eatMnc oucfFe lCCt, yMhs oe, impfl wrCiocaiasvuplik lEee Encentg, siWg ntiehnIe,er rUoeinruSiggnA,hg, pRarnooddgnneoys Ais. / GFDHaeecisolucls ,lr ctS iyeipce dtohniifootc Snooec:rsl isB oe&,on fL ccBDaaei k eoRaphmnaavtdeore dEtneminr,c FgSaeiLlnin n St:e gcCeoihrfeRi nAn(CBcg iPe,ir o, Cr TleCuosrhrgsat,ain icTrnslaa epUlys ola noSrnirttvd u&ae rrnE tsFd ciUrt oaOynl,no ipPcvgeeiesirrrc tGasahitlrt,i yooEW,un nWpAsg,, ,a i2Fng0aeg1cea7u r.W il|tnyag go, gOfa,r egon AASNeeurersiwoet rss a:SpS lAoaitaac us,te tcSeh iEa e UWnnn ncgPaeiiilv nnepeegsure, b JsrAiilaiitunsnyhsg,g te,C,r rDFasoul eirbealvolf.sa ot lakUln i|snd I,i nEOvcenlrreuesrdgigteoyysn Tob, eifUb cTlhSieonAcgoh)rl,oan Dpgohyulo iIrcgngaysal, t r iMDetufeeatlredfe th&n, acTbehs Meahapatra NDaDneedepts hai cn er rtd(rimBlpeaxitenoi.nodltons og:. fBi cCoahcl ae& mR Eiactcaooln lEo, ngFgiLci na: eCl eERrniCngg iP,n rCeeuessrr,it ni2ng0 U,1 O7n.i r|ve e“gAros instcy Si, etPnaectreet h Up, unWbivlAies,hrseirt’ys , Corvallis, DAIbdueoessnoctt krr i a.fi”Oipl ei|tarr iIe.son:g ncLol:Cun FdC,i UerNssSt b2 AE0ibd)1.l6iito0igo4r2na5.p 0|h 9Bi|c oIaScl Bar NeRf ae9rt7oe8nn1c,4 eF9sL8 a7 :n4 Td7a9 iy9nl8do e(rhx &a. r Fdrbaanckc i:s a, l2k0. 1p6ap. |er) | IDSISIInSuedSeBcrbBesilNjcenuNeDrs tdc9i:i e pte9fi7Assts7e8:i c so8r1Lbrcs4n1iCi:ib9p4 :e LS8lB9tniHCi78ocoo4e7C:gcn 8 E4arpN:0 a7l uReB1p 8bc28aoh7ltt0 i(cr5ois1ecia nhc-7(a be, eR0 blF-or 0aarbsLot0et obk tof4:eo e)onC1rkroi6,eR e k:F|ns C a|LI-c lS-IP ekMn:B sr.Cc e NpaalsuRtan se9dpC,dr 7eTei a8sirPan l)1bysr d4l.ie obe9|sr lx8sFi o&,.7u Tg4e Fr7la arc8yapel5nhol1lcirs ci (-s&ah- lMGa rFrreadroftabeuenrarpeicc,na ki2lcs s0: e. G1 as|7lrk. o|. uppa,p 2e0r)1 9| . | “A IaSdSnouedlanb ir jtn eic dfsceicteelsilxres:.s -nL:- cMCLeCSa pHtCeu:rN bDial 2iolss0mh. 1|ee6 Mrs0st2 eibcs8 ooa2opn6oki1mr.|”o Iau|Sl ssIB n.m N|c alV u9teed7tr8eeia1rsli 4sbn9.iab8rl7yi1 om9g0erda8pi7ch i(nihceaa.r ld rbeafecrke)n |c IeSsB aNnd index. 9ICCd7lea8lans1sstI4siidff9iiefii8ecncra7atst1i:ti fi9oiLon0eCnr:9 C:sL4 :LNC L(CeC C2C- 0bTC 1SoK6NFo027k 9424)2005151 .08.BM905|5 46I47 S2 0B208N01517 9 7 || 7 | I8D SD1DB4D9NCC8 7966437276819..103911883/9 (28-h4-3ad22rc4d820b232a1 8c14k ( -:h- adalcrk2d. 3bpaapcekr)) | SILLSuCBCb Nr jreeS ecc9ucot7bosr8jd:re1 dL 4ca C9vatsav8S:ia7 HlL4ialC8ba: b0lTSe1lr He8aa t a:n( hetMs -thpbttipooctspror:tok/sa/:)b/ltc/iicoalcnlnc .f.nl uo|.e lcTol.g crcoa.egvnlo/ls2vsp0./ o21| 60rFt01ua47et20ilo50 cn00e94-l-l1Ps6.l a| nCnleinagn. e| nInerteglyl.i g| eCnltimate tSruabnjes pc ctoshr: atLanCtgiSoeH nm: sEiytlsiegtceatmtriiocs n.b.atteries--Materials. | Fuel cells--Materials. | CSolalasrCs icfleaiclslasst-i-ifioMcnaa:t tLieorCniaC:l Ls H.C |E CM1 5eT1sKo .pJ23o95r3o61u 2.sW0 m136a7 t|e 2rDi0aD1ls9C. | 3 D88D-C-d 6c2213.31/2429--dc23 Visit the LCTCalay srlseoicrfi o&crad tFi oaravnna: iLcliCasb CWl eTe aKbt 2sh9itt0te1p a s.tM://4lc7c 2n0.1lo7c |. gDoDv/C2 602116.0321/822462140284--dc23 LC record available at https://lccn.loc.gov/2018054085 http://wwLwC. traeycloorrda anvdafirlaabnlcei ast.c hotmtps://lccn.loc.gov/2016042509 and the CRC Press Web site at Visit the Taylor & Francis Web site at hVhttittsppit:: //t//hwwew wTwwa.yc.ltroacryp l&roe rFsasrn.acndocfmrisa Wnceibs. sciotem at http://www.taylorandfrancis.com and the CRC Press Web site at hanttdp t:/h/ew CwRwC. cPrrcepsrse Wsse.cbo smite at http://www.crcpress.com Preface Extensive use of fossil fuels for energy have negatively contributed to the environment owing to the emission of carbon dioxide and other harmful gases as serious atmospheric pollutants and particulates, and has resulted in soaring global warming. At the same time, various waste products from domestic, agricultural, animal facilities, refineries and industries also cause a tremendous environmental burden that needs treatment and recycle. Energy systems from MFC’s can be used for combating both environmental problems and offsetting the pollution loads. This creates more opportunities for renewable and green fuel production that can substitute fossil fuels and generate commercially important coproducts from waste substrates. MFC’s has a plethora of benefits, over other kinds of energy production routes with a) ceased emissions (such as SOx, NOx, CO and CO), b) higher efficiency, 2 c) no mobile parts and d) least sound pollution. Although there have been significant attempts to produce bioelectricity from bacterial electrolytic systems right from early 1900’s, there were limitations in the yield and feasibility of the process. However, early 1990’s witnessed innovations in MFC designs and incorporation of various electron donor, electrode apparatus and biocatalysts (biological agents: algae etc.) and thus have become far more appealing. This book will focus on the state of the art of MFC’s with various combinatories of substrates yielding bioelectricity with valued co-products. Essentially the book will provide fundamental ideas and basics of MFC technologies, entailing various design and modelling aspects with examples. Various sections of the book will deal with unique aspects of basic sciences, reactor configuration, application, market feasibility with lucid illustrations and explanations. The techno-economics and life cycle section will critically assess the feasibility of waste-powered MFC’s for sustainable bioenergy production and essentially highlight the tradeoff between resource needs and energy production. This section will help academicians, entrepreneurs, industrialists to understand the scope and challenges and select unique, and specific integrated approaches in unit processes. Lakhveer Singh Durga Madhab Mahapatra Contents Preface iii 1. MFCs - From Lab to Field Abhilasha Singh Mathuriya 1 2. Microbial Fuel Cell (MFC) Variants Sahriah Basri and Siti Kartom Kamarudin 15 3. Fundamentals of Photosynthetic Microbial Fuel Cell Rashmi Chandra and Garima Vishal 30 4. Bio-based Products in Fuel Cells Beenish Saba, Ann D. Christy, Kiran Abrar and Tariq Mahmood 53 5. Electrotroph as an Emerging Biocommodity Producer in a Biocatalyzed Bioelectrochemical System Supriyanka Rana, Lakhveer Singh and Zularisam bin ab Wahid 67 6. Role of Biocatalyst in Microbial Fuel Cell Performance M. Amirul Islam, Ahasanul Karim, Puranjan Mishra, Che Ku Mohammad Faizal, Md. Maksudur Rahman Khan and Abu Yousuf 85 7. Exoelectrogenic Bacteria: A Candidate for Sustainable Bio-electricity Generation in Microbial Fuel Cells Shraddha Shahane, Payel Choudhury, O.N. Tiwari, Umesh Mishra and Biswanath Bhunia 106 8. Cyanobacteria: A Biocatalyst in Microbial Fuel Cell for Sustainable Electricity Generation Thingujam Indrama, O.N. Tiwari, Tarun Kanti Bandyopadhyay, Abhijit Mondal and Biswanath Bhunia 125 9. Yeast and Algae as Biocatalysts in Microbial Fuel Cell Neethu B., G.D. Bhowmick and M.M. Ghangrekar 141 10. Cost-effective Carbon Catalysts and Related Electrode Designs for the Air Cathode of Microbial Fuel Cells Wei Yang, Jun Li, Qian Fu, Liang Zhang, Xun Zhu, Qiang Liao 169 vi Waste to Sustainable Energy 11. Bioelectricity from Municipal Waste Pranab Jyoti Sarma and Kaustubha Mohanty 204 12. Biological Conversion of Food Waste to Value Addition in Microbial Fuel Cell C. Nagendranatha Reddy and Booki Min 211 13. Optimization of Energy Production and Water Treatment in MFCs by Modeling Tools V.M. Ortiz-Martínez, M.J. Salar-García, A. de Ramón-Fernández, A.P. de los Ríos, F.J. Hernández-Fernández and P. Andreo-Martínez 239 14. Development of Alternative Proton Exchange Membranes Based on Biopolymers for Microbial Fuel Cell Applications Srinivasa R. Popuri, Alex J.T. Harewood, Ching.-Hwa Lee and Shima L. Holder 256 15. Using Microbial Fuel Cell System as Biosensors Tuoyu Zhou, Shuting Zhang, Huawen Han and Xiangkai Li 283 16. Sustainability Assessment of Microbial Fuel Cells Surajbhan Sevda, Swati Singh, Vijay Kumar Garlapati, Swati Sharma, Lalit Pandey, T.R. Sreekrishnan and Anoop Singh 313 Index 331 Editors Biography 335 CHAPTER 1 MFCs - From Lab to Field Abhilasha Singh Mathuriya Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida - 201306, India Email: [email protected] Introduction In order to develop a green world in the future, research initiatives are focused on alternate, renewable, and carbon neutral energy sources which pose minimal or no negative environmental impact. Microbial fuel cells (MFCs) are fairly contributing in this attempt. MFCs are bioelectrochemical systems, used for the direct conversion of chemical energy of chemical compounds into electricity using microorganisms (Allen and Bennetto 1993, Kim et al. 1999, Shukla et al. 2004, Mathuriya and Yakhmi 2014). A conventional two-chamber MFC contains an anodic and a cathodic chamber separated by an ion exchange membrane (Bond and Lovley 2003, Mathuriya and Sharma 2010a, Mathuriya 2016a). At the anode, electrons are generated by metabolic activities of microorganisms when they metabolize organic compounds. Those electrons travel through external circuit and protons through membrane to cathode, where both react with oxygen to form water (Bennetto 1990). External Circuit electrons ! electrons Anolyte (wastewater or chemical compound) oxygen carbon dioxide water Anode Proton Exchange cathode Membrane Figure 1.1. Schematic representation of typical two-chambered microbial fuel cell. 2 Waste to Sustainable Energy The basic reactions involved can be represented as (Jiang et al. 2013) C H O + 6H O → 6CO + 24H+ + 24e- (E0 = 0.014 V) (1) 6 12 6 2 2 (Intermediate) + e- → (Intermediate) (2) ox re 6O + 24H+ + 24e- → 12H O (E0 = 1.23 V) (3) 2 2 There are no set parameters to measure the performance of an MFC, since the performance depends on many factors like the nature of electrochemical reactions, type of electrode used, organic substrates, composition of the microbial population, and architecture, etc. Therefore, different measures might be taken in order to improve the MFC performance. Over the past few years, researchers across the globe are engaged in an attempt to enhance the efficiency and reliability of MFCs in different ways. This includes MFC architecture, development of high efficiency electrode materials, operational costs, and robust microbial community (Kaewkannetra et al. 2011, Qian et al. 2011, Huang et al. 2012, Buitrón and Cervantes-Astorga 2013, Mathuriya 2016 a,b). MFCs offer several attractive features, viz. (a) direct electricity generation from chemical compounds which leads to high efficiency; (b) the chemical to electricity conversion by MFCs is not limited by the Carnot cycle because it does not involve the conversion of energy into heat—instead directly into electricity and, a much higher conversion efficiency can be achieved (70%) (Mathuriya and Yakhmi 2014); (c) owing to microbially operated technology, operate effectively at ambient temperature; (d) quiet and safe performance (Rabaey and Verstreate 2005), and (e) does not requires off-gas treatment (Mathuriya and Sharma 2009). It is hypothesized that the amount of electricity generated by MFCs in the wastewater treatment process can reduce the power required in a conventional treatment process that involves aerating of the activated sludge (Watanabe 2008). Potential Areas for Microbial Fuel Cells Application MFCs are witnessing rapid growth and their application aura is continuously increasing. Some areas are discussed here. Wastewater treatment: Wastewater generates from any combination of domestic, commercial, industrial, or agricultural activities. Wastewater retains complex chemical and biological matter, which can be invaluable sources of energy, but due to random degradation create serious health, sanitation, and environmental problems. Moreover, wastewater also hosts innumerable extremophilic microbial flora, which can degrade those complex matter. Developing a route to produce electricity from degradation of complex matter in wastewater by microorganisms is the mover for the development of MFCs (Mathuriya and Sharma 2009). Wastewater treatment is the prime area of MFC application and MFCs have proved themselves as efficient wastewater treatment systems (Kim et al. 2004, Huang and Logan 2008, Mathuriya and Sharma 2009, Ieropoulos et MFCs - From Lab to Field 3 al. 2013). Only this system can convert organic matter of waste directly into electricity. MFCs have been reported to treat a wide range of wastewaters. The list is too large to accommodate in the word limit of this chapter. Some remarkable mentions are human feces wastewater (Fangzhou et al. 2011), food processing wastewater (Mathuriya and Sharma 2010a, Velasquez-Orta et al. 2011), oilfield wastewater (Gong and Qin 2012), landfill leachate (Sonawane et al. 2017), domestic wastewater (Ren et al. 2014), paper industry wastewater (Mathuriya and Sharma 2009), swine wastewater (Ding et al. 2017), tannery wastewater (Mathuriya 2014), brewery wastewater (Mathuriya and Sharma 2010b, Huang et al. 2011), refinery waste (Agarry 2017), synthesis gas (Mehta et al. 2010), paracetamol (Zhang et al. 2015), several dyes viz. azo dyes (Sun et al. 2011, Fang et al. 2013, Fang et al. 2017, Yuan et al. 2017), wastewaters containing various heavy metals viz. Chromium (Ryu et al. 2011, Song et al. 2016), Vanadium (Qiu et al. 2017), Copper (Wu et al. 2016), Arsenic (Wang et al. 2014), Silver (Choi and Cui 2012), Cobalt (Huang et al. 2013), and even Uranium (Gregory et al. 2004). Powering low energy devices: Electricity generation from any chemical compound is the most fascinating feature of MFCs. MFCs have been reported for the generation of electricity since 1910 (Potter 1910, Bond and Lovley 2003, You et al. 2010, Mathuriya 2016a, Krieg et al. 2017). MFCs are an attractive option as sustainable lower scale power supplies. Many studies have successfully demonstrated the applications of MFCs in powering low- power-consuming devices (Winfield et al. 2014) like sensors (Tommasi et al. 2014, Khaled et al. 2016), as biochemical oxygen demand (BOD) sensors (Kim et al. 2003a, Kharkwal et al. 2017), telecommunication systems (Tender et al. 2008, Thomas et al. 2013), mobiles and smart phones (Ieropoulos et al. 2013). MFC-type BOD sensor developed by Kim et al. (2003a) was reported to operate for over five years without remarkable maintenance, which is longer than other types of BOD sensors in the market. MFCs can also be used to monitor the presence of chemical toxicants (Jiang et al. 2017) viz. formaldehyde (Davila et al. 2011), anaerobic digestion fluid (Liu et al. 2011), heavy metal and phenol in the test water (Kim et al. 2003b, Tao et al. 2017), toxic matter in potable water (Stein et al. 2012), and to detect illegal dumping or pollution (Chang et al. 2004). Various microbial activity-monitoring sensors (Lovley and Nevin 2016) were also developed in recent years. Moreover, demonstration to apply MFCs in powering gadgets like mobile phones (Ieropoulos et al. 2013, Walter et al. 2017) is making MFCs popular among public. Robotics: Autonomous robotics is a recent attention of scientists. Conventionally robots are run by standard battery (Kluger 1997), which require periodical manual input to change battery. MFCs can be used to power such robots, especially to those assigned ‘start and forget’ missions (Melhuish et al. 2006). Various generations of robots are reported to use MFCs as their power source, such as Green bug robots (Wilkinson and Campbell 1996), Gastrobots (Kelly et al. 1999, Wilkinson 1999, 2000a), Gastronome