ebook img

WASP-4b Transit Observations With GROND PDF

2.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview WASP-4b Transit Observations With GROND

Astronomy&Astrophysicsmanuscriptno.nikolov-astro-ph c ESO2012 (cid:13) January30,2012 ⋆ WASP-4b Transit Observations With GROND N.Nikolov1,Th.Henning1,J.Koppenhoefer2,3,M.Lendl4,G.Maciejewski5 andJ.Greiner3 1 Max-Planck-Institutfu¨rAstronomie,Ko¨nigstuhl17,69117Heidelberg,Germany e-mail:[email protected] 2 Universita¨ts-SternwarteMu¨nchen,Scheinerstr.1,81679Munich,Germany 3 MaxPlanckInstituteforExtraterrestrialPhysics,Geissenbachstr.,85748Garching,Germany 4 ObservatoiredeGene`ve,Universite`deGene`ve,51chemindesMaillettes,1290Sauverny,Switzerland 5 Torun´ CentreforAstronomy,NicolausCopernicusUniversity,Gagarina11,PL87100Torun´ ,Poland 2 Preprintonlineversion:January30,2012 1 0 ABSTRACT 2 Context.Ground-basedsimultaneousmultibandtransitobservationsallowanaccuratesystemparametersdeterminationandmaylead n tothedetectionandcharacterizationofadditionalbodiesviathetransittimingvariations(TTVs)method. a Aims.Weaimedto(i)characterize theheavilybloated WASP-4bhot Jupiter anditsstar bymeasuring systemparametersandthe J dependenceoftheplanetaryradiusasafunctionoffour(Sloang′,r′,i′,z′)wavelengthsand(ii)searchforTTVs. 7 Methods.We recorded 987 images during three complete transitswith the GROND instrument, mounted on the MPG/ESO-2.2m 2 telescopeatLaSillaObservatory.Assumingaquadraticlawforthestellarlimbdarkeningwederivesystemparametersbyfittinga compositetransitlightcurveoverallbandpassessimultaneously. Tocomputeuncertaintiesofthefittedparameters,weemploythe ] BootstrapMonteCarloMethod. R Results.Thethreecentraltransittimesaremeasuredwithprecisiondownto6s.WefindaplanetaryradiusR =1.413 0.020R ,an S orbitalinclinationi=88. 57 0.45 andcalculateanewephemeris,aperiodP=1.33823144 0.00000032dapysandare±ferencetJruapnsit ◦ ◦ . epochT = 2454697.798311± 0.000046(BJD).Analysisofthenewtransitmid-timesinc±ombinationwithpreviousmeasurements h 0 ± shows no sign of a TTV signal greater than 20 s. We perform simplified numerical simulations to place upper-mass limits of a p hypotheticalperturberintheWASP-4bsystem. - o Keywords.transitingplanets r t s a [ 1. Introduction intervalbetween successive transitsto vary.The resulting tran- sit timing variations (TTVs) allow the determination of the or- 1 Morethan 100extrasolarplanetshave beendetectedto pass in v bitalperiodandmassoftheperturberdowntosub-Earthmasses frontofthediskofitsparentstarssincethefirsttransitobserva- 7 (Miralda-Escude´ 2002,Holman& Murray2005,Holmanet al. tionsreportednearlytwelveyearsago(Charbonneauetal.2000; 2 2010,Lissaueretal.2011). Henryetal.2000;Mazehetal.2000).Theseclose-inplanetsor- 7 The transiting planet WASP-4b was discovered by Wilson bittheirhoststarswithperiodstypicallysmallerthan 10days, 5 ∼ et al. (2008) within the Wide Angle Search for Planets in the . probablyformedat greater orbital distances and later migrated 1 southernhemisphere(WASP-S,Pollaccoetal.2006).Theplanet inwardgovernedbyprocesseswhicharestillunderdebate.The 0 is a 1.12 M hot Jupiter orbiting a G7V star with a period discoveryofeachtransitingextrasolarplanetisofgreatinterest Jup 2 of 1.34 day. WASP-4b was found to have a heavily irradiated forplanetaryscienceastheseobjectsprovideauniqueaccessto 1 atmosphere and inflated radius. Refined planetary orbital and an accurate determinationof radii(down to a few percent)and : physicalparameters,basedontransitphotometrywerepresented v massesviatransitphotometryandradialvelocitymeasurements Xi of the host star (Henry et al. 2000; Charbonneau et al. 2000). by Gillon et al. (2009), who used the Very Large Telescope (VLT) to observe one transit, Winn et al. (2009), who mea- Moreovertheyallow oneto plotthermalmapsof theplanetary r suredtwotransitswiththeMagellan(Baade)6.5mtelescopeat a surfaceviainfraredspectra(Richardsonetal.2007;Grillmairet Las CampanasObservatory,Southworthet al. (2009),who ob- al. 2007, Knutson et al 2007),determine the planetary temper- served four transits using the 1.54m Danish Telescope at ESO ature profiles and permit studies of the stellar spin-orbit align- La Silla Observatoryand Sanchis-Ojeda et al. (2011),who ob- ment(Quelozetal. 2000,Triaudet al. 2010,Winn etal. 2011, servedfourtransitsusingtheMagellan(Baade)6.5mtelescope. Johnson et a. 2011). All of these form a set of astrophysically Duringtwoofthetransits,Sanchis-Ojedaetal.(2011)observed preciousparameters,whicharecriticalforconstrainingthefor- ashort-lived,low-amplitudeanomalythattheauthorsinterpreted mationand evolutionof these interesting objects. Furthermore, as the occultationof a starspotby the planet.Southworthet al. the time intervals between successive transits are strictly con- (2009) also noted similar anomalies in their light curves and stant if the system consists of a planet moving on a circular the possibility that they were caused by starspot occultations. orbit around the parent star. If a third body is present in the Sanchis-Ojedaetal.(2011),combinedtheirdatasetwiththatof system, it would perturb the transiting planet causing the time Southworthetal.(2009)andfoundthateachofthemisconsis- ⋆ Based on observations collected with the Gamma Ray Burst tent with a single spot and a star that is well-aligned with the OpticalandNear-InfraredDetector(GROND)attheMPG/ESO-2.2m orbit.Trackingthisstarspot,itwaspossibletomeasuretherota- telescopeatLaSillaObservatory,Chile.Programme083.A-9010. tionperiodofthehoststar.Anewpossiblestarspothasbeenre- 1 Nikolovetal.:WASP-4bTransitObservationsWithGROND centlydetectedintwocloselyspacedtransitsofWASP-4bythe transittimes.Theexposuretimeswereintherange8–14s,de- MiNDSTEp collaborationwith the Danish Telescope (Mancini pendingontheweatherconditions(i.e.seeingandtransparency). 2011,privatecommunication).Furthermore,Beereretal.(2011) Duringeachrunweusedthefastreadoutmode( 10s),achiev- ∼ performedspace-basedsecondaryeclipsephotometry,usingthe ing a cadence ranging from 18 to 24 s. To minimize system- IRAC instrumenton the Warm Spitzer Space Telescope,of the aticeffectsinthephotometryassociatedwithpixel-to-pixelgain planet WASP-4b in the 3.6 and 4.5 µm bands. Their data sug- variationswekeptthetelescopepointingstable.However,dueto gest that WASP-4b’s atmosphere lacks a strong thermal inver- technicalissuescausedbytheguidingcamera 35%ofthetotal ∼ sion on the day-side of the planet, which is an unexpected re- numberofimageswere acquiredwithoutguiding,thatresulted sult for an highly irradiated atmosphere. Ca´ceres et al. (2011) in 10-12pixeldriftsperobservingrun( 3.5hr). ∼ ∼ analyzedhigh-cadencenear-infraredground-basedphotometry, In the Near-Infrared (NIR) channels we obtained images detectedtheplanet’sthermalemissionat2.2µmandconcluded withintegrationtimeof10s.Longerexposuresarenotallowed thatWASP-4bshowsinhomogeneousredistributionofheatfrom due to technical constrains in the GROND instrument. It was its day- to night-side. Finally, Triaud et al. (2010) investigated foundduringthe analysis that the JHK-imageswere of insuffi- the spin-orbitalignment(β) of the WASP-4 system by measur- cientsignal-to-noiseratio(SNR)to beabletodetectthetransit ing the parent star radial velocity during a transit of its planet andto allowaccurate system parameterderivationfromthe re- (Rossiter-McLaughlineffect)andfoundβ = 4◦+4334◦,excludinga sulting light curves. In addition, the pixel scale in the NIR de- projectedretrogradeorbit. − ◦ tectorsis0.6px 1,whichresultedinapoorlysampledstarpsfs − InthispaperwepresentthreenewtransitsofWASP-4bob- (typically4-5pixels).As we carriedoutallobservationsin the servedinAugustandOctober2009withtheGRONDinstrument NIR without dithering to increase the cadence and to improve (Greineretal.2008),attachedtotheMPG/ESO2.2mtelescope thetimesamplingandthephotometryprecision,itishardlypos- at La Silla Observatory. We recorded each transit in four opti- sibletostackgroupsofNIRimageswithpriorbackgroundsub- calg,r ,i andz (Sloan)channelssimultaneously.Usingthese traction.Therefore,weexcludedtheNIRdatainthefurtheranal- ′ ′ ′ ′ newdatasetswemeasuretheplanetorbitalandphysicalparam- ysis. eters and constrain its ephemeris by fitting a new photometric AtthebeginningoftheobservationsonUT2009August26 data set over four pass-bands simultaneously. Unlike all previ- and30,WASP-4wassettingfromanair-massof1.02and1.05, ousobservationalstudiesrelatedtotheWASP-4bexoplanet,that respectivelywhichincreasedmonotonicallyto1.5and1.6atthe fit datain a singlebandpass,we modela transitlightcurveus- endoftheruns.DuringtheOctober8observations,theair-mass ing the four bandpasses simultaneously.As pointed out by Jha decreasedfrom1.06to1.02andthenincreasedto1.15attheend etal.(2000),thisapproachpermitsoneto breakafundamental oftherun. degeneracy in the shape of the transit light curve. Each transit We employed standard IRAF1 procedures to perform bias lightcurvecanbedescribedprimarilybyitsdepthandduration. and dark current subtraction as well as flat fielding. A median For a single bandobservationsit is always possible to fit these combined bias was computed using 22 zero-second exposure with a largerplanetif the stellar radiusis also increased and if framesand4darkframeswereusedtocomputethemasterdark. the orbital inclination is decreased. The main advantage of the Asnonnegligiblefractionofthedatawasobtainedwithoutguid- multi-bandtransitphotometryisthatitallowsthedetermination ing,itwascriticaltoperformthedatareductionwith flatfields of the planet orbitalinclination unique, independentof any as- of high quality.A master flatfield was calculatedusing the fol- sumptionsaboutthestellar andplanetaryradii.Finally,weadd lowingmethodology.Fromasetof12ditheredtwilightflatswe the three new mid-transit times and search for TTVs. This pa- selected frames with median pixel counts in the range 10K to perisorganizedasfollows.Insection2wepresentanoverview 35Kwhichiswell-insidethelinearregimeoftheGRONDopti- ofthethreetransitobservationsofWASP-4bandthedatareduc- caldetectors.Finally,thereduced(bias-anddark-corrected)flat tion.Insection3wediscussthelightcurveanalysisandtheerror framesweremediancombinedto producemasterflats foreach estimation.Section4summarizesthemainresults. oftheg’,r’,i’andz’bands. AperturephotometryofWASP-4andthereferencestarwas performedoneachcalibratedimage.Toproducethedifferential 2. Observationsanddatareduction lightcurveofWASP-4, itsmagnitudewassubtractedfromthat ofthecomparisonstar.Fortunately,thelaterwasofsimilarcolor Three transits of WASP-4b were observed with the MPG/ESO andbrightness,whichreducedtheeffectofdifferentialcolorex- 2.2-mtelescopeatLaSillaObservatory(Chile)duringthreeruns tinction. For example, the instrumental magnitude differences onUTAugust26and30andOctober82009(seeFig.1).Bad (comparison star minus WASP-4) measured on UT October 8 weatherconditionspreventeddatacollectionduringtheremain- 2009were∆g = 0.587mag,∆r = 0.669mag,∆i = 0.681mag, ′ ′ ′ ing two nights allocated for the project.To monitorthe flux of ∆z = 0.687mag.AspointedoutbyWinnetal.(2009)thecom- ′ WASP-4, we used the Gamma Ray Burst Optical and Near- parisonstarisslightlybluerthanWASP-4(∆(g i) = 0.094 ′ ′ Infrared Detector (GROND). It is a gamma-ray burst follow- mag). − − upinstrument,whichallowssimultaneousphotometricobserva- To improve the light curves quality we experimented with tionsin fouroptical(Sloan g, r , i, z) andthree near-infrared ′ ′ ′ ′ various aperture sizes and sky areas, aiming to minimize the (JHK)bandpasses(Greineretal.2008).Intheopticalchannels scatter of the out-of-transit (OOT) portions, measured by the theinstrumentisequippedwithbacksideilluminatedE2VCCDs magnituderoot-mean-square(r.m.s.).Bestresultswereobtained (2048 2048,13.5µm). The field of view foreachof the four with aperture radii of 16, 20.5 and 17.5 pixels for UT 2009 optical×channelsis5.4 5.4 withapixelscaleof0 .158pixel 1. ′ ′ ′′ − August26and30andOctober8,respectively. × During each observing run we verified that WASP-4 and a nearbycomparisonstar were located within GROND’s field of 1 IRAF is distributed by the National Optical Astronomy view.Thecomparisonstarwas 1.3′south-eastfromourtarget. Observatories, which are operated by the Association of Universities ∼ ForeachrunweobtainedrepeatedintegrationsofWASP-4and forResearchinAstronomy,Inc.,undercooperativeagreementwiththe thecomparisonstarfor 3.5hr,bracketingthepredictedcentral NationalScienceFoundation. ∼ 2 Nikolovetal.:WASP-4bTransitObservationsWithGROND 1.00 0.98 0.96 0.94 x u Fl 0.92 ggg’’’---fffiiilllttteeerrr rrr’’’---fffiiilllttteeerrr e v ti 0.90 a el R 1.00 0.98 0.96 0.94 0.92 iii’’’---fffiiilllttteeerrr zzz’’’---fffiiilllttteeerrr 0.90 -0.05 0.00 0.05 -0.05 0.00 0.05 Time Since Midtransit (day) Fig.1.Relativeg,r ,i andz -bandphotometryofWASP-4obtainedwithGROND.Thetransitsoccured(foreachpanelfromtop ′ ′ ′ ′ tobottom)onUT2009August26,August30andOctober8.Thetransitlightcurvesobtainedoneachsuccessiverunaredisplayed withanoffsetof0.025inrelativefluxforabetterillustration. The light curves contain smooth trends, most likely due to Table 1. Lightcurvescatter differencemeasuredwiththe stan- differential extinction. To improve its quality we decrease this darddeviationofthetimeseriespriorandafterdetrending.All systematiceffectusingtheOOTportionsofourlightcurves.We quantitiesinmmag. plot the magnitude vs. air-mass data for each run and channel andfitalinearmodeloftheform: run g r i z ′ ′ ′ ′ Aug26 0.503 0.358 0.482 0.339 f(z)=a+bz, (1) Aug30 0.818 0.973 0.633 0.725 Oct10 0.733 0.614 0.430 0.495 where(a)and(b)areconstantsand(z)istheair-mass.Once thecoefficientswerederived,we appliedthe correctionto both Toillustratethelightcurvequalityimprovementwepresent thetransitandtheOOTdata.Performingthiscorrectionweno- the scatter decrease after the described detrending procedure tice thatthe baselinemagnitudesof our targetand the compar- (Table1). ison star show slight, nearly linear correlations with the (x,y) centerpositionsofthePSFcentroidsoneachCCDchip.Were- move these near-linear trends from WASP-4 and the reference 3. Lightcurveanalysis star by modelling the base-line of the light curve with a poly- nomialthatincludesalineardependencyonthecentroidcenter TocomputetherelativefluxofWASP-4duringtransitasafunc- positions(xandy)ofthestarsonthedetectorsusingthefunction tion ofthe projectedseparationof the planet,we employedthe oftheform: modelsof Mandel& Agol(2002),which in additionto the or- bitalperiodPandthetransitcentraltimeT areafunctionoffive C f(x,y)=1+k x+k y+k xy, (2) parameters,includingtheplanettostarsizeratio(R /R ,where x y xy p R and R are the absolute values of the planet and sta∗r radii), p where (k ), (k ) and (k ) are constants. We then subtracted the orbita∗l inclination i, the normalized semimajor-axis (a/R , x y xy thefitfromthetotaltransitphotometryobtainedforeachchan- whereaistheabsolutevalueoftheplanetsemimajoraxis)an∗d nel during the three runs. No other significant trends that were twolimbdarkeningcoefficients(u andu ).Becausetheparam- 1 2 correlatedwithinstrumentalparameterswerefound. etersa/R ,R /R andiaredegenerateinthetransitlightcurve, p ∗ ∗ 3 Nikolovetal.:WASP-4bTransitObservationsWithGROND 1.00 0.99 0.98 g’-filter r’-filter 0.97 0.96 x u Fl 0.95 e v ti 0.94 a el R 1.00 0.99 0.98 0.97 i’-filter z’-filter 0.96 0.95 0.94 -0.05 0.00 0.05 -0.05 0.00 0.05 Time Since Midtransit (day) Fig.2.ThecompositelightcurvesofWASP-4 obtainedduringthreerunsonUT2009August26,August30andOctober8.The best-fittransitmodelsaresuperimposedwithcontinuouslinesandtheobservedminusmodeledresidualsareshowncenteredatflux level0.95oneachpanelalongaconstantline. we assume fixed values for M = 0.92 0.06M from Winn Table 2. Theoretical Limb-Darkening Coefficients (Quadratic et al. (2009)and R = 0.907 0∗.013R from±Sanchis⊙-Ojedaet al. Law). −+0.014 (2011)tobreakthis∗degeneracy.Ide∗allywewouldliketofitfor allparametershowever,onlythefirstthreedeterminethebest-fit LDcoefficient g r i z ′ ′ ′ ′ radiusofthestar,theradiusoftheplanet,itssemimajoraxisand wavelength(nm) 455 627 763 893 inclinationrelativetotheobserver. u (linear) 0.623 0.413 0.314 0.248 1 u (quadratic) 0.183 0.290 0.303 0.308 Thevaluesforthetwo limbdarkeningcoefficientswerein- 2 cludedinourfittingalgorithmtocomputethetheoreticaltransit models of Mandel & Agol (2002). We assume the stellar limb To derive the best fit parameters we constructed a fitting darkeninglawtobequadratic, statisticoftheform: Iµ =1 u (1 µ) u (1 µ)2, (3) χ2 = Nf fi(observed)−fi(predicted) 2, (4) 1 2 " σ # I1 − − − − Xi=1 i where f(observed)isthefluxofthestarobservedatthei-th i where I is theintensity andµ is thecosine ofthe anglebe- moment(withthemedianoftheOOTpointnormalizedtounity), tween the line of sight and the normal to the stellar surface. σ controls the weights of the data points and f(computed) is i i We fixed (initially) the limb darkening coefficients (u and u ) thepredictedvalueforthefluxfromthetheoreticaltransitlight 1 2 to their theoretical values (see Table 2), which we obtained curve. We assume the orbital eccentricity to be zero and mini- fromthecalculatedandtabulatedATLASmodels(Claret2004). mizethe χ2 statistic usingthe downhillsimplexroutine,asim- Specifically, we performed a linear interpolation for WASP-4 plemented in the IDL AMOEBA function (Press et al. 1992). stellarparametersT =5500 100K,log g=4.4813 0.0080 The minimization method evaluates iteratively the χ2 statistic, eff cgs,[Fe/H]= 0.03 0.09an±dv =2.0 1.0kms 1,w±hichwe yet avoiding derivative estimation until the function converges t − − ± ± adoptedfromWinnetal.(2009). totheglobalminimum. 4 Nikolovetal.:WASP-4bTransitObservationsWithGROND In the entire analysis we derive uncertainties for the fitted Table4.Summaryoftheresidualr.m.s.(observedminuscalcu- parametersusingthebootstrapMonteCarlomethod(Pressetal. latedflux)oftheunbinnedandbinneddata. 1992). It uses the original data sets (from each run and pass- band), with their N data points to generate synthetic data sets run band σ β σ sys alsowiththesamenumberofpointswithreplacements.Wethen [mag] [mag] fit each data set to derive parameters. The process is repeated Aug26 g′ 0.0025 1.41 0.0035 untilwegetanapproximatelyGaussiandistributionforeachpa- Aug26 r′ 0.0025 1.38 0.0035 rameter and take the standard deviation of each distribution as Aug26 i′ 0.0028 1.45 0.0041 Aug26 z 0.0028 1.49 0.0042 theerrorofthecorrespondingfittedparameter. ′ Aug30 g 0.0023 1.19 0.0027 Ground-based time series data are often proned with time- ′ Aug30 r 0.0017 1.10 0.0019 correlatednoise(e.g.“rednoise”;seePontetal.2006)andthere- ′ Aug30 i 0.0025 1.23 0.0031 ′ forethedataweightsσ needaspecialtreatment,i.e.theuncer- i Aug30 z′ 0.0022 1.29 0.0028 taintiesmustbecalculatedaccuratelyinordertoobtainreliable Oct08 g 0.0018 1.22 0.0022 ′ estimatesofthefittedparameters.Itisacommonpracticetouse Oct08 r 0.0018 1.17 0.0021 ′ thecalculatedPoissonnoise,ortheobservedstandarddeviation Oct08 i 0.0019 1.29 0.0025 ′ oftheout-of-transitdatafortheweights.Ourexperienceshows Oct08 z′ 0.0020 1.33 0.0027 that these methods often result in underestimated uncertainties Notes.σrepresentstheresidualscatterovertheentireobservingtime of the modeled parameters. To estimate realistic parameter un- interval on each run; σ is the rescaled value for the photometric certaintieswe employtwo methods.First we rescaled the pho- sys weights,reflectingthepresenceofrednoise. tometricweightsσ sothatthebest-fittingmodelforeachband j andrunresultsinareducedχ2 =1,whichthereforerequiresthe initial values for the photometricuncertaintiesto be multiplied we assume that the inclination and the semimajor axis of the bythe factorsχ2red = 1.396,χ2red = 1.058andχ2red = 1.179,for planetary orbit should not depend on the observed pass-band. theUTAugust26and30andOctober82009runs,respectively. Therefore, we constrained these parameters to a single univer- Second,wetakeintoaccountthe“rednoise”inourdataby sal value. Following this procedurefor the radiusof the planet followingthe “time-averaging”approachthatwas proposedby we found 1.413 0.020 R and the best-fit value for the or- Jup Pontetal.(2006)andusedinthetransitdataanalysisofvarious bital inclination±and semimajor axis i = 88.57 0.45 and ◦ ◦ authorsincludingGillonetal. (2006),Winnetal.(2007,2008, a = 0.02300 0.00036 AU, respectively. For co±mparison of 2009)andGibsonetal.(2008).Themainideaofthemethodisto the key parame±ter, R , Wilson et al. (2008) derived 1.416+0.068 computethestandarddeviation(scatter)oftheunbinnedresidu- R , Gillon et al. (2p008) derived 1.304+0.054 R , Winn e−t0.0a4l3. alsbetweentheobservedandcalculatedfluxes,σ andalsothe Jup 0.042 Jup 1 (2009)derived1.365 0.021R ,South−worthetal.(2009)de- standarddeviationofthetime-averagedresiduals,σN,wherethe rived 1.371+0.032 R ±and SancJhupis-Ojeda et al. (2011) derived flux of each N data points where averaged creating M bins. In 0.035 Jup 1.363 0.02−0R . OurvalueforR isslightlyhigherthanthe theabsenceofrednoiseonewouldexpect ± Jup p citedradiusintheliteratureandisdominatedbytheuncertainty of the stellar radius R . The value for the orbital inclination, σ M σ = 1 . (5) fromouranalysisisina∗goodagreementwithearlierresults.For N √N rM 1 example, Winn et al. (2009) found 88.56 0.46, Sanchis-Ojeda − ◦−+0.98 However, in reality σN is larger than σ1 by some factor β, et al. (2011) found 88.80◦−+00..4631, while Gillon et al. (2009) and which,aspointedoutbyWinn etal. (2007),is specificto each Soutworthet al. (2009)found89.35◦+00..6449 and88.80◦ −90.00◦, parameterofthefittedmodel.Forsimplicityweassumethatthe respectively. The results for the fitted−parameters of the transit valuesofβarethesameforallparametersandfinditsvalueby lightcurvemodellingallowustoderiveasetofphysicalproper- averagingβoverarangeofbinswithtimescalesconsistentwith tiesfortheWASP-4 system.Table3exhibitsacompletelistof thedurationofthetransitingressoregress.ie.10 30min.The thesequantities. resultingvaluesforβarethenusedtorescaleσ in−theχ2bythis To completethe lightcurveanalysiswe furtherfit the light j value(seeTable4) curvesallowingthelinearandthequadraticlimbdarkeningcoef- To derivetransitmid-times(T )we fixedtheorbitalperiod ficients(u andu )ineachpass-bandtobetreatedasfreeparam- C 1 2 PtoaninitialvaluetakenfromSanchis-Ojedaetal.(2011)and eters. We aim to compare the shapes of the transit light curves fitted the light curves from each run for the best T , planet to andthefittedsystemparametersfromthisfitandthecurvesde- C star size ratio, inclination and normalized semimajor axis. We rived using theoretically predicted limb darkening coefficients. thenfindthebestorbitalperiodPandT usingthemethoddis- Inordertominimizetheχ2-statisticusingallofthe11parame- C cussedin4.2.ThenwetakethenewvaluesfortheT andPand ters,including8limbdarkeningcoefficientsweagainemployed C repeatthefitforthebestplanettostarsizeratio,inclinationand the downhillsimplex algorithm and the bootstrap method.The normalizedsemimajor axis. This procedureis iterated until we new parameter values we find R = 1.409 0.020R , i = p Jup ± obtainaconsistentsolution. 88.75 0.40 , a = 0.02298 0.00033AU result in a slightly ◦ ◦ smaller±valueoftheχ2 functi±on(1.001),asthefitisabletore- red movesometrendsinthedata.However,wereporttheparameter 4. Results valuesderivedusingthe theoreticallypredictedlimb darkening coefficientasfinalresultsbecausethenewfitisalsomoresensi- 4.1.Systemparameters tivetosystematicsinthelightcurvephotometry. We setthemassandradiusofthe starequalto0.92 0.06 M A set of multi-band transit light curves also allows one to and0.907−+00..001134R ,respectively,anddeterminethebes±t-fitradiu⊙s search for a dependence of the planetary radius, Rp as a func- for WASP-4b, R∗by minimizing the χ2 function over the four tion of the wavelength. Variations of R in some of the pass- p p band-passes and the three runs simultaneously. Furthermore, bandscouldbe producedby absorptionlines such as water va- 5 Nikolovetal.:WASP-4bTransitObservationsWithGROND Table3.SystemparametersoftheWASP-4systemderivedfromthelightcurveanalysis. Parameter Value 68.3%Conf.Limits Unit Comment –Lightcurvefit– Planet-to-starsizeratio p=R /R 0.15655 0.00028 – 1 p Orbitalinclination i ∗ 88.57 0.45 deg 1 Normalizedsemimajoraxis a/R 5.455 0.031 – 1 Transitimpactparameter b=(a/R∗)cosi 0.136 0.043 – 1 Reducedchi-square χ2∗ 1.005 – – 1 red –Planetaryparameters– Radius R 1.413 0.020 R 2 p Jup Semimajoraxis a 0.02300 0.00036 AU 2 Meandensity ρ 0.582 0.036 ρ 2 p Jup Surfacegravity g 15.36 0.91 ms 2 2 p − Transitduration t 2.1696 0.0047 hour 1 D Ingress/egress t 0.3014 0.0039 hour 1 ing/egr –Stellarparameters– Meandensity ρ 1.715 0.029 gcm 3 1 − g Linearlimb-darkeningcoefficient u∗ 0.616 0.046 – 1 ′ 1 g Quadraticlimb-darkeningcoefficient u 0.211 0.060 – 1 ′ 2 r Linearlimb-darkeningcoefficient u 0.427 0.044 – 1 ′ 1 r Quadraticlimb-darkeningcoefficient u 0.303 0.064 – 1 ′ 2 i Linearlimb-darkeningcoefficient u 0.292 0.047 – 1 ′ 1 i Quadraticlimb-darkeningcoefficient u 0.304 0.060 – 1 ′ 2 z Linearlimb-darkeningcoefficient u 0.241 0.045 – 1 ′ 1 z Quadraticlimb-darkeningcoefficient u 0.386 0.063 – 1 ′ 2 Notes. (1)Basedontheanalysisofthemulti-bandlightcurvespresentedinthiswork;(2)Valuesobtainedusing(1)andresultsforthe M ,R , T andM fromWinnetal.(2009)andSanchis-Ojedaetal.(2011). ∗ ∗ eff p Table5.Best-fitradiusineachband. bitalperiodPandthereferencetransitepochT byplottingthe 0 transitmid-timesasafunctionoftheobservedepoch(E) band λ Radius (nm) RJup TC(E)=T0+E P. (6) g 455 1.409 0.021 × ′ ± r 627 1.415 0.020 ′ ± Inthis linear fit the constantcoefficientis the best-fit refer- i 763 1.407 0.021 z′ 893 1.420±0.021 encetransitepoch(T0)andtheslopeofthelineistheplanetary ′ ± period, P. We then use the new values for the period and the Notes.Thebest-fitradiiwerederivedafterfixingtheorbitalinclination reference epoch to repeat our fitting procedure for the system andnormalizedsemimajoraxistotheirbest-fitvaluesfromTable3. parameters until we arrive at a point of convergence.We used the on-line converter developed by Eastman et al. (2010) and transformedthetransitmid-timesfromJDbasedonUTCtoBJD por, methane, etc. in the planetary atmosphere. As a check for based on the BarycentricDynamicalTime (TDB). We derive a this assumption we fitted the data originating from each pass- Period = 1.33823144 0.00000032 day and a reference tran- bandindividually.InsteadoffixingRp/R ,ianda/R toaasin- sittimeTC = 2454697±.798311 0.000046BJD. Theresultfor gleuniversalvaluewesettheplanettost∗arradiusrat∗ioasafree thebest-fitperiodisconsistentw±iththeonefromSanchis-Ojeda parameterandkeeptheremainingquantitiesasfreeparameters. et al. (2011), who found P = 1.33823187 0.00000025 day, Table5displaysthebest-fitradiiasafunctionofthewavelength and reporteda smaller error as they measure±d the periodusing withnoindicationsofvariationswithinthemeasurederrorbars. allavailabletransittimes,includingthefouradditionalmeasure- mentsreportedbySouthworthetal.(2009). Wefurtherinvestigatedtheobservedminuscalculated(O 4.2.Derivingthetransitephemeris − C) residuals of our data and the reported transit mid-times at One of our primary goals is to measure an accurate value for thetimeofwritingforanydeparturesfromthepredictedvalues the transitephemeris(T and P). We include allavailable light estimated usingour ephemeris.As it was shownby Holman& 0 curvesfromthethreerunsandfitforthelocationsofminimum Murray(2005)and Agoletal. (2005)a deviationin the O C − lightusingthebest-fitplanetaryradius,inclinationandsemima- valuescanpotentiallyrevealthepresenceofmoonsoradditional joraxisfromSect.(4.1.).Weminimizetheχ2asdefinedinSect. planetsinthesystem.WelistandplottheO Cvaluesfromour − (4)overthefour-banddataofeachrunbyfittingsimultaneously analysisinTable5andFigure3,respectively.Ananalysisofthe for the T . After the best-fit transit mid-times are derived we O C valuesshowsnosignofa TTVsignalgreaterthan20s, C − add them to all reportedtransit mid-timesavailable at the time exceptthe two big outliers at epochs300 and 305. We put up- of writing in the literature2 (Table 5). We furtherfit for the or- per constraintsonthe mass of an aditionalperturbingplanetin 2 Southwortetal.(2009)measuredmid-timesduringfourtransitsof asunreliableduetotechnicalissuesassociatedwiththecomputerclock WASP-4b.Weexcludethesetimesinouranalysis,astheywerereported atthetimeofobservations(Southworth2011,privatecommunication) 6 Nikolovetal.:WASP-4bTransitObservationsWithGROND Table6.Literaturetransitmid-timesofWASP-4andtheirresid- ualsinadditiontotheephemerisderivedinthiswork. 1 0 Epoch Transitmidtime O C Reference (BJD) (d−ay) min) -1 3000 22445543396643..51706954+−+0000....0000000032223115 -00..0000021213 11 O-C ( -2 303 2454368.59341−+0.00025 0.00003 1 305 2454371.26813+−00..0000009277 -0.00171 1 -3 0.00087 324 2454396.69623+−00..0000002165 -0.00001 1 -4 549 2454697.798228−+00..000000005555 -0.00008 2 0 200 400 600 800 587 2454748.651228+−0.000072 0.00012 2 Epoch 0.000072 809 2455045.738643+−0.000054 0.00016 3 0.000054 812 2455049.753274+−0.000066 0.00010 3 0.000066 815 2455053.767816+−0.000053 -0.00006 3 20 0.000053 827 2455069.826637+−0.000086 -0.00001 4 0.000086 10 830 2455073.841103+−0.000070 -0.00024 4 0.000070 850 2455100.605928+−0.000061 -0.00005 3 c) 0 0.000061 e 859 2455112.650002+−00..000000007744 -0.00005 4 C (s -10 − O- Notes.(1)Gillonetal.(2009);(2)Winnetal.(2009);(3)Sanchis-Ojeda -20 etal.(2011);(4)Thiswork;Theepochofthefirstobservedtransitof -30 WASP-4bwastakenasequaltozero. -40 550 600 650 700 750 800 850 Epoch thesystemasafunctionofitsorbitalparameters.Wesimplified Fig.3. ThetransittimingresidualsforWASP-4balongwiththe thethree-bodyproblembyassumimgthatthesystemiscoplanar onesigmaerrorbars.Toppanel:Theobservedtransitmid-times andinitialorbitsofbothplanetsarecircular.Theorbitalperiod based on this work and others in the literature were subtracted of the perturber was varied in a range between 0.1 and 10 or- from the calculated times produced by our ephemeris. Lower bitalperiodsofWASP-4b.We generated1000syntheticO C diagrams based on calculations done with the Mercury pa−ck- panel:Acloserviewoftheavailabletransitmid-timesfrom2009 and2010. age(Chambers1999).WeappliedtheBulirsch–Stoeralgorithm tointegratetheequationsofmotion.Calculationscovered1150 days,i.e.860periodsofthetransitingplanet,thatarecoveredby observations.TheresultsofsimulationsarepresentedinFig.4. 103 OuranalysisallowsustoexcludeadditionalEarth-massplanets 100 closetolow-orderperiodcommensurabilitieswithWASP-4b. 102 andFpoerritohdecPaseanodfaatprearntsuirtbininggplpalnaentetwwithithasseemmii--mmaajjoorraaxxiissaa1 )Earth 10-1)upiter &onManuroruatyer20o10rb5itd(eir.iev.ead2t≥heaa1p)p,rpoexriiomdatPe2foanrmdumlaass M2 Holman2 M (Mp 101 10-2M (MpJ 100 ∆t 45π M2 P α3(1 √2α3/2) 2 (7) 10-3 ≃ 16 M ! 1 e − e − 10-1 ∗ 0.2 0.5 2.0 5.0 a P /P α = 1 (8) p b e a (1 e ) 2 2 Fig.4.Theupper-masslimitofahypotheticaladditionalplanet − thatcouldperturbtheorbitalmotionofWASP-4basafunction for the magnitude of the variation (in seconds) of the time of ratio of orbital periods of transiting planet, P , and the per- b interval(∆t)betweensuccessivetransits.Onecouldimaginean turber,P .Orbitslocatedinagreyareawerefoundtobeunsta- p exterior perturbing planet on a circular coplanar orbit twice as ble. farasWASP-4b (periodP 3.75daynotin meanmotionres- ≈ onance with the transiting planet). If such an imaginary planet hadamassof0.1M ,itwouldhaveinduced 5secvariations Jup 5. Concludingremarks ∼ inthepredictedtransitmid-timesofWASP-4b.Furthermore,the perturbercouldcauseradialvelocityvariationsoftheparentstar We have used the GROND multi-channelinstrument to obtain 13.78 m/s, which is below the radial velocity r.m.s. of the four-bandsimultaneouslightcurvesoftheWASP-4systemdur- ∼ WASP-4 residual equal to 15.16 m/s, presented in the analysis ingthreetransits(atotalof12lightcurves)withthe aimtore- ofTriaudetal.(2010).Although,afewoutliersarevisibleinthe finetheplanetandstarparametersandtosearchfortransittim- O C diagramweconsiderthepredictionofsuchanimaginary ing variations.We derivedthe final valuesforthe planetaryra- − planetintheWASP-4systemasimmature,becausetheweights dius R and the orbital inclination i by fixing the stellar radius p oftheO C pointsmightstillrequireanadditionaltermtoac- R and mass M to the independently derived values of Winn countfor−systematicsofunknownorigin. et∗al. (2009) an∗d Sanchis-Ojeda et al. (2011). We include the 7 Nikolovetal.:WASP-4bTransitObservationsWithGROND time-correlated“red-noise”inthephotometricuncertaintiesus- Triaud,A.H.M.J.,CollierCameron,A.,Queloz,D.,etal.2010,A&A,524,25 ingthe“time-averaging”methodologyandandbyrescalingthe Winn,J.N.Holman,M.J.andHenry,G.W.,etal.2007,AJ,133,1828 weightstoproducevaluefortheχ2 equaltounity.Wefurther Winn,J.N.,Holman,M.J.,Torres,G.,etal.2008,ApJ,683,1076 red Winn,J.N.,Holman,M.J.,Carter,J.A.,etal.2009,AJ,137,3826 performthelightcurvesanalysisbyminimizingtheχ2 function Winn,J.N.,Howard,A.W.,Johnson,J.A.,etal.2011,AJ,141,63 overallpassbandsandrunssimultaneouslyviatwoapproaches. Wilson,D.M.,Gillon,M.,Hellier,C.,etal.2008,ApJ,675,L113 First we modeled the data using theoretically predicted limb- darkeningcoefficientsfor the quadratic law. Second, we fit the lightcurvesforthelimb-darkening.Bothmethodsresultincon- sistentsystemparameterswithin<1%.Thesecondmethodpro- ducedlimbdarkeningparameterscompatiblewith the theoreti- cal predictions within the one-sigma errorbarsof the fitted pa- rameters. Weaddedthreenewtransitmid-timesforWASP-4b,derived a new ephemeris and investigated the O C diagram for out- − lierpoints.Wehavenotfoundcompellingevidencesforoutliers thatcouldbeproducedbythepresenceofasecondplanetinthe system.Wedidnotdetectanyshort-livedphotometricanomalies suchasoccultationsofstarspotsbytheplanet,whichwherede- tectedbySanchis-Ojedaetal.(2011).Atthetransitr.m.s.level ofourlightcurves( 2.2mmag)itwouldbechallengingtode- ∼ tectsimilaranomalies.Howeverwenotethatduetothebright- nessoftheparentstar,theshortplanetaryorbitalperiodandthe significant transit depth, the WASP-4 system is well suited for follow-upobservations. Acknowledgements. PartofthefundingforGROND(bothhardwareaswellas personnel)wasgenerouslygrantedfromtheLeibniz-PrizetoProf.G.Hasinger (DFG grant HA 1850/28-1). N.N. acknowledges the Klaus Tschira Stiftung (KTS)andtheHeidelbergGraduateSchoolofFundamentalPhysics(HGSFP) forthefinancial supportofhisPhDresearch. GMacknowledges thefinancial supportfromthePolishMinistryofScienceandHigherEducationthroughthe Iuventus Plus grant IP2010 023070. The authors would like to acknowledge LuigiMancini,JohnSouthworthandtheanonymousrefereebytheirusefulcom- mentsandsuggestions. References Agol,E.,Steffen,J.,Sari,R.,&Clarkson,W.2005,MNRAS,359,567 Beerer,I.M.,Knutson,H.A.,Burrows,A.,etal.2011,ApJ,727,23 Ca´ceres,C.,Ivanov,V.D.,Minniti,D.,Burrows,A.,etal.2011,A&A,530,5 Chambers,J.E.1999,MNRAS,304,793 Charbonneau,D.,Brown,T.M.,Latham,D.W.,&Mayor,M.2000,ApJ,529, L45 Claret,A.2004,A&A,428,1001 Eastman,J.,Siverd,R.,Gaudi,B.S.,2010,PASP,122,935 Gibson,N.P.,Pollacco,D.,Simpson,E.K.,etal.2008,A&A,492,603 Gillon,M.,Pont,F.,Moutou,C.,etal.2006,A&A,459,249 Gillon,M.,Smalley,B.,Hebb,L.,etal.2009,A&A,496,259 Greiner,J.,Bornemann,W.,Clemens,C.,etal.2008,PASP,120,405 Grillmair,C.J.,Charbonneau,D.,Burrows,A.,etal.2007,ApJ,658,115 Henry,G.W.,Marcy,G.W.,Butler,R.P.,&Vogt,S.S.2000,ApJ,529,41 Holman,M.J.,&Murray,N.W.2005,Science,307,1288 Holman,M.J.,Fabrycky,D.C.,Ragozzine,D.,etal.2010,Science,330,6000 Jha,S.,Charbonneau,D.,Garnavich,P.M.,etal.2000,ApJ,540,45J Johnson,J.A.,Winn,J.N.,Bakos,G.A´.,etal.2011,ApJ,735,24 Knutson,H.A.,Charbonneau,D.,Noyes,R.W.,Brown,T.M.,&Gilliland,R.L. 2007,ApJ,655,564 Lissauer,J.J.Fabrycky,D.C.,Ford,E.B.,etal.,2011,Nature,470,53 Mandel,K.&Agol,E.2002,ApJ,580L,171 Mazeh,T.,Naef,D.andTorres,G.etal.2000,ApJ,532,L55 Miralda-Escude´,J.,2002,ApJ,564,1019 Pollacco,D.L.,Skillen,I.,CollierCameron,A.,etal.2006,PASP,118,1407 Pont,F.,Zucker,S.,&Queloz,D.2006,MNRAS,373,231 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical recipes in C. The art of scientific computing, ed. T.S.A.V.W.T.F.B.P.Press,W.H. Queloz,D.,Eggenberger,A.,Mayor,M.,etal.2000,A&A,359,13 Richardson, L.J., Deming, D., Horning, K., Seager, S., Harrington, J., 2007, Nature,445,892 Sanchis-Ojeda,R.,Winn,J.N.,Holman,M.J.,Carter,J.A.,Osip,D.J.,Fuentes, C.I.,2011,ApJ,733,127 Southworth,J.,Hinse,T.C.,Burgdorf,M.J.,etal.2009,MNRAS,399,287 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.