Mon.Not.R.Astron.Soc.000,000–000(0000) Printed26January2016 (MNLATEXstylefilev2.2) Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert Galaxies: II. Warm Absorber dynamics and feedback to galaxies. 6 1 0 2 Sibasish Laha1⋆, Matteo Guainazzi2,3†‡, Susmita Chakravorty4, Gulab C. Dewangan5, n 5 and, Ajit K. Kembhavi . a J 1SchoolofMathematicsandPhysics,TheQueen’sUniversityofBelfast,Belfast,BT71NN,UnitedKingdom. 4 2EuropeanSpaceAstronomyCentreofESA,POBox78,VillanuevadelaCanada,28691,Madrid,Spain. 2 3InstituteofSpaceandAstronauticalScience,3-1-1Yoshinodai,Chuo-ku,Sagamihara,Kanagawa,Japan. 4Laboratoired’Astrophysique,UniversiteJosephFourier,CNRSUMR5571,Grenoble,France. ] 5InterUniversityCentreforAstronomyandAstrophysics,Postbag4,Ganeshkhind,Pune,India. A G 26January2016 . h p - ABSTRACT o r t This paper is a sequel to the extensive study of warm absorber (WA) in X-rays carried s a out using high resolution grating spectral data from XMM-Newton satellite (WAX-I). Here [ wediscusstheglobaldynamicalpropertiesaswellastheenergeticsoftheWA components detectedintheWAXsample.TheslopeofWAdensityprofile(n∝r−α)estimatedfromthe 1 v linearregressionslopeofionizationparameterξandcolumndensityNHintheWAXsampleis 9 α=1.236±0.034.WefindthattheWAcloudspossiblyoriginateasaresultofphoto-ionised 6 evaporation from the inner edge of the torus (torus wind). They can also originate in the 3 coolingfrontoftheshockgeneratedbyfasteraccretiondiskoutflows,theultra-fastoutflows 6 (UFO),impingingontotheinterstellarmediumorthetorus.Theaccelerationmechanismfor 0 theWAiscomplexandneitherradiativelydrivenwindnorMHDdrivenwindscenarioalone 1. candescribetheoutflowacceleration.However,wefindthatradiativeforcesplayasignificant 0 roleinacceleratingtheWAthroughthesoftX-rayabsorptionlines,andalsowithdustopacity. 6 Given the large uncertaintiesin the distance and volume filling factor estimates of the WA, ˙ 1 weconcludethatthekineticluminosityEK ofWAmaysometimesbelargeenoughtoyield : significant feedback to the host galaxy. We find that the lowest ionisation states carry the v i maximummassoutflow,andthesourceswithhigherFeMUTAabsorption(15−17A˚)have X moremassoutflowrates. r a Keywords: galaxies:Seyfert,X-rays:galaxies,quasars:individual: 1 INTRODUCTION Chandra and XMM-Newton observatories. Thesemass outflows may provide us with clues about how the SMBHs interact with Activegalacticnuclei(AGN)aresourcesofhugeenergycontribut- thehostgalaxyandhowtheyco-evolveoncosmictimescale.The ingtopanchromaticspectrarangingfromradiowavelengthstohard mainquestioniswhetherthemassoutflowsprovideenoughmate- X-raysandGammarays.Themostcommonlyacceptedpictureof rialfeedbacktothehostgalaxytosolvesomeofthecosmological anAGNisasupermassiveblackhole(SMBH)atthecentre,accret- puzzles,e.g.,chemicalenrichmentofthehostgalaxy,therelation ingmatterintheformofadisk.Apartfromemittinghugeluminos- betweenthemassofSMBHandthestellarvelocitydispersion,the ity,AGNalsoshowspectroscopicsignaturesincludingabsorption formation of large scale structures in the early universe, the dis- featuresintheUVandX-raybandsuggestingthepresenceofmass crepancy between visible to baryonic mass ratio in the Universe outflowsintheformofionisedclouds.Thesemassoutflowshave (Baloghetal. 2001). The underlying physics of structure forma- beenintheeyeofactiveresearchforthelastoneandahalfdecade tionisthatthebaryonsneedtocoolbeforetheycangravitationally after the advent of high resolution grating spectrometeres aboard collapse,otherwisethethermal/radiativeforcescanbalancethein- wardgravitationalpullandstopthecondensation.Evenwhenone includesradiativecoolinginthecosmologicalmodels,theobserved ⋆ [email protected],[email protected] fractionofvisibletobaryonicmassisnotobtained.Thispointsto † [email protected] someexternalheating(shock/outflow/external-radiation)actingon ‡ [email protected] 2 Laha et al. thebaryonicmatterwhichpreventsitfromcooling. Theoutflows anglewithinthegalaxy.Moreover,jetsoccurinjust10%oftheto- fromAGNcouldbethissourceofexternalheating. talAGNinnearbyuniverse,whichsuggeststhatamoreuniversal The ionised absorbers, popularly known as the warm ab- phenomemonshouldberesponsibleforAGN-Galaxyfeedback. sorbers (WA) have been studied extensively, both for individual InthisworkwecalculatetheWAdynamicsusingtheresults bright sources like NGC 5548, Mrk 509, NGC 3783, Mrk 766, from a previous paper of this series Lahaetal. (2014) (hereafter NGC4051,MCG-6-30-15,Mrk704,NGC5548etc.(Kaastraetal. L1).Wehavesystematicallyandhomogeneously analysedasam- 2012; Crenshawetal. 2003; Krongoldetal. 2008; Pontietal. pleofSeyfert1galaxiesandcharacterisedtheirWAproperties.The 2006; Turneretal. 2004; Lahaetal. 2011; Kaastraetal. 2002) WAXsampleisasubsampleoftheCAIXA(CatalogueofAGNin as well as in samples of AGN (Goffordetal. 2015a; Lahaetal. XMM Archive) sample which consists all radio quiet X-ray un- 2014;Tombesietal.2013;Winteretal.2012;Tombesietal.2010; obscuredAGNwhichwereobservedbyXMM-Newton by2008. McKernanetal.2007;Blustinetal.2005).However,therehasnot This list was cross-correlated with the RXTE X-ray sky survey beenaconclusiveagreementontheoriginoftheseoutflows,what (Revnivtsevetal.2004)whereby onlythose sourceswerekept in drives these outflows and how the feedback from these outflows thefinallistwhichhadacountrateofatleast1counts−1.Thefinal interactwiththehost-galaxy. WAXlisthas26sources.ThebroadbandEPIC-pnaswellashigh The first compilation of the existing WA studies using grat- resolutionRGSdataforeachsourcewereanalysedtoascertainthe ingdatawascarriedoutbyBlustinetal.(2005)wheretheauthors broadbandcontinuumaswellastheWAproperties.Simultaneous foundthatthekineticluminositiesoftheWAarelessthan1%of Optical Monitor (OM) data were used to constrain the UV SED bolometric luminosity of the source. The authors concluded that whichiscrucial fordetermining theWAproperties (seefor e.g., theWAmaynotprovidesufficientfeedbacktothehostgalaxyto Lahaetal.2013;Reevesetal.2013;Leeetal.2013). haveanyimpactonitsevolution.However,theauthorsnotedthat Out of the 26 X-raytype 1 AGN,17 (65%) sources haveat thevolumefillingfactorcouldplayacrucialroleincalculatingout- leastonewarmabsorbercomponent.TheWAXsampleprobesthe flowestimates.Theauthorsalsofoundthatthemassoutflowrates columndensityofNH =1020−23.5 cm−2,ionisationparameterof oftheWAexceedthemassaccretionratesoftheSMBHbyafactor logξ = −1to3.2, andoutflow velocityof0−104 kms−1.The ofseveraldecades.TheyattributedtheoriginoftheWAcloudsto ionisation parameter isdefined as ξ = Lion/ner2 where Lion is ‘toruswind’,wherethetorusisaneutralobscuringringlikestruc- the ionising luminosity of the source in the energy band 1-1000 turearoundtheSMBH(Urry&Padovani1995). McKernanetal. Ryd, ne istheelectron density of thecloud and r isthedistance (2007)studiedtheWAcharacteristicsinasampleofSeyfertgalax- ofthecloudfromthecentralengine.Atotalof33WAcomponents ies using high resolution Chandra data. The authors found that were detected and the ionisation parameter and the column den- the mass outflow rates and kinetic energy estimates are crucially sityweremeasuredwithover3σaccuracyinmostcases.Forafew dependent on theunknown volume fillingfactor of the warmab- WAcomponents,thevelocitycouldnotbeconstrained.Wefound sorber clouds. The mass outflow rates of the WA calculated by that the WA parameters show no correlation among themselves, themcouldequalthemassaccretionrateoftheSMBHevenfora withtheexceptionoftheionizationparameterversuscolumnden- volumefillingfactorofjust1%.Hence,thewarmabsorberscould sity.Theshallowslopeofthe logξversuslogvoutlinearregression be regarded as a potential feedback source. A combined UV ab- 0.12±0.03isinconsistentwiththescalinglawspredictedbyradi- sorberandX-rayWAstudyforasampleofsixbrightSeyfertgalax- ationormagneto-hydrodynamic-drivenwinds.Ourresultssuggest ieswerecarriedoutbyCrenshaw&Kraemer(2012).Theauthors alsothatWAandUltraFastOutflows(UFOs)donotrepresentex- found that even for moderately luminous sources, with bolomet- trememanifestationofthesameastrophysicalsystem.Wetestthese ricluminosityL ∼1043−45ergs−1,theionisedoutflows(WA resultsfurtherinourpresentworkusingthedynamicalparameters bol andUVabsorberscombined)canprovidesufficientfeedbacktothe oftheWA. hostgalaxies.Theauthorshaveobtainedwellconstrainedmeasure- Inthispaperweaimataddressingthefollowingquestions: mentsonthedistancesoftheabsorbersusingtheabsorptionfrom • AretheWAandtheUFOssametypeofoutflows,anddothey the excited states (in UV) and absorption variability (in X-rays). havesimilarorigin? ThreeoutofsixsourcesintheirsampleexhibitedWAwithkinetic • TheestimationofWAkineticenergyoutflowrate.Weusethe luminositiesintherange0.5−5%ofL .Atleastfiveofthesix bol comparisonofthequantityagainsttheAGNbolometricluminosity Seyfert1salsohavemassoutflow ratesthatare10−1000 times toestimatetheAGNfeedbacktothehostgalaxy. the mass accretion rates needed to generate their observed lumi- • Is there any correlation between WA absorbed flux and the nosities.TheseresultspointtothefactthattheAGNWAhavethe ionisingluminosityortheX-rayluminosity? potentialtodeliversignificantfeedbacktothehostgalaxy. • Whatistheoutflow/launchingmechanismofWAandhowdo MorerecentstudiescarriedoutbyTombesietal.(2013)and theycomparewiththeUFOsandUVabsorbers? Goffordetal. (2015a) involving the ultra-fast-outflows (UFOs), • WhatisthedensityprofileoftheWAclouds? whicharehighionisationandhighvelocityoutflowsinAGN,found thattheUFOsaremoreimportantintermsoffeedbackcomparedto Thispaperisorganisedasfollows:Section2describesthecal- thewarmabsorbers.TheUFOsyieldakineticluminositywhichis culationsandtheunderlyingassumptionsconsideredwhilederiv- comparabletothebolometricluminosityofthesource.Theorigin ingthedynamicalparametersofWA.Section3describesthemeth- of theUFOarepresumed tobefromtheaccretiondiskwinds. A odsofcorrelationsemployedinthiswork.Section4discussesthe similarstudybyKingetal.(2013)carriedoutcomparingtheWA, resultsfollowedbyconclusion. UFOandjetpropertiesfromthepublishedliteraturefoundthatthe jets are the most important feedback mechanism as compared to theWAortheUFO.However,feedbackfromUFOsmaybesignif- 2 WARMABSORBERENERGETICS icantincaseofhighEddington-ratio sources. Thefeedback from jetsarehighlycollimatedandextendtodistancesupto Mpcandas InourearlierworkL1weconstrainedtheWAparameters(ξ,N H suchtheyarenotabletodistributethematerialoveralargesolid andv )for asampleof Seyfertgalaxies. Inthissectionwede- out WarmabsorbersinXraysII(WAX-II) 3 scribethemethodswehaveusedtocalculatethedynamicalparam- whereV isthevolumefillingfactorofthecloud(seeSection2.5 f etersofWAfromthemeasuredWAparameters.Theseestimatesin- fordetails),L istheionisingluminosity,ξ istheionisationpa- ion volveseveralassumptions.Wediscusstheimplicationsandcaveats rameter,N isthecolumndensityandn isthehydrogendensity H H ofsuchassumptionsinthissection.Theerrorsonthederivedpa- ofthecloud.Thisdistanceestimatefollowsfromageometricalar- rameters are calculated following the methods of statistical error gument,whichmaynotalwayshold.r calculatedusingEqua- max propagationfromtheerrorsonthemeasuredparameters. tion 3 yields estimates as large as a few Mpc (modulo V ). We f discusstheinterpretationoftheseresultsinSec.4.4.1. WescaleallthedistanceswiththeSchwarzschildradiusofthe 2.1 WAradialdistance supermassiveblackhole(SMBH), TheradialdistancesoftheWAcloudsfromthecentralengineare 2GM bestestimatedusingthevariabilitystudiesofWAinresponsetothe r = . (4) s c2 continuumchanges(seefore.g.,Reevesetal.2013;Krongoldetal. 2007; Kaspietal. 2004; Nicastroetal. 1999, and the references Whileweusethesubscript“min”and“max”forconsistencywith therein).Suchastudyisbeyondthescopeofthispaper,andwillbe the literature published so far, we stress that the above estimates doneinafuturework.Inthispaperwehavecalculatedtheradial arenotcommensurable.Inthispaperwewillthereforerefrainfrom distancesusingthreedifferentconsiderations. calculating“meandistances”byaveragingr andr ,because min max Firstly,weconsiderthelaunchradiusr usingthevirialre- thestatisticalpropertiesofthedistributionofthisaverage(andthe min lationshipwhichassumesthattheobservedvelocityoftheWAis associated statistical uncertainties) are unknown. So r , r min dust theradialescapevelocityatthatdistancefromthecentralengine. and r will be treated separately. Wewill also treat separately max theestimatesofoutflowpropertiesdependentonthesedistances. GM r = . (1) min v2 out 2.2 Massoutflowrate AsacaveatwemustnotethatinafewcasesofX-raybinariesithas The estimate of the mass outflow rate depends on the geome- beenseenthattheouflowinggaseshavevelocitiesmuchlessthan try of the outflow which involves the knowledge of volume fill- theescapevelocityatthatradius(Milleretal.2006). ing factor, covering fraction, density profile and outflow geome- Secondly,thelaunchradiuscanalsobecalculatedbyassum- try(conicalorsphericalorother)oftheWAcloudswhicharestill ing that the WA originates at the base of the broad line region largely unknown. We calculate the outflow parameters following (BLR). A recent study by Czerny&Hryniewicz (2011) pointed Krongoldetal.(2007)whoconsideredabiconicalgeometryforthe outthatthebroadlineregion(BLR)inanAGNcouldoriginateas WAoutflow.Themassoutflowrateinsuchascenarioisgivenby, cloudsupliftedfromtheouterpartsoftheaccretiondiskwherethe temperatureis∼ 1000K.Beyondthedustsublimationradiusthe radiation pressure on the dusty clouds can sustain the radiatively M˙ =µπm N v r f(δ,φ), (5) drivenoutflows,whilebelowthisradiusthedustgrainssublimate out(max/min) p H out (max/min) andthereisnotenoughradiativepushonthecloudsandtheyfall wherem andN denotethemassofprotonandthecolumnden- p H back on thediskdue togravity. Netzer (2015) inarecent review sity of the WA clouds respectively. f(δ,φ) is a factor which de- hasdiscussedhowthedustsublimationradiuscangiveusanesti- pendsontheanglebetweenthelineofsighttothecentralsource mateoftheinnermarginsoftheBLR.Barvainis(1987)hadshown andtheaccretiondiscplane,δ,andtheangleformedbythewind that for AGN dust heated by the central luminous source, a dust withtheaccretiondisc,φ.Wehaveassumedavaluef(δ,φ)∼1.5 sublimationradiuscanbedefinedas (Krongoldetal.2007;Tombesietal.2013).Theratiooftheproton toelectronabundance(n /n )isexpressedasµandwehaveas- H e sumedaSolarvalueof 1/1.4. Wecompared thesemassoutflow r =R ∼0.5∗L0.5(1800/T )2.6f(θ), (2) dust Sub,graphite 46 sub estimates with a few other different methods in Appendix A and foundthattheyaresimilartowithinanorderofmagnitude. where L is the bolometric luminosity of the AGN in units of 46 1046ergs−1 andT isthedustsublimationtemperature(inK), Inourstudy,themassoutflowrateisscaledwiththeEdding- sub tonmassaccretionrate,whichisgivenby: andf(θ)isanangulardependent termwhichis1foranisotropic source.Hence,weassumef(θ)=1forsimplicity.Inawinddriven byradiationpressureondustycloudsr isthereforeanorder-of- L dust M˙ = Edd, (6) magnitudeestimateofthelaunchradius.InFigure1,leftpanelwe Edd ηc2 showhowther compareswiththevirialestimatesofr in dust min where L is the Eddington luminosity of the source, given by oursample. Figure2showshowthetwodistanceestimatesr Edd andr compareforeach25individualWA. min 1.3×1038(M/M⊙)ergs−1,andηistheaccretionefficiencyas- dust sumedtobe0.1. Afurtherestimateofthewarmabsorbingcloudlocationcan be obtained using the geometrical definition of “cloud”. We as- sume that its thickness ∆r, does not exceed its distance from 2.3 KineticLuminosity theionisingsource(Krolik&Kriss2001;Blustinetal.2005).As NH = nHVf∆r,imposing∆r = r yieldsanupper limitonthe The kinetic luminosity of the WA cloud isthe rate of the kinetic cloudlaunchingradius energyemittedbytheWAcloudandisgivenbytheequation: rmax= LξioNnHVf, (3) E˙K=LKE = 12M˙outvo2ut. (7) 4 Laha et al. Figure1.LEFT:Thedistributionofrdust(inblue)andrmin(inred),bothscaledwiththeSchwarzschildradiusofSMBHrs.SeeSection2.1fordetails. RIGHT:ThedistributionofrminoftheUFO(inblue)andWAX(inred),againscaledwithrespecttors.WefindthattheUFOandtheWAareseparatedata distance103rs. Figure2.Thedistributionoflog(rmin/rdust)forallthe25individualWAcomponentsoftheWAXsample.Wefindthatthedifferencedoesnotexceedan orderofmagnitude. Thisquantityisscaledby L inour study. Thebolometriclu- theytransfertheirmomentumtothecloud.Theamountofabsorp- Edd minosityL iscalculatedusingtheUV-XraySEDsgeneratedfor tiondependsontheopticaldepthofferedbythecloudstotheim- bol each source in our earlier study L1 in the energy range 1 eV to pingingphotons.Themomentumtranferredtothecloudduetothe 250 keV. absorptionofphotonsisgivenby L P˙ = abs,Tot. (10) 2.4 Momentumoutflowrate abs,Tot c ThemomentumoutflowrateoftheWAcloudisgivenby: The total absorbed luminosity Labs,Tot for each source is calcu- latedbyaddingtheL foralltheWAcomponentsdetectedina abs givensource. Similarly,fortheoutflowmomentumrateswehave P˙out =M˙outvout, (8) consideredthetotalvaluesofthequantititesP˙out,TotandP˙abs,Tot whilecorrelatingwiththesourceparameters. andtheradiationmomentumrateisgivenby, L 2.5 Volumefillingfactor P˙ = ion, (9) rad c The volume filling factor, V , like the radial distance, is hard f where L is the ionising luminosity of the source measured in to estimate. Warm absorbers have been predominantly found ion therange1-1000Ryd.Theincidentionisingphotonsinteractwith to be clumpy in the form of discrete clouds in multi-phase thewarm absorber clouds and get absorbed or scatteredwhereby ionisedmedium (see for e.g.,Bottorffetal. 2000; Krongoldetal. WarmabsorbersinXraysII(WAX-II) 5 2005; Miniuttietal. 2014; Huertaetal. 2014; Coffeyetal. 2014; 3.2 Correlationandlinearregressionmethods Lahaetal.2014).However,therehasnotbeenmuchconsensuson For correlation analysis we have used the freely available the clumping factor and hence the volume filling factor for WA Pythoncode byNemmenetal. (2012) usingtheBCEStechnique clouds, which varies from source to source. The previous stud- (Akritas&Bershady1996)tocarryoutthelinearregressionanal- ies on ionised absorptions in AGN indicate a large range in V , from 10−5 to 1 (Blustinetal. 2005; Kingetal. 2012). Followinfg ysisbetweenvariousWAdynamicalquantities.Inthismethodthe errorsinbothvariablesdefiningadatapointaretakenintoaccount, Blustinetal.(2005)wecalculatethevolumefillingfactorofeach asisanyintrinsicscatterthatmaybepresentinthedata,inaddi- of the warm absorbing clouds, assuming that the WA are purely tiontothescatterproducedbytherandomvariables.Wealsotested radiativelydriven.Insuchascenariothetotaloutflowmomentum the strength of the correlation analysis using the non-parametric rateofthecloudshouldequaltothemomentumduetoabsorption Spearman rank correlation method. There are three WA compo- andscatteringoftheionisingluminositybytheWA.Thisproposi- nentswhoseoutflowvelocityisconsistentwithzero.Wehaveig- tionmaynotalwaysbetrue,butthisgivesanorderofmagnitude nored those components in our analysis as we are mainly inter- estimateofV .ByequatingtheWAmomentumwiththeabsorbed f estedinthedynamicpropertiesofWA.Wealsodonotincludean andscatteredmomentumweobtain, additionalfiveWAcomponents whosevelocitycouldnotbecon- strained.Soourcorrelationanalysisincludes25WAcomponents. M˙ v ∼P˙ +P˙ , (11) out out abs scatt wherethescatteredmomentumisgivenby, 4 RESULTSANDDISCUSSION L P˙scatt = cion(1−e−τT) (12) 4.1 Thedensityprofileofwarmabsorbers TheopticaldepthforThomsonscatteringτ isgivenby The density profile of the WA clouds can be calculated using T the absorption measure distribution (AMD) method described by Holczeretal. (2007) and Behar (2009). The absorption measure τ =σ N (13) T T H distributionisdefinedasAMD= dN /dlogξ,andmeasuresthe H Usingequations5and11,thevolumefillingfactorcanbewritten distributionofhydrogencolumndensityalongthelineofsightas as, a function of the ionization parameter. It is calculated using the differentionicstatesofthesameatom(fore.g.,Fe)detectedina givensourceacrosstheX-rayspectrawithdifferentionizationpa- (L +L (1−e−τT))ξ V ∼ abs ion . (14) rameter and ionic column densities. We can estimate the AMD f 1.23m cL f(δ,φ)v2 p ion fromtheWAXsamplebyassumingthatthedifferentWAarethe WelistthevolumefillingfactorsofeachWAcomponentinTable9. manifestationofthedifferentstagesofthesameabsorber(seealso Tombesietal.2013).Takingthederivativeofthelinearregression relation,logN = alogξ+b,whereaandbarethebestfitlin- H 2.6 TheUFOdata ear regression slope and intercepts respectively (seeFigure 5 left panel,andTable10ofL1),wemaywritetheAMD∝ ξa,where Fortheultrafastoutflows(UFOs)wehaveusedthekinematicdata from Tombesietal. (2012) and Tombesietal. (2013). From their a = 0.31 ± 0.06 and b = 20.46 ±0.11. The slope of the ra- dial density profile (n ∝ r−α) from Behar (2009) is given by study, we have considered the minimum and maximum distance α=(1+2a)/(1+a)±∆a/(1+a)2.Bysubstitutingthevalue estimatesoftheUFOandtheircorrespondingoutflowparameters separatelyasdescribedinSection2.1. ofainthisequationweobtainα=1.236±0.034,whichissim- ilartothatobtainedbyBehar(2009)fromasmallbutwellstudied sampleoffiveSeyfertgalaxies(1<α<1.3).Thisconclusionval- idatesouroriginalassumptionthattheglobalWApropertiesinthe 3 CORRELATIONANALYSIS WAXsample could be considered representative of each individ- 3.1 Choiceofcorrelations ualsourceoutflowevolvingthroughdifferentphasesofionicstates andcolumndensities.Giustini&Proga(2012)hadsuggestedthat TherearethreeWAparameterswhichareindependentlymeasured theinformationwederivefromtheabsorptionlinesforindividual (ξ,N ,v )andfoursourceparameterswhichareindependently H out WAareinsufficienttocommentonthegrosspropertiesofthewind. derived(L ,L ,L ,andM )inourprevious studyL1. ion bol Xray BH Fromourearlierpropositionthereforethiseffectcanbemitigated Thecorrelationandlinearregressionanalysisinvolvingthesource toanextent,ifwestudytheWApropertiesinasample,asinWAX. parametersarereportedinTable1.CorrelationsinvolvingtheWA Wewilldiscusstheimplicationsoftheestimateddensityprofilein arecarriedoutinthreesets,reportedinTables2,3and4,wherethe Sect.4.3. outflowparametersareestimatedusingthevirialdistancer ,the min dust sublimation distance r and themaximum distance r , dust max respectively. We list the source luminosities in Table 5. The Ta- 4.2 Originofwarmabsorber bles 6-9 list the calculated distances and the outflow parameters inthesethreedifferentscenariosalongwiththeirstatisticalerrors. InthisSectionweaimatconstrainingthelocationwherethewind ThewarmabsorbedluminositiesarelistedinTable6.Whereverthe couldbelaunched.Thelaunchingscalemayprovidecluesonthe correlation involves the source parameters (for e.g., P˙ , L , outflow launching and acceleration mechanism. The virial esti- rad Xray L )wehaveaddedthecorrespondingWAkinematicalquantities matesoftheWAdistances,r ,intheWAXsamplerangefrom bol min foragivensourceiftherearemultipleWA.Weusethesuffix‘Tot’ 1016−1018 cm(∼0.01−1pc).Wecalculateanapproximatedis- wheneverthatisdone. tanceofthetorusfollowingKrolik&Kriss(2001),whichisgiven 6 Laha et al. byr ∼ L0.5 pc,calculated considering the dust sublima- thorsalsopredictedthatthereshouldbeanabruptdropintheioni- torus ion,44 tiontemperatureandtheeffectsofphoto-ionisation.Welisttheval- sationparameteratthepointoftransitionbetweentheUFOandthe uesofr inTable6.Wefindthatthetorusdistanceisonanaver- WA.FromFig.4rightpanel,wefindthatataradiusof∼ 103r , torus s ageanorderofmagnitudehigher(∼1−10pc)thantheestimated thereisadropintheionisationprameterbetweentheUFOandthe r fortheWA.Thismayput theWAintheinner torusregion. WA.Foranadiabaticallyshockedwind,thedropinthevelocityand min Inthelastoneandhalfdecadeofhighresolutionspectralstudyof theionisation parameter should beof similar magnitude. Hence, AGN,several authorshave calculatedthelaunching radiusof the foreverysourcewherebothWAandUFOhavebeendetected,we WAatadistancerangespanningsixordersofmagnitude,fromac- have compared the highest ionisation parameter of WA with the cretiondiskwindsat∼0.001−0.01pc(Elvis2000),toobscuring highestionisationparameterofUFOandtheircorrespondingout- torusat ∼ 0.1−1pc(Krolik&Kriss2001; Blustinetal.2005), flowvelocities.FromTombesietal.(2011)andL1,wefindthatthe tothenarowlineregion100−1000pc(Kinkhabwalaetal.2002; ratioofthemaximumUFOvelocitywiththehighestWAvelocity Ogleetal.2004).Tilldatetherehasnotbeenaconsensusaboutthe forthesourcesthatexhibitbothUFOandWAis∼10−30while originoftheWA.However, thedistancesestimatedfromtheWA thedrop intheionisationparameter islarger∼ 10−103.These response tothecontinuum changes insomesources haveyielded resultspointtothefactthattheWAcouldpossiblybeproducedby verywellconstrainedupper limits.Table10showsacompilation shockbytheUFOontheISMorthetorus. oftheWAdistancesforafewbrightwellstudiedsources,Mrk509, NGC4051,MR2251-178,NGC3516,andNGC3783.Theseesti- matesputtheWAcloudsatadistancerangeof∼0.001−100pc 4.3 Warmabsorbermechanismofacceleration andsometimeswthalowerlimitofr >71pc.FromTables6and InourpreviousstudyL1,wehadfoundthattheslopeoflogξ vs 10wefindthattheminimumdistanceestimatesofWArminmostly logvout intheWAXsampleis0.12±0.03whichisinconsistent agreewiththewellconstraineddistanceestimatestowithinanor- witheitherpurelyradiativelydrivenormagneto-hydrodynamically derofmagnitude,exceptforthesourceNGC4051,wherermin is driven(MHD) wind. Inthissectionweinvestigatethepossibility fourordersofmagnitudelargerthantheconstrainedestimates. ofdifferentdrivingmechanismsonthebasisofthecorrelationswe Krolik&Kriss(2001)havearguedthattheWAcouldpossi- obtainbetweenthedifferentoutflowparametersofWA. blybethecloudsformedfromevaporationoftheinneredgeofthe Panelsa,b,c,d,e,f,g,andhofFigure3showthecorrelation obscuringtorusduetothehighlyintensecentralradiation.Recent between thesource parameters (logP˙ , logL ) withthe out- rad bol studies by Czerny&Hryniewicz (2011) suggested that the BLR flowmomentumrateofWA,logP˙ andlogP˙ ,aswell out,min out,dust clouds arisebeyond the dust sublimation radius, wherethethrust astheWAkineticluminosity,logE˙ andlogE˙ . K,min,Tot K,dust,Tot onthedustgrainscoulddrivetheoutflow.Thus,thedustsublima- The correlation and linear regression parameters are reported in tionradiuscouldrepresent alowerlimittotheoutflow launching Tables 2 and 3. These correlations are particularly chosen to in- radius.Inourstudywefindthatthedustsublimationradiusforthe vestigatetheeffectofsourceradiationontheWAoutflowparam- WAXsourcesrangefrom∼0.1−1pc(seeTable6).FromFigure eters.Inanidealsituationofapurelyradiativelydrivenwind,we 1leftpanel,weseethatthedistributionoftheminimumlaunchra- wouldexpecttoseeastrongpositivecorrelationbetweenthesource diuslogrmin estimatedusingthevirialrelationoverlapswiththe luminosity and the WA momentum rates and kinetic luminosity. dustsublimationradiuslogrdust ofthesourcesintheWAXsam- However, we find that the correlations in most cases show sig- ple. Figure 2 shows that the virial distance estimates of the indi- nificantamountofscatter,implyingthataccelerationmethodsare vidualWAcomponentsagreewiththedustsublimationradiusfor more complex. Possibly the acceleration of the WA is caused by everysourcetowithinanorderofmagnitude. Theseresultspoint a complex combination of several mechanisms. Despite the scat- to the fact that the warm absorbers possibly originate in the in- ter, in almost all the cases we find a positive linear trend of in- nertorusregionintheformofheatedtoruswindsasproposedby creaseofWAoutflowmomentumrateandkineticluminositywith Krolik&Kriss (2001), with a significant amount of dust opacity thesourceluminosity. Frompanelsa,b,candd,wefindthatthe which can drive the outflow. There has been an extensive debate outflowmomentumratelogP˙ andlogP˙ oftheWA out,min out,dust in the last couple of decades as to whether the WA are dusty or cloudsincreaseswithboththeradiationmomentum ratelogP˙ rad not(seefore.g.,Leeetal.2001;Sakoetal.2003;Vasudevanetal. and bolometric luminosity logL of the source. This points to bol 2013;Ishibashi&Fabian2015;Thompsonetal.2015,andtheref- thefactthatastrongersourcefluxdrivesacloudwithhighermo- erences therein).Fabianetal.(2008) hadsuggested thatthepres- mentumrate.Frompanelseandfwefindthatthetotalabsorbed enceofdustenhancestheradiationpressureforThomsonscattering momentumrateoftheWAlogP˙ increaseswiththeoutflowmo- abs andthusdrivesmassoutflowsevenforsub-Eddington luminosity mentumratelogP˙ andlogP˙ pointingtothefactthat out,min out,dust sources. For the WA with low ionisation (logξ < 1) we would thecloudswithgreaterabsorbedmomentum ratehavegreaterto- expectthatdustplaysanimportantroleindrivingtheoutflows. taloutflowmomentumrate.Frompanelsgandhwefindthatthe A recent study by Pounds&King (2013) showed that the kinetic energy of the outflows increase with the increasing bolo- WA could arise out of a Compton cooled shocked wind, when a metricluminosity of the source. All of these correlations suggest fast,highlyionisedwind,launchedveryneartotheSMBH,loses that although the overall WA driving mechanism is complex, the mostofitsmechanicalenergyaftershockingagainsttheinterstellar incidentradiationfromthesourceplaysacrucialroleinaccelerat- medium(ISM). ForthesourceNGC4051,withablackholemass ingtheWAoutflows.Inotherwords,theWAcloudshaveastrong oflog(MBH/M⊙) ∼ 6,theauthorshavecalculatedtheshockra- radiativelydrivencomponent. dius to be ∼ 1017 cm. From Fig. 1 right panel, we find that the The radiative pressure by the photons are imparted on the launchingradiusoftheUFOandtheWAareseparatedataradius cloudsbyabsorptionandscattering.TheUVandsoftX-raypho- ∼103r .FromTable6wefindthattheSchwarzschildradiusr for tonsplaythemost important roleinimpartingmomentumdueto s s the WAX sample of sources ranges between 1012−14 cm, which absorption,whilethehardX-rayphotonsimpartmomentumtothe impliesthatthebreakintheradiuscomesataround1015−17 cm. cloud via Thomson scattering. The latter is a much weaker pro- Thisissimilartothose foundbyPounds&King(2013).Theau- cessincomparisontolinedrivenforce(Everett&Ballantyne2004; WarmabsorbersinXraysII(WAX-II) 7 Gallagheretal. 2015). However, the question arises, how a BLR tonratio(λ=L /L )source.Thisisthetypicalscenariofor bol Edd cloudlocatedveryneartothecentralsourcewithstrongX-rayir- the ultra-fast-outflows as discussed by Tombesietal. (2013) and radiationstillhasenoughboundelectronstoberadiativelydriven? Goffordetal.(2015b). Thisscenario hasbeen extensivelystudied byProga&Begelman Fabianetal.(2008);Ho¨nig&Beckert(2007)haveshownhow (2003); Proga&Kallman(2004). They suggest that if an already the presence of dust enhances the radiative thrust on the winds launchedcloudmovesupintheatmosphereoftheAGN,itsden- duetotheionising continuum. Evenfor sub-Eddington luminous sity falls and its temperature increases, and it gradually becomes sources,thecloudscangetathrustequivalenttosourcesemitting fullyionised,andatthatstageifitfailstoattaintheescapeveloc- at an Eddington rate. InSect. 4.2 wefindthat theWA can likely ity,itfallsbacktotheAGNdisk.These“failedwind”cloudscould originatefromthedustsublimationradiusintheouterpartsofthe havegainedenoughopacitytoshieldtheothercloudsfromtheX- accretiondisk or thedustytorus. Thispointstothepossibilityof rayionisingphotons,therebyhelpingthemtoflowout.Alimitation presence of dust in the WA for the clouds with lower ionisation inthis‘failedwind’scenario,isthat,iftheinfallingwindsscreen parameter∼ logξ < 1. Inadustdrivenscenarioonewouldex- the other parts of the wind from X-rays, we would expect to see pecttogetanegativeslopeoflogξ vslogv correlation,asthe out redshiftedX-rayabsorptionlinesfromthesewinds.Butexceptfor lowerionisation stateswillbedrivenfaster. Ontheother hand in twocasesintheWAXsample,wherethewarmabsorbervelocities apurelyradiativelydrivenwindscenariowewouldexpect apos- areconsistentwithzero,allotherWAareoutflowingwithrespect itive slope with higher ionisation states outflowing faster. In L1, tothesystemicvelocity.Wefindnotraceofthesescreening‘failed wefindthattheslopeoflogξvslogv correlationisnearlyflat out winds’. ∼0.12±0.03,whichmaypointtowardsacombinationoftheef- ImprovedsimulationsofradiativelydrivenwindsinAGNby fects of dust driven wind for the lower ionisation states and line Simetal. (2010) showed similar results that these winds could drivenwindforthehigherionisationstates. produce the higher energy absorption features (2 − 10 keV) of the spectrum of the quasar PG1211+143, but fail to produce the lower ionisation features Ne IX or O VII in the soft X-rays. This is due to the fact that the huge X-ray flux from a high Edding- 4.3.1 Alternativescenarios ton ratio source has fully ionised the cloud. A recent theoretical study by Higginbottometal. (2014) found that the purely radia- Early studies on magneto-hydrodynamical (MHD) winds by tively driven winds are more ionised than that was predicted by Blandford&Payne (1982) demonstrated that energy and angu- Proga&Kallman (2004), and as such these winds will have no lar momentum can be effectively removed magnetically in the UVorsoftX-rayspectrallines.So,ineffect,thepurelyradiatively form of outflows from accretion disks, leading to visible sig- drivenwindsscenarioisefficientonlyifthereisX-rayshielding. natures of collimated jets and uncollimated winds. More re- If indeed there is some form of X-ray shielding, we should cent studies by Kazanasetal. (2012); Fukumuraetal. (2010a,b); be able to detect that in the X-ray absorption spectrum. We find Everett&Ballantyne(2004)presentedtwodimensionalmagneto- aninterestingcorrelationinFigure5,rightpanel.Theratioofthe hydrodynamic winds, originating from the accretion disk winds total absorbed X-ray luminosity by the WA clouds Labs to that irradiated by a central X-ray quasi stellar object (QSO). of the incident X-ray luminosity (0.3−10 keV) is a constant at Fukumuraetal. (2010a,b) found that for the chosen density pro- Labs/LXray ∼5%acrosstheLXrayvalues.Theslopeofthelinear filen(r) ∝ r−1,thepredictedoutflow absorption featuresarein regressionbetweenlogLXrayandlogLabsis∼1. Theratioofthe goodagreementwiththeX-rayspectrafromseveralAGN.Inour quantityLabs,Tot/LXray = 1040.25/1041.5 = 0.056 atthepoint study we find that the slope of the density profile for the WA is wherethebestfitlinearregressionlineintersectstheY-axisinthe α = 1.236±0.034, consistent withtheassumption inthestudy figure,impliesa∼ 5%absorption.PerhapstheWAarescreening byFukumuraetal.(2010a)whoseconclusionscouldbeappliedto the outflowing clouds with lower ionisation stateslocated further theWAXsampleaswell.However, theauthorsalsomentionthat out from the central source radiation. The scatter in the correla- foraMHDwind,theUVspectraneedstobeverystrong,withan tionmaybetheresultofthedifferentviewinganglesfordifferent α >2,whichisnotthecasefortheWAXsources,whereα is OX OX sources. ˚ given by the expression 0.385log fν(2500A) (Tananbaumetal. TheotherpossibleradiativeaccelerationmechanismisThom- (cid:20)fν(2keV)(cid:21) son scattering, which is particularly relevant for highly ionised 1979).AnobservableofanMHDdrivenwindisthattheoutflow cloudswhoseatomshavebeenstrippedofftheirboundelectrons. velocityisproportionaltotheionisationparameteroftheoutflow- Poundsetal.(2003);King(2010)haveextensivelystudiedthecase ingcloud.InL1wehadstudiedthecorrelationbetweenv and out of an electron scattered wind and conjectured that in such a sce- ξfortheWAXsampleofwarmabsorbersandfoundthatthelinear nario one would expect the momentum outflow rate P˙ of the regression slope 0.12±0.03 isinconsistent withthescaling law out cloudtobeproportionaltotheincidentradiationfieldP˙rad,i.e.,a predictedforMHDwinds(vout ∝ξ).InFigure6weshowthelin- correlationbetweenlogP˙ andlogP˙ wouldyieldalinearre- earregressionresultsforindividualsources,andwefindthatthey out rad gressionslopeof1.FromFig.3,panelsaandb,wefindthatthe haveawiderangeofvaluesfordifferentsources,from0.00±0.05 slopesofthelinearregressionare1.06±0.10and1.20±0.19for inNGC3783to0.89±0.06inMRK704.Thisindicatesthatthe logP˙ vslogP˙ andlogP˙ vslogP˙ respectively. drivingmechansimsofWAisvariedandnotonesingleeffectcan out,min rad out,dust rad ThisissimilartothatexpectedforaThomsonscatteredcloud.For explainallthecases. aThomsonscatteredwind,P˙ andP˙ ispredictedtobeofsim- Inviewofthediscussioninthissectionwesuggestthattheac- out rad ilar magnitude. However, for the WA we find that P˙ is an or- celerationmechanismforwarmabsorbersiscomplex.Notasingle out der of magnitude lower than P˙ . We conclude that in the WA physicalprocesscancapturetheentirephysics.However,radiative rad clouds,Thomsonscatteringmaynotcontributetowardsaccelerat- accelerationbyUVandsoftX-raylineabsorptionisapredominant ingthecloud.Itistobenotedthatthisprocessispredominantfor mechanism.ThecontributionsfromMHD-drivenmechanismscan- highlyionised,highcolumndensitycloudsfacingahighEdding- notberuledout. 8 Laha et al. 34.0 34.0 RS=0.47,Pnull=0.09 33.5 RS=0.34,Pnull=0.23 33.5 y=1.20−+00..1199x−8.90−+66..5555 33.0 y=1.06−+00..1100x−4.07−+33..5533 33.0 )Tot32.5 )Tot32.5 min,32.0 dust,32.0 ˙og(Pout,3311..05 ˙og(Pout,3311..05 l l 30.5 30.5 (a) (b) 30.0 30.0 29.5 29.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 log(P˙ ) log(P˙ ) Rad Rad 34.0 34.0 RS=0.45,Pnull=0.10 RS=0.59,Pnull=0.02 33.5 y=1.11−+00..1177x−17.59−+77..5588 33.5 y=1.28−+00..2233x−24.92−+1100..5544 33.0 33.0 )Tot32.5 )Tot32.5 ˙og(Pout,min,333121...005 ˙og(Pout,dust,3321..05 l l 31.0 30.5 30.0 (c) 30.5 (d) 29.5 30.0 43.0 43.5 44.0 44.5 45.0 45.5 46.0 43.0 43.5 44.0 44.5 45.0 45.5 46.0 log(L ) log(L ) Bolometric Bolometric 33.5 33.5 RS=0.56,Pnull=0.03 RS=0.37,Pnull=0.19 33.0 y=0.77−+00..1177x−6.93−+55..4433 33.0 y=0.81−+00..1155x−5.68−+44..9966 32.5 32.5 32.0 32.0 ˙P)abs31.5 ˙P)abs31.5 g( g( o o l l 31.0 31.0 (f) 30.5 30.5 (e) 30.0 30.0 29.5 29.5 29 30 31 32 33 34 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 log(P˙ ) log(P˙ ) out,min,Tot out,dust,Tot 43 43 RS=0.52,Pnull=0.058 RS=0.60,Pnull=0.02 42 y=1.36−+00..2200x−21.10−+99..0077 42 y=1.58−+00..3300x−30.85−+1133..5599 )Tot41 )Tot41 min,40 dust,40 K, K, ˙E 39 ˙E 39 g( g( lo 38 lo 38 (h) (g) 37 37 36 36 43.0 43.5 44.0 44.5 45.0 45.5 46.0 43.0 43.5 44.0 44.5 45.0 45.5 46.0 log(L ) log(L ) Bolometric Bolometric Figure3.Thecorrelation between theWAoutflow momentumrate derived usingthevirial distance scale P˙out,min,Tot andthe dustsublimation radius P˙out,dust,Tot,withthesourceparameters.SeeSection4.3fordetailsandTables2and3forthecorrelationparameters. WarmabsorbersinXraysII(WAX-II) 9 10 24 Rs=−0.40, Pnull∼0.049 Rs=−0.46, Pnull∼0.019 y=−0.97−+00..1144 x+25.38−+00..7744 8 y=−2.22−+00..4411 x+11.50−+11..7711 23 6 ) NH22 gξ 4 ( o g l o l 2 21 0 20 −2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 log(r /r) log(r /r) min s min s Figure4.Theevolutionofthewarmabsorberobservablesasafunctionofthelaunchingradiuscalculatedassumingvirialrelationship.Thebluedatapoints aretheUFOfromTombesietal.(2013).TheupperandlowerlimitsoftheUFOdatapointsareshowninbluearrow-heads.Thecorrelationsareexplainedin Section3.2 42.5 43.5 RS=0.61,Pnull=0.01 R =0.60,P =0.023 S null 42.0 y=0.86−+00..1177 x−20.52−+44..1177 43.0 y=0.93+00..1111 x +1.18+00..4433 − − ) Å41.5 42.5 7 1 ) − ot (15 41.0 bs,T42.0 TA La U40.5 ( 41.5 Labs, log g 40.0 41.0 o l 39.5 40.5 39.0 40.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 log(M˙out,min,Tot) logLXray(0.3−10keV) Figure5.LEFT:Thecorrelation between theoutflow massoutflow ratevs absorbedluminosity bytheUTA.RIGHT:Thecorrelation between theX-ray luminosityandthetotalwarmabsorbedluminosityforeachsource. 4.4 TheWAfeedbacktogalaxies tion3. Crenshaw&Kraemer(2012)havealsocalculatedr of max theorderof1023−1026 cm∼100kpc−100MpcforWAinsev- 4.4.1 Caveatsonrmaxestimates. eralsources,usingequation3.ThesevaluesimplythattheWAcan befoundmuchbeyondthehostgalaxiesandmaybesometimesin Inthissectionwediscussthecaveatsandshortcomingsofthees- theintergalacticmedium(IGM).MostoftherobustWAdistance timatesofr .Firstly,r arisesfromageometricalconstraint max max estimates from variability studies put them between 0.001pc to ∆r = r,where∆r isthethicknessofthecloudandristhedis- fewtensof pc(seeTable10),whichinturnquestionsthevalidity tanceoftheinnersurfaceoftheWAcloudfacingtheionizingra- ofequation3. diation,wheretheionisationparameterξ forthecloudisdefined. Keeping in mind these caveats, we estimate the outflow pa- Theequalityimpliesthatinnersurfacedistanceofthecloudfrom rameterscorrespondingtor anddiscusstheresultsinthesec- theionisingsourceandthecloudthicknessareequal.Theinnersur- max tionsbelow. facedistanceandthethicknessofthecloudareentirelyunrelated quantities.Insteadtheoutersurfacedistanceofthecloud(R)could putalimitonthethicknessofthecloud(∆r 6 R).Butunfortu- 4.4.2 WAfeedback nately,wedonothaveameasureoftheouterextentofthecloud. However, keeping inmindtheoutflowliteraturepublished sofar, A measure of the WA feedback to host galaxies can be obtained wehavecalculatedrmaxusingequation3foreveryWAcomponent bystudyingtheWAmassoutflowrateM˙out incomparisontothe foracomparison. SMBHmassaccretionrateM˙ andthekineticluminosityofthe acc Secondly, from Table 6 we find that at least one of the WA outflow E˙ incomparison tothe bolometric luminosity L K,out bol has r ∼ 1Mpc and five others have r ∼ 100kpc. of the source. Some of the most interesting questions regarding max max Tombesietal.(2013)inacompilationofthewarmabsorberstudies the AGN-galaxy co-evolution can be answered by observational foundsimilarr rangingupto1025 cm∼10Mpc,usingequa- studies of outflow impact on the host galaxies. For e.g., chemi- max 10 Laha et al. Figure6.Theindividualplotsforlogξvslogvoutforthesourceswith2ormorecomponentsofWAintheWAXsample.Thetitleofeachplotreportsthe resultsofthebest-fitwithafunctionvout=A×ξa.Theyellowboxesrepresenttheenvelopeofthebest-fitfunctionscorrespondingtoa1−σerroronthe bestfitparameters. cal enrichment of the host galaxy, the relation between the mass isrequiredforthemassoutflowratesoftheWAnottogreatlyex- ofSMBHandthestellarvelocitydispersion(M −σrelation),the ceed theaccretion rate. Thelargemass outflow rateas compared formationoflargescalestructuresintheearlyuniverseandthere- tothemassaccretionrateindicatesthatmostofthematterwhich lationbetweenSMBHandgalacticbulgegrowth.DiMatteoetal. is approaching the black hole is being expelled and only a small (2005);Hopkins&Elvis(2010)havedemonstratedthatanoutflow fractionisreachingtheblackhole. withE˙ /L aslow as∼ 0.5% cangivesufficientfeedback to FromFigure8rightpanelwefindthatthemoremassiveout- K bol thehostgalaxytostopthecoolingflowsinthehostgalaxywhich flowsaretheoneswhichhavelowercolumndensities(N )oral- H supplytherawmaterialtotheaccretiondisk.Seyfertsareprimarily ternatively lower ionisation parameter ξ, for unit volume filling hostedinspiralgalaxies,forwhichthispercentageismuchlower, factor.PreviousstudiessuggestedthatFeMshellunresolvedtran- aslowas0.1%(Gasparietal.2011,2012)toaffectthehostgalaxy, sition array (UTA) absorption could carry away the largest mass asagainstthemorecompactellipticalgalaxies. outflows (Holczeretal. 2005; McKernanetal. 2007). We calcu- lated the absorbed luminosity for each warm absorbed source in From Figure 7 and Table 9 we find that the WA maximum thewavelengthrange15−17A˚ whichweassumetobetherepre- kineticenergycanexceedthebolometricluminosityoftheAGN, sentativeoftheUTAabsorption.Fig.5leftpanel,showthatthereis sometimesevenbyanorderofmagnitude, forunitvolumefilling acorrelationbetweentheUTAabsorbedluminositywiththetotal factor V and assumingr estimateinequation 3.However, if f max wemultiplyE˙ ofeachoftheWAcomponentbytherespec- massoutflow rate. Thelinear trendsuggests that higher UTA ab- K,max sorptionleadstohighermassoutflowrates.Thisindicatesthatthe tiveV (seeTable9),weobtainthebluepointsinFig.7.Wefind f UTAabsorbersmaybethedominantmassoutflowcomponent. thataftertakingintoaccountthevolumefillingfactor,thekinetic luminosityoftheWAare< 0.5%L .Thereishowever,alarge bol uncertaintyintheestimateofthefillingfactor. From Figure 8, left panel, we find that the distribution of 4.5 TheWAandtheUFO:Aretheysimilaroutflows? the maximum mass outflow rates of the warm asorbers (red his- tograms), scaled with respect to the Eddington mass accretion Therehasbeenlongstandingquestionastowhetherthewarmab- rate, exceed the latter by several orders of magnitude (∼ 105), sorbersandtheUFOsarethesametypeofoutflows.Ouranalysisin forunitvolumefillingfactor.PreviousstudiesbyMcKernanetal. L1hadshownthattheWAandtheUFOdonotlieonthesamecor- (2007) and Crenshaw&Kraemer (2012) have also found that relationslopeintheparameterspacesofξ,N andv ,andhence H out M˙ /M˙ is of the factor 10 − 1000 for unit volume fill- mostprobablynotthesametypeofoutflow.Inprinciple,WAand out Edd ing factor. In a study on the WA of the source MR 2251-178, UFOsdenotetwoverydifferenttypesofcloudwithdistinctlydif- Goffordetal.(2011)havefoundthataclumpingfactorof∼10−3 ferentξ,N andv distributions.Belowwediscusstherelation H out