W Mass results from Tevatron and LHC AlexMelnitchoukforATLAS,CDF,CMS,D0andLHCbCollaborations,a UniversityofMississippi,University,Mississippi,38677,USA Abstract. MostrecentresultsofWbosonmassmeasurementsfromTevatronexperiments(CDFandD0)inpp¯ collisionsat √s=1.96GeVarereported,using0.2 fb 1and1.0 fb 1datacollectedatCDFandD0,respectively. 2 − − ThemeasurementsofW bosonpropertiesatLHCexperiments(ATLAS,CMS,andLHCb)in ppcollisionsat 1 √s = 7TeV,usingdatacollectedbeforeSummer2011,arepresented.Thesemeasurementsareessentialatthe 0 2 preparationstageoftheWbosonmassmeasurementsatLHC.ChallengesforWmassmeasurementattheLHC incomparisonwiththeTevatronareoutlined.ProspectsforWmassprecisionwithupcomingmeasurementsand n itsimplicationsarediscussed. a J 4 1 Introduction calorimeter and plug calorimeter (η < 2.8) while elec- 2 | | trons in D0 [5] are reconstructed in the central and end- ] MeasurementoftheW bosonmass(MW)providesuswith cap calorimeters (η < 1.05 and 1.5 < η < 3.2). Here x a uniquely powerful key to uncovering the origin of the η= lntan(θ/2,an|d|θisthepolaranglew|it|hrespecttothe e − electroweak symmetry breaking and learning about new protondirection.BothCDFandD0requiretightelectrons - p physics.Atthelooplevel,Wbosonisconnectedwiththe in the centralcalorimeter(η < 1.05)forW eνcandi- | | → e topquarkandtheHiggsbosonviatheradiativecorrections dates.Electronenergiesaremeasuredwiththecalorimeter, h totheWmass.Henceprecisemeasurementsofthemasses while electron direction is measured with tracking detec- [ of the top quark and W boson allow us to constrain the tors,usingtracksthatarematchedtoelectronclusterinthe 1 mostprobablemassrangeofthe Higgsbosonmass. Cur- calorimeter. v rentworldaverageforWmassis80.399 0.023GeV[1]. Muons are identified by a track in the muon system ± 4 Current world average for top quark mass is 173.2 0.9 matched to a track in the central tracking system. Mea- 3 GeV [2]. These measurements combined with other±pre- surements include the muons reconstructed in the central 1 cisionmeasurementstellusthatthemassoftheStandard- muon extension sub-detector which extends the coverage 5 ModelHiggsbosonis lowerthan161GeV at95%confi- from η <0.6to η <1. . | | | | 1 dence level[3]. With improvedprecisionof the W boson 0 mass measurementtighter constraintscould be placed on 2 the Higgsbosonmass. Compatibilityof such tightercon- 3 Overviewof W mass measurement 1 straintsfromprecisiondatawiththeresultsfromongoing : v direct Higgs boson searches or lack thereof would be a W boson mass is measured using three transverse kine- i criticalpieceofinformationforunderstandingelectroweak maticvariables:thetransversemass X symmetrybreakingmechanism. m = 2pe,µpν(1 cos∆φ), the the transverse momen- r T q T T − a tumofthelepton1( pe,µ)andneutrino(pν)transversemo- T T mentum,where∆φistheopeninganglebetweentheelec- 2 Identification of Electrons and Muons at tron(muon)andneutrinomomentaintheplanetransverse CDF and D0 to the beam. Neutrino transverse momentum (pν) is in- T ferred from the imbalance of transverse energy. We also Electronsare identified as an electromagnetic(EM) clus- refertothisobservableasmissingE (MET). T terreconstructedwithasimpleconealgorithm.Toreduce A sophisticated parametrizedMonte Carlo simulation the background of jets faking electrons, electron candi- isusedformodelingthesevariablesasa functionof M . W dates are requiredto have a large fractionof their energy M isextractedfromabinnedmaximum-likelihoodfitbe- W deposited in the EM section of the calorimeter and pass tween the data and simulation. Fast simulation includes energyisolationandshowershaperequirements.Electron modelsofelectron(muon),recoilsystem,andbackgrounds. candidatesareclassifiedastightifatrackismatchedspa- Electronefficiencies,resolutionandenergyscale parame- tially to EM cluster and if the track transverse momen- terizationsaretunedtoZ eedata. tum is close to the transverse energy of the EM cluster. → InCDF[4]electronsarereconstructedbothinthecentral 1 electronormuoninthecontextofthisusage,D0usesonly electron channel, whereas CDF uses both electron and muon a e-mail:[email protected] channelsforM measurement W EPJWebofConferences Recoilsystemrepresentsenergydepositedinthecalorime- CDF II ∫ L dt ≈ 200 pb-1 ter from all sources exceptthe electron(s).Recoil system p 0 p/ consistsofthreemajorcomponents:hardrecoil(particles ∆ Scale correction = (-1.64±0.01 ±0.06 )x10-3 stat slope thatcollectivelybalancethe p oftheW ofZ boson),un- T derlying event, and additional interactions. Contribution -0.001 from the third component depends on the instantaneous luminosity. Hard recoil is modeled using the full detec- tor simulation, while the other two components are de- scribed by real data events. Full recoil model is tuned to -0.002 Z ee data, using imbalance between the Z boson mo- me→ntum measured with electrons(muons)and with recoil J/Ψ→µµ data system. Sourcesof backgroundsto W e,µν eventsin- cludeW →τν→e,µνν,QCD,andZ →→ee,µµprocesses. -0.0030 0.2 0.4 <1/pµT> (GeV-01).6 ∫ CDF II L dt ≈ 200 pb-1 4 Lepton Energy Scale Calibration nts / 0.01 4000 SE = 1 ± 0.00025stat Dominant uncertainties in M measurements come from eve W χ2/dof = 17 / 16 leptonenergyscalemeasurements.Tofirstorderfractional errorontheleptonenergyscaletranslatestofractionaler- 2000 rorontheWmass[6]. D0determineselectronenergyscaleusinghighp elec- T tronsfromZ eedecays.Precisionofsuchcalibrationis → limitedmostlybythesizeoftheZ eesample. → CDF relies on tracking detector for both electron and 0 1 1.5 muon energy scale calibration. First tracking detector is E/p (W→eν) calibrated using J/ψ µµ events. J/ψ invariant mass is → Fig.1.Top:fractionalmuonmomentumcorrectionasafunction measuredasafunctionofmuonmomentum.Fig.1shows ofinversemomentum.Bottom:ratioofelectronenergymeasured the correction needed to make measured J/ψ mass to be inthecalorimetertoelectronmomentummeasuredbythetrack- atitsPDGvalue(overalloffset)andindependentofmuon ingsysteminW eνevents. momentum (slope). This correction was implemented in → the simulation by adjusting the energy-loss model. Then tracker calibration is transported to the calorimeter using W eν electrons near the peak of the E/p distribution, → shownalsoinFig.1. CDF Run 0/I 80.436 ± 0.081 5 Results and Prospects D0 Run I 80.478 ± 0.083 CDF Run II 80.413 ± 0.048 M resultsfromD0[7]andCDF[8]alongwithotherM W W measurementsandcombinationsareshowninfFig.2.D0 Tevatron 2007 80.432 ± 0.039 result 80.401 0.021(stat) 0.038(syst) GeV = 80.401 D0 Run II 80.402 ± 0.043 ± ± 0.043GeV agreeswith theworld averageandthe indi- ±vidual measurements and is more precise than any other Tevatron 2009 80.420 ± 0.031 MW measurement from a single experiment. CDF result LEP2 average 80.376 ± 0.033 80.413 0.034(stat) 0.034(syst)GeV=80.413 0.048 GeV. Fi±g. 3 shows a±comparison of observables b±etween World average 80.399 ± 0.023 D0 1fb 1 W eν data and fastsimulation. Fig. 4 shows July 09 corresp−onding→muonchannelplotsforCDF0.2fb 1 mea- 80 80.2 80.4 80.6 − m (GeV) surement. In both CDF and D0 measurements dominant W experimentalsystematicerrorisduetoleptonenergyscale, whereas dominanttheoretical error is due to PDFs. Cur- Fig.2. SummaryofthemeasurementsoftheWbosonmassand rentlybothCDFandD0experimentsperformedWboson their average. The result from the Tevatron corresponds to the values which includes corrections to the same W boson width mass measurements only on small fraction of their data. and PDFs. The LEP II results are from [9]. An estimate of the These measurementlead to 31 MeV W mass uncertainty worldaverageoftheTevatronandLEPresultsismadeassuming fromTevatronandtoworldaverageuncertaintyof23MeV. nocorrelationsbetweentheTevatronandLEPuncertainties. Based on electroweak fits most probable Higgs mass valueis92GeV,massregionabove161GeVisexcluded at 95% confidence level. If world average uncertainty is XXIIndHadronColliderPhysicsSymposium GeV10000 (a) D0, 1 fb-1 DFAatSaT MC GeV20000 (b) D0, 1 fb-1 DFAatSaT MC GeV20000 (c) D0, 1 fb-1 DFAatSaT MC 0.5 7500 χ2B/daocfk =g 4r8o/u49nd 0.5 15000 χ2B/daocfk =g 3r9o/u31nd 0.5 15000 χ2B/daocfk =g 3r2o/u31nd s/ s/ s/ nt nt nt ve 5000 ve10000 ve10000 E E E 2500 5000 5000 χ χ χ 2 2 2 0 0 0 -2 -2 -2 50 60 70 80 90 100 25 30 35 40 45 50 55 60 25 30 35 40 45 50 55 60 mT (GeV) peT (GeV) ET (GeV) Fig.3. Eelectronm ,p ,andMETdistributionsinW eνD0dataandfastsimulation(fastmc).Addedbackgroundisshownaswell. SignedχdistributionTsarTeshowninthebottomofparto→feachplot.Signedχisdefinedasχ =[N (fastmc)]/σ foreachpointinthe i i− i i distribution,N isthedatayieldinbiniandσ isthestatisticaluncertaintyinbini. i i ∫ ∫ ∫ CDF II L dt ≈ 200 pb-1 CDF II L dt ≈ 200 pb-1 CDF II L dt ≈ 200 pb-1 events / 0.5 GeV 1000 events / 0.25 GeV 1000 MW = χ(28/0d3o2f 1= ± 7 626 /s t6at2) MeV events / 0.25 GeV 1000 MW = χ(28/0d3o9f 6= ± 4 646 /s 6ta2t) MeV 500 MW = (80349 ± 54stat) MeV 500 500 χ2/dof = 59 / 48 060 70 80 90 mT(µν) (GeV1)00 030 40 50pT(µ) (GeV) 030 40 50pµT(ν) (GeV) Fig. 4. Distributions of M observables in CDF measurement (muon channel). Blue – data. Red – fast simulation. Fit results and W statisticalerrorsareindicated.Left:m .Middle:muon p .Right:neutrino p . T T T reduced to 15 MeV then most probable value and exclu- quarks.Qualitativelythesametypeofasymmetryasafunc- sion limit would become 71 GeV and 117 GeV respec- tionofW bosonrapidityisexpectedasincaseofproton- tively[10].Theseestimatesaremadewiththeassumptions antiprotoncollisions.Howevertheshapeisexpectedtodif- ofnochangeinthecentralvaluesofWbosonmassandtop fercomparedtoproton-antiprotoncollisionssincevalence quarkmassandwithtopquarkmassuncertaintyof1GeV. quarks and sea quarks have different momentum fraction WiththefullTevatrondatasetprecisionof15MeVmaybe distributions.BesidesthetotalnumberofproducedW+ is possible[6]. expected to exceed that of W since proton contains two − valence u quarks and one valence d quark. The inclusive ratio of cross sections for W+ and W boson production − 6 W boson measurementat the LHC was measured by CMS to be 1.43 0.05 [11]. Moreover, the shapes of W+ and W p spec±tra are expected to be − T different. Hence, they need to be measured and modeled W mass measurementsat the LHC is expectedto involve separately.RecentlyATLASmeasuredW boson p spec- additionalchallengesin comparisonwith the correspond- T trum [15], shown in Fig. 5, which can be consideredfirst ingmeasurementsattheTevatron.First,muchhighernum- steptowardsunderstandingthisobservableattheprecision berofadditionalinteractions,whichproduceinthedetec- needed for W mass measurement. Another input needed tor largeenergydeposits, uncorrelatedwith the W boson. for W mass measurementis precise knowledge of parton Second,specificsoftheW bosonproductionmechanisms. distributionfunctions(PDFs).SinceW chargeasymmetry Incaseofproton-antiprotoncollisionsW+(W )ispro- − as a functionof rapidityis drivenby partondistributions, ducedwith valenceu and d¯(d and u¯) quarks.Total num- bymeasuringtheasymmetrypartondistributionfunctions ber of producedW+ and W is the same. As the u quark − can be constrained. Asymmetry in the W boson rapidity tendstocarryahigherfractionoftheproton’smomentum distributionhastraditionallybeenstudiedintermsofcharged than the d quark, the W+(W ) is boosted, on average, in − lepton asymmetry, as W boson rapidity cannot be deter- theproton(anti-proton)direction.Henceasymmetryinthe minedontheevent-by-eventbasis,sinceneutrinoescapes production rate between W+ and W as a function of W − the detection. Charged lepton asymmetry,is the convolu- rapidityis observed.However,W boson p spectrum,in- T tionofW productionandV-A(vector-axialvector)decay tegratedoverall rapiditiesis identicalfor W+ andW . in ± − asymmetries.Asymmetryisdefinedasaratioofdifference caseofproton-antiprotoncollisions. andsumofpositivelychargedandnegativelychargedlep- Incaseofproton-protoncollisionsW+(W )isproduced − tons.ATLAS[12],CMS[13]andLHCb[14]alreadyper- with valence u and sea d¯ quarks (valence d and sea u¯) EPJWebofConferences -1]V 10-1 13. CMSCollaboration,JINST3S08004(2008) Ge ATLAS 14. LHCbCollaboration,JINST3S08005(2008) W ) [pT10-2 ∫Ldt ≈ 31 pb-1 1156.. ALTHLCAbSpuCbollilcanbootreatLioHnC,abr-XCiOv:N11F0-280.61310-0839 d σ / dfid 10-3 Data 2010, s = 7 TeV 1178.. ACTMLSApSupbulibclniconteoCteMAST-LPAASS--CEOWNKF--1210-1010-5129 σ ) ( fid 10-4 1/ ( 10-5 Data RESBOS 10-6 S 1.6 O 1.4 B S 1.2 RE 1 Data / 000...4680 50 100 150 200 250 300 pW [GeV] T Fig.5.NormalizeddifferentialcrosssectionasafunctionofW boson p obtained fromthecombined electronandmuon mea- T surements,comparedtotheRESBOSprediction. formed first measurements of lepton charge asymmetries [16,17,18] Since sea quarksare involved in W boson production at the LHC, both charmand strange quarks,unlike at the Tevatron,contributesignificantly.PDFsofbothcharmand strangequarksarecurrentlyverypoorlyconstrained.Sig- nificantimprovementsinPDFprecisionwouldbeneeded forpreciseW massmeasurementattheLHC. References 1. The Tevatron Electroweak Working Group for the CDF and D0 Collaborations, Updated Combination of CDF and D0 Results for the Mass of the W Boson, arXiv:0908.1374,August10,2009 2. Tevatron Electroweak Working Group, CDF, D0 Col- laborations,CombinationofCDFandD0Resultsonthe MassoftheTopQuark,arXiv:1107.5255v3, September 8,2011 3. http://lepewwg.web.cern.ch/LEPEWWG/ July2011 4. D.Acostaetal.(CDFCollaboration),Phys.Rev.D71 (2005)032001 5. V.M.Abazovetal.(D0Collaboration),Nucl.Instrum. MethodsinPhys.Res.A565(2006)463 6. Ashutosh V. Kotwal and Jan Stark, Annual Review of NuclearandParticleScience 58(November2008)147- 175. 7. V.M.Abazovetal.(D0Collaboration),Phys.Rev.Lett. 103(2009)141801 8. T.Aaltonenetal.(CDFCollaboration),Phys.Rev.Lett 99(2007)151801;Phys.Rev.D77(2008)112001. 9. The LEP Electroweak Working Group, CERN-PH- EP/2008-20,arXiv:0811.4682(hep-ex) 10. PeteRenton,ICHEP2008conference 11. CMS collaboration, J. High Energy Phys. 04 (2011) 050 12. ATLASCollaboration,JINST3S08003(2008) ∫ ≈ -1 CDF II L dt 200 pb V e G 1500 5 2 0. M = (80473 ± 57 ) MeV / W stat s t n e v χ2/dof = 63 / 62 e 1000 500 0 30 40 50 pe(ν) (GeV) T ∫ ≈ -1 CDF II L dt 200 pb V e G 5 . 0 1500 / s t n e v e 1000 ± M = (80493 48 ) MeV W stat 500 χ2/dof = 86 / 48 0 60 70 80 90 100 m (eν) (GeV) T ∫ ≈ -1 CDF II L dt 200 pb V e G 1500 5 2 0. M = (80451 ± 58 ) MeV / W stat s t n e v χ2/dof = 63 / 62 e 1000 500 0 30 40 50 E (e) (GeV) T