ebook img

W Mass results from Tevatron and LHC PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview W Mass results from Tevatron and LHC

W Mass results from Tevatron and LHC AlexMelnitchoukforATLAS,CDF,CMS,D0andLHCbCollaborations,a UniversityofMississippi,University,Mississippi,38677,USA Abstract. MostrecentresultsofWbosonmassmeasurementsfromTevatronexperiments(CDFandD0)inpp¯ collisionsat √s=1.96GeVarereported,using0.2 fb 1and1.0 fb 1datacollectedatCDFandD0,respectively. 2 − − ThemeasurementsofW bosonpropertiesatLHCexperiments(ATLAS,CMS,andLHCb)in ppcollisionsat 1 √s = 7TeV,usingdatacollectedbeforeSummer2011,arepresented.Thesemeasurementsareessentialatthe 0 2 preparationstageoftheWbosonmassmeasurementsatLHC.ChallengesforWmassmeasurementattheLHC incomparisonwiththeTevatronareoutlined.ProspectsforWmassprecisionwithupcomingmeasurementsand n itsimplicationsarediscussed. a J 4 1 Introduction calorimeter and plug calorimeter (η < 2.8) while elec- 2 | | trons in D0 [5] are reconstructed in the central and end- ] MeasurementoftheW bosonmass(MW)providesuswith cap calorimeters (η < 1.05 and 1.5 < η < 3.2). Here x a uniquely powerful key to uncovering the origin of the η= lntan(θ/2,an|d|θisthepolaranglew|it|hrespecttothe e − electroweak symmetry breaking and learning about new protondirection.BothCDFandD0requiretightelectrons - p physics.Atthelooplevel,Wbosonisconnectedwiththe in the centralcalorimeter(η < 1.05)forW eνcandi- | | → e topquarkandtheHiggsbosonviatheradiativecorrections dates.Electronenergiesaremeasuredwiththecalorimeter, h totheWmass.Henceprecisemeasurementsofthemasses while electron direction is measured with tracking detec- [ of the top quark and W boson allow us to constrain the tors,usingtracksthatarematchedtoelectronclusterinthe 1 mostprobablemassrangeofthe Higgsbosonmass. Cur- calorimeter. v rentworldaverageforWmassis80.399 0.023GeV[1]. Muons are identified by a track in the muon system ± 4 Current world average for top quark mass is 173.2 0.9 matched to a track in the central tracking system. Mea- 3 GeV [2]. These measurements combined with other±pre- surements include the muons reconstructed in the central 1 cisionmeasurementstellusthatthemassoftheStandard- muon extension sub-detector which extends the coverage 5 ModelHiggsbosonis lowerthan161GeV at95%confi- from η <0.6to η <1. . | | | | 1 dence level[3]. With improvedprecisionof the W boson 0 mass measurementtighter constraintscould be placed on 2 the Higgsbosonmass. Compatibilityof such tightercon- 3 Overviewof W mass measurement 1 straintsfromprecisiondatawiththeresultsfromongoing : v direct Higgs boson searches or lack thereof would be a W boson mass is measured using three transverse kine- i criticalpieceofinformationforunderstandingelectroweak maticvariables:thetransversemass X symmetrybreakingmechanism. m = 2pe,µpν(1 cos∆φ), the the transverse momen- r T q T T − a tumofthelepton1( pe,µ)andneutrino(pν)transversemo- T T mentum,where∆φistheopeninganglebetweentheelec- 2 Identification of Electrons and Muons at tron(muon)andneutrinomomentaintheplanetransverse CDF and D0 to the beam. Neutrino transverse momentum (pν) is in- T ferred from the imbalance of transverse energy. We also Electronsare identified as an electromagnetic(EM) clus- refertothisobservableasmissingE (MET). T terreconstructedwithasimpleconealgorithm.Toreduce A sophisticated parametrizedMonte Carlo simulation the background of jets faking electrons, electron candi- isusedformodelingthesevariablesasa functionof M . W dates are requiredto have a large fractionof their energy M isextractedfromabinnedmaximum-likelihoodfitbe- W deposited in the EM section of the calorimeter and pass tween the data and simulation. Fast simulation includes energyisolationandshowershaperequirements.Electron modelsofelectron(muon),recoilsystem,andbackgrounds. candidatesareclassifiedastightifatrackismatchedspa- Electronefficiencies,resolutionandenergyscale parame- tially to EM cluster and if the track transverse momen- terizationsaretunedtoZ eedata. tum is close to the transverse energy of the EM cluster. → InCDF[4]electronsarereconstructedbothinthecentral 1 electronormuoninthecontextofthisusage,D0usesonly electron channel, whereas CDF uses both electron and muon a e-mail:[email protected] channelsforM measurement W EPJWebofConferences Recoilsystemrepresentsenergydepositedinthecalorime- CDF II ∫ L dt ≈ 200 pb-1 ter from all sources exceptthe electron(s).Recoil system p 0 p/ consistsofthreemajorcomponents:hardrecoil(particles ∆ Scale correction = (-1.64±0.01 ±0.06 )x10-3 stat slope thatcollectivelybalancethe p oftheW ofZ boson),un- T derlying event, and additional interactions. Contribution -0.001 from the third component depends on the instantaneous luminosity. Hard recoil is modeled using the full detec- tor simulation, while the other two components are de- scribed by real data events. Full recoil model is tuned to -0.002 Z ee data, using imbalance between the Z boson mo- me→ntum measured with electrons(muons)and with recoil J/Ψ→µµ data system. Sourcesof backgroundsto W e,µν eventsin- cludeW →τν→e,µνν,QCD,andZ →→ee,µµprocesses. -0.0030 0.2 0.4 <1/pµT> (GeV-01).6 ∫ CDF II L dt ≈ 200 pb-1 4 Lepton Energy Scale Calibration nts / 0.01 4000 SE = 1 ± 0.00025stat Dominant uncertainties in M measurements come from eve W χ2/dof = 17 / 16 leptonenergyscalemeasurements.Tofirstorderfractional errorontheleptonenergyscaletranslatestofractionaler- 2000 rorontheWmass[6]. D0determineselectronenergyscaleusinghighp elec- T tronsfromZ eedecays.Precisionofsuchcalibrationis → limitedmostlybythesizeoftheZ eesample. → CDF relies on tracking detector for both electron and 0 1 1.5 muon energy scale calibration. First tracking detector is E/p (W→eν) calibrated using J/ψ µµ events. J/ψ invariant mass is → Fig.1.Top:fractionalmuonmomentumcorrectionasafunction measuredasafunctionofmuonmomentum.Fig.1shows ofinversemomentum.Bottom:ratioofelectronenergymeasured the correction needed to make measured J/ψ mass to be inthecalorimetertoelectronmomentummeasuredbythetrack- atitsPDGvalue(overalloffset)andindependentofmuon ingsysteminW eνevents. momentum (slope). This correction was implemented in → the simulation by adjusting the energy-loss model. Then tracker calibration is transported to the calorimeter using W eν electrons near the peak of the E/p distribution, → shownalsoinFig.1. CDF Run 0/I 80.436 ± 0.081 5 Results and Prospects D0 Run I 80.478 ± 0.083 CDF Run II 80.413 ± 0.048 M resultsfromD0[7]andCDF[8]alongwithotherM W W measurementsandcombinationsareshowninfFig.2.D0 Tevatron 2007 80.432 ± 0.039 result 80.401 0.021(stat) 0.038(syst) GeV = 80.401 D0 Run II 80.402 ± 0.043 ± ± 0.043GeV agreeswith theworld averageandthe indi- ±vidual measurements and is more precise than any other Tevatron 2009 80.420 ± 0.031 MW measurement from a single experiment. CDF result LEP2 average 80.376 ± 0.033 80.413 0.034(stat) 0.034(syst)GeV=80.413 0.048 GeV. Fi±g. 3 shows a±comparison of observables b±etween World average 80.399 ± 0.023 D0 1fb 1 W eν data and fastsimulation. Fig. 4 shows July 09 corresp−onding→muonchannelplotsforCDF0.2fb 1 mea- 80 80.2 80.4 80.6 − m (GeV) surement. In both CDF and D0 measurements dominant W experimentalsystematicerrorisduetoleptonenergyscale, whereas dominanttheoretical error is due to PDFs. Cur- Fig.2. SummaryofthemeasurementsoftheWbosonmassand rentlybothCDFandD0experimentsperformedWboson their average. The result from the Tevatron corresponds to the values which includes corrections to the same W boson width mass measurements only on small fraction of their data. and PDFs. The LEP II results are from [9]. An estimate of the These measurementlead to 31 MeV W mass uncertainty worldaverageoftheTevatronandLEPresultsismadeassuming fromTevatronandtoworldaverageuncertaintyof23MeV. nocorrelationsbetweentheTevatronandLEPuncertainties. Based on electroweak fits most probable Higgs mass valueis92GeV,massregionabove161GeVisexcluded at 95% confidence level. If world average uncertainty is XXIIndHadronColliderPhysicsSymposium GeV10000 (a) D0, 1 fb-1 DFAatSaT MC GeV20000 (b) D0, 1 fb-1 DFAatSaT MC GeV20000 (c) D0, 1 fb-1 DFAatSaT MC 0.5 7500 χ2B/daocfk =g 4r8o/u49nd 0.5 15000 χ2B/daocfk =g 3r9o/u31nd 0.5 15000 χ2B/daocfk =g 3r2o/u31nd s/ s/ s/ nt nt nt ve 5000 ve10000 ve10000 E E E 2500 5000 5000 χ χ χ 2 2 2 0 0 0 -2 -2 -2 50 60 70 80 90 100 25 30 35 40 45 50 55 60 25 30 35 40 45 50 55 60 mT (GeV) peT (GeV) ET (GeV) Fig.3. Eelectronm ,p ,andMETdistributionsinW eνD0dataandfastsimulation(fastmc).Addedbackgroundisshownaswell. SignedχdistributionTsarTeshowninthebottomofparto→feachplot.Signedχisdefinedasχ =[N (fastmc)]/σ foreachpointinthe i i− i i distribution,N isthedatayieldinbiniandσ isthestatisticaluncertaintyinbini. i i ∫ ∫ ∫ CDF II L dt ≈ 200 pb-1 CDF II L dt ≈ 200 pb-1 CDF II L dt ≈ 200 pb-1 events / 0.5 GeV 1000 events / 0.25 GeV 1000 MW = χ(28/0d3o2f 1= ± 7 626 /s t6at2) MeV events / 0.25 GeV 1000 MW = χ(28/0d3o9f 6= ± 4 646 /s 6ta2t) MeV 500 MW = (80349 ± 54stat) MeV 500 500 χ2/dof = 59 / 48 060 70 80 90 mT(µν) (GeV1)00 030 40 50pT(µ) (GeV) 030 40 50pµT(ν) (GeV) Fig. 4. Distributions of M observables in CDF measurement (muon channel). Blue – data. Red – fast simulation. Fit results and W statisticalerrorsareindicated.Left:m .Middle:muon p .Right:neutrino p . T T T reduced to 15 MeV then most probable value and exclu- quarks.Qualitativelythesametypeofasymmetryasafunc- sion limit would become 71 GeV and 117 GeV respec- tionofW bosonrapidityisexpectedasincaseofproton- tively[10].Theseestimatesaremadewiththeassumptions antiprotoncollisions.Howevertheshapeisexpectedtodif- ofnochangeinthecentralvaluesofWbosonmassandtop fercomparedtoproton-antiprotoncollisionssincevalence quarkmassandwithtopquarkmassuncertaintyof1GeV. quarks and sea quarks have different momentum fraction WiththefullTevatrondatasetprecisionof15MeVmaybe distributions.BesidesthetotalnumberofproducedW+ is possible[6]. expected to exceed that of W since proton contains two − valence u quarks and one valence d quark. The inclusive ratio of cross sections for W+ and W boson production − 6 W boson measurementat the LHC was measured by CMS to be 1.43 0.05 [11]. Moreover, the shapes of W+ and W p spec±tra are expected to be − T different. Hence, they need to be measured and modeled W mass measurementsat the LHC is expectedto involve separately.RecentlyATLASmeasuredW boson p spec- additionalchallengesin comparisonwith the correspond- T trum [15], shown in Fig. 5, which can be consideredfirst ingmeasurementsattheTevatron.First,muchhighernum- steptowardsunderstandingthisobservableattheprecision berofadditionalinteractions,whichproduceinthedetec- needed for W mass measurement. Another input needed tor largeenergydeposits, uncorrelatedwith the W boson. for W mass measurementis precise knowledge of parton Second,specificsoftheW bosonproductionmechanisms. distributionfunctions(PDFs).SinceW chargeasymmetry Incaseofproton-antiprotoncollisionsW+(W )ispro- − as a functionof rapidityis drivenby partondistributions, ducedwith valenceu and d¯(d and u¯) quarks.Total num- bymeasuringtheasymmetrypartondistributionfunctions ber of producedW+ and W is the same. As the u quark − can be constrained. Asymmetry in the W boson rapidity tendstocarryahigherfractionoftheproton’smomentum distributionhastraditionallybeenstudiedintermsofcharged than the d quark, the W+(W ) is boosted, on average, in − lepton asymmetry, as W boson rapidity cannot be deter- theproton(anti-proton)direction.Henceasymmetryinthe minedontheevent-by-eventbasis,sinceneutrinoescapes production rate between W+ and W as a function of W − the detection. Charged lepton asymmetry,is the convolu- rapidityis observed.However,W boson p spectrum,in- T tionofW productionandV-A(vector-axialvector)decay tegratedoverall rapiditiesis identicalfor W+ andW . in ± − asymmetries.Asymmetryisdefinedasaratioofdifference caseofproton-antiprotoncollisions. andsumofpositivelychargedandnegativelychargedlep- Incaseofproton-protoncollisionsW+(W )isproduced − tons.ATLAS[12],CMS[13]andLHCb[14]alreadyper- with valence u and sea d¯ quarks (valence d and sea u¯) EPJWebofConferences -1]V 10-1 13. CMSCollaboration,JINST3S08004(2008) Ge ATLAS 14. LHCbCollaboration,JINST3S08005(2008) W ) [pT10-2 ∫Ldt ≈ 31 pb-1 1156.. ALTHLCAbSpuCbollilcanbootreatLioHnC,abr-XCiOv:N11F0-280.61310-0839 d σ / dfid 10-3 Data 2010, s = 7 TeV 1178.. ACTMLSApSupbulibclniconteoCteMAST-LPAASS--CEOWNKF--1210-1010-5129 σ ) ( fid 10-4 1/ ( 10-5 Data RESBOS 10-6 S 1.6 O 1.4 B S 1.2 RE 1 Data / 000...4680 50 100 150 200 250 300 pW [GeV] T Fig.5.NormalizeddifferentialcrosssectionasafunctionofW boson p obtained fromthecombined electronandmuon mea- T surements,comparedtotheRESBOSprediction. formed first measurements of lepton charge asymmetries [16,17,18] Since sea quarksare involved in W boson production at the LHC, both charmand strange quarks,unlike at the Tevatron,contributesignificantly.PDFsofbothcharmand strangequarksarecurrentlyverypoorlyconstrained.Sig- nificantimprovementsinPDFprecisionwouldbeneeded forpreciseW massmeasurementattheLHC. References 1. The Tevatron Electroweak Working Group for the CDF and D0 Collaborations, Updated Combination of CDF and D0 Results for the Mass of the W Boson, arXiv:0908.1374,August10,2009 2. Tevatron Electroweak Working Group, CDF, D0 Col- laborations,CombinationofCDFandD0Resultsonthe MassoftheTopQuark,arXiv:1107.5255v3, September 8,2011 3. http://lepewwg.web.cern.ch/LEPEWWG/ July2011 4. D.Acostaetal.(CDFCollaboration),Phys.Rev.D71 (2005)032001 5. V.M.Abazovetal.(D0Collaboration),Nucl.Instrum. MethodsinPhys.Res.A565(2006)463 6. Ashutosh V. Kotwal and Jan Stark, Annual Review of NuclearandParticleScience 58(November2008)147- 175. 7. V.M.Abazovetal.(D0Collaboration),Phys.Rev.Lett. 103(2009)141801 8. T.Aaltonenetal.(CDFCollaboration),Phys.Rev.Lett 99(2007)151801;Phys.Rev.D77(2008)112001. 9. The LEP Electroweak Working Group, CERN-PH- EP/2008-20,arXiv:0811.4682(hep-ex) 10. PeteRenton,ICHEP2008conference 11. CMS collaboration, J. High Energy Phys. 04 (2011) 050 12. ATLASCollaboration,JINST3S08003(2008) ∫ ≈ -1 CDF II L dt 200 pb V e G 1500 5 2 0. M = (80473 ± 57 ) MeV / W stat s t n e v χ2/dof = 63 / 62 e 1000 500 0 30 40 50 pe(ν) (GeV) T ∫ ≈ -1 CDF II L dt 200 pb V e G 5 . 0 1500 / s t n e v e 1000 ± M = (80493 48 ) MeV W stat 500 χ2/dof = 86 / 48 0 60 70 80 90 100 m (eν) (GeV) T ∫ ≈ -1 CDF II L dt 200 pb V e G 1500 5 2 0. M = (80451 ± 58 ) MeV / W stat s t n e v χ2/dof = 63 / 62 e 1000 500 0 30 40 50 E (e) (GeV) T

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.