Astronomy&Astrophysicsmanuscriptno.27098˙ap (cid:13)c ESO2016 February1,2016 VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction L.Gavilan1,I.Alata1,2,K.C.Le2,T.Pino2,A.Giuliani3,andE.Dartois1 1 Institutd'AstrophysiqueSpatiale(IAS),CNRS,Univ.ParisSud,Universite´Paris-Saclay,F-91405Orsay,France 2 InstitutdesSciencesMole´culairesd’Orsay(ISMO),CNRS,Univ.ParisSud,Universite´Paris-Saclay,F-91405Orsay,France 3 DISCObeamline,SOLEILsynchrotron,SaintAubin,France e-mail:[email protected] Preprintonlineversion:February1,2016 6 Abstract 1 0 Context.Afullspectralcharacterizationofcarbonaceousdustanalogsisnecessarytounderstandtheirpotentialascarriersofob- 2 servedastronomicalspectralsignaturessuchastheubiquitousUVbumpat217.5nmandthefar-ultraviolet(FUV)risecommonto interstellarextinctioncurves. n Aims.OurgoalistostudythespectralpropertiesofcarbonaceousdustanalogsfromtheFUVtothemid-infrared(MIR)domain.We a J seekinparticulartounderstandthespectraofthesematerialsintheFUVrange,forwhichlaboratorystudiesarescarce. Methods. We produced analogs to carbonaceous interstellar dust encountered in various phases of the interstellar medium: amor- 9 phoushydrogenatedcarbons(a-C:H),forcarbonaceousdustobservedinthediffuseinterstellarmedium,andsootparticles,forthe 2 polyaromaticcomponent.Analogstoa-C:Hdustwereproducedusingaradio-frequencyplasmareactoratlowpressures,andsoot ] nanoparticlesfilmswereproducedinanethylene(C2H4)flame.Wemeasuredtransmissionspectraofthesethinfilms(thickness< M 100nm)inthefar-ultraviolet(190-250nm)andinthevacuum-ultraviolet(VUV;50-190nm)regionsusingtheAPEXchamberat theDISCObeamlineoftheSOLEILsynchrotronradiationfacility.Thesewerealsocharacterizedthroughinfraredmicroscopyatthe I SMISbeamline. h. Results.Wesuccessfullymeasuredthetransmissionspectraoftheseanalogsfromλ=1µmto50nm.Fromthese,weextractedthe p laboratoryopticalconstantsviaKramers-Kroniginversion.Weusedtheseconstantsforcomparisontoexistinginterstellarextinction - curves. o Conclusions.WeextendthespectralmeasurementsofthesetypesofcarbonaceousanalogsintotheVUVandlinkthespectralfeatures r inthisrangetothe3.4µmband.Wesuggestthatthesetwomaterialsmightcontributetodifferentclassesofinterstellarextinction t s curves. a [ Keywords.ISM:dust,extinction-Infrared:ISM-Galaxies:ISM-Methods:laboratory:solidstate-Ultraviolet:ISM 1 v 1. Introduction terparts of the 3.4 µm band at 6.85 µm and 7.25 µm were later 7 3 observedbyspacetelescopes.Thecarriersofthesebandswere 0 1.1. Generaloverview namedHACbytheastrophysicalcommunity(e.g.,Pendleton& 8 Allamandola 2002; Furton et al. 1999; Scott et al. 1997; Duley Carbon-based materials are abundant in circumstellar environ- 0 1994).TheHACdenominationforlaboratoryanalogshasbeen ments and in the diffuse interstellar medium (DISM) (van . used for a wide variety of hydrocarbon solids, even though the 1 Diedenhoven et al. 2004; Henning & Salama 1998; Greenberg 0 structureofthesematerialsvariesfromamorphoustodisordered & Li 1999; Draine 2003; Ja¨ger et al. 2011). They are mainly 6 carbons. produced in the envelopes of asymptotic giant branch (AGB) 1 Inthefollowing,werefertotheplasma-producedanalogsas stars(Gailetal.2009;Molster&Waters2003)andareinjected : a-C:H,atermusedinthephysicscommunity.Amorphousrefers v into the DISM. Carbonaceous dust can then be processed (by to the lack of order at any scale in these materials. The labo- i photons, ions, cosmic rays) and can further evolve during their X ratory infrared spectra of these materials match observed spec- lifetimeintheseheterogeneousenvironments(Jonesetal.2014). r tra,particularlyregardingtheshapeandrelativestrengthofthe Carbonmaterialscanbeclassifiedaccordingtotheirsizes,which a 3.4µmband(Dartoisetal.2007).Thestructureassociatedwith range from (large) polycyclic hydrocarbon molecules to solid- the hydrogen-rich a-C:H materials is characterized by few aro- state carbon grains, their aliphatic vs aromatic content, and maticunitslinkedinamainlyaliphaticbackbone(e.g.,Fig.5of their spectra, among other properties (e.g., Henning & Salama Dartoisetal.(2005)). (1998)).Insolidcarbon,sp2,sp3,andmixedhybridizationsare possible,givingrisetomaterialswithdifferentshort-,medium-, Some astrophysical carbon materials subjected to UV light and long-range orders (Ja¨ger et al. 1998; Papoular et al. 1996; re-emitinthemid-infrared.Observationsoftheseemissionfea- Tielens2008). tures, called AIB for aromatic infrared bands, appear consis- Differentcarbondustcomponentsinspaceareidentifiedby tently between 3 to 20 µm and have been classified into three their observed spectral signatures. In the infrared, observations mainclasses(Peetersetal.2002).Theintimatestructuresofthe ofthe3.4µmabsorptionbandwereattributedtovibrationalCH carriersofthesedifferentclassesofAIBsarestillunknown,al- 2 andCH aliphaticmodesincarbonaceousmaterials.Thecoun- thoughtheyareprobablybuiltonapolyaromaticskeletonspan- 3 1 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction ning sizes from large molecules to small nanograins (Leger & tra from 300 nm to 40 nm for amorphous carbons. Colangeli Puget 1984; Allamandola et al. 1985; Goto et al. 2007; Sloan et al. (1993) measured the spectra of carbon samples down to et al. 2007; Pino et al. 2008; Tielens 2008; Joblin & Tielens ∼50 nm through transmission or reflection on a gold-coated 2011; Li & Draine 2012; Carpentier et al. 2012; Yang et al. quartzwindow. 2013). Thispaperisorganizedasfollows.InSect.2wedescribethe Interstellar extinction curves, derived from observations of experimental setups used in sample preparation and characteri- several lines of sight from the near-IR to the UV, provide an- zation of the carbonaceous materials. In Sect. 3 we present the other clue to the type of dust present in the ISM. A persistent UVandMIR spectroscopyofbothmaterials. InSect.4we de- spectralfeatureisthestrongabsorptionbumpat4.6µm−1(217.5 scribe the method used to derive the optical constants. In Sect. nm), discovered by Stecher & Donn (1965), whose central po- 5 we discuss the astrophysical implications of these measure- sition is surprisingly constant over several lines of sight, and ments.Finally,inSect.6wepresentourconclusions. whoseoriginisstilldebated(Fitzpatrick&Massa2005,2007). A steep far-ultraviolet (FUV) rise also characterizes many of these curves, tracing extinction variations. The lack of correla- 2. Experiments tionbetweenthespectralpropertiesoftheUVbumpandtherel- ativestrengthsofthebumpandtheFUVrisepointstodifferent We studied two types of carbonaceous dust: a-C:Hs and soot samples. The a-C:Hs were produced using an R.F. plasma re- typesofdustcarriers(Greenberg&Chlewicki1983;Fitzpatrick actor at low pressures. Their typical structural unit is shown in & Massa 2007). Graphite particles were initially proposed as Dartois et al. (2005). Soot materials have been produced in an the carrier of the UV bump by Draine & Lee (1984). More re- ethylene(C H )flameandprovidesamplesdominatedbyapol- cently, hydrogenated carbons were proposed as potential carri- 2 4 yaromaticcarbonskeleton(e.g.,Carpentieretal.(2012)).While ers(Colangelietal.1997;Schnaiteretal.1998;Mennellaetal. our a-C:H materials have a high H/C, our soot materials have 1999; Ja¨ger et al. 2008), supporting theoretical work by Duley lowH/C. &Seahra(1998). Twotypesofsubstrateswereused:MgF windowsandTEM The central goal of this study is to obtain absolute spectral 2 properties of carbon dust analogs in both the VUV/Vis regions grids(TedPella,Inc.)coveredwithanm-thickmetallicorcarbon membrane. Samples of MgF were used to ensure UV-visible andtheinfraredranges,complementingearlierstudiesofhydro- 2 transmission measurements down to λ = 120 nm. Samples de- carbonsolids,particularlyintheVUVrange,whereopticalmea- positedonthe3mmTEMgridswereusedfortransmissionmea- surements are scarce. A full spectral characterization of these surementsfromλ=120nmto50nm.Thegridswere300mesh materials will clarify their potential contributions as carriers of AuorCusubstratescoveredwitha2-3nmlayerofgoldorplat- observedspectralfeaturesintheinfraredandintheUV,suchas inum, or 10-25 nm of carbon. Manipulation of the TEM grids theFUVriseandalsothe217.5nmbumpofinterstellarextinc- wasdonewithhigh-precisiontweezers,butmoreoftenthannot, tioncurves.Inaddition,infraredspectraallowustocharacterize the fragile grid supports were bent and/or the thin membrane thequalityandsuitabilityofoursamplesasinterstellaranalogs. shattered,eitherduringinstallationinthesampleholderordur- These transmission spectra allow the derivation of optical con- ingdepositionofthefilm.Weinspectedthefilmswithabinocu- stantsfromthesecarbonaceousmaterials,necessarytosimulate larmicroscopeattheInstitutd'AstrophysiqueSpatialeandwith observedastronomicalextinctioncurves. microscopicimagestakenattheSMISbeamlineattheSOLEIL Carbon analogs have been produced in the laboratory us- ing different methods and their spectra in transmission, reflec- synchrotron. Asaresultoffourexperimentalcampaignsin2014and2015 tion,orelectronenergylossspectroscopy(EELS)(seeHenning at the DISCO VUV beam line of the SOLEIL synchrotron, we etal.(2004)forareview)hasbeenusedtoextractopticalcon- foundthatwhileAuorPtmembranes(2-3nm)hadgoodtrans- stants.Stecher&Donn(1965)firstderivedopticalconstantsof mittanceintheVUV(T≤30%),theywereveryfragileduring nanometer-sized graphitic particles. Draine & Lee (1984) de- manipulation and during film deposition. Most VUV measure- rived the optical constants from laboratory and observational mentsonthesesubstratesshowedthatthemembranesweredam- data for graphite down to 80 nm by the Kramers-Kronig ap- aged either partially or completely. Instead, the carbon mem- proachusingEELSdatafromTosatti&Bassani(1970).Zubko branesonTEMgrids(T≤20%)provedtobemorerobust.We et al. (1996) used the same method to obtain the optical con- discuss the effect of these substrates on the film transmission stants of several solid hydrocarbons from the millimeter to the spectrainAppendixB. FUV down to 40 nm. Schnaiter et al. (1996, 1998) derived the optical constants through UV measurements of nano-sized car- bongrainsusingthematrix-isolationtechniqueinthe200-400 2.1. Preparationofa-C:Hfilms nm region. Furton et al. (1999) also obtained the optical con- stants of a hydrogenated carbon film by trial and error fitting SICAL-ICP is anexperimental setup developed forthe purpose in the range of 300 - 1000 nm. These values have a dispersion ofproducinghydrogenatedamorphouscarbonfilms,seeFig.1. of between ∼10% and 20% at any given wavelength, and they Itconsistsofaninductivelycoupledradiofrequency(R.F.)gen- comparecloselytootherpublisheddataforsimilara-C:Hmate- eratorworkingat13.56MHz(Eliteseries,MKS)withadynamic rials,forexample,Smith(1984)between253nm-900nm,and range of 1 - 600 W. A background pressure of < 0.01 mbar is for organic residues, for example, Jenniskens (1993) from 115 maintainedbyaprimarypump.Theprecursorhydrocarbongas nm to 1.7 µm. Ja¨ger et al. (1998) derived the optical constants (CH ) supply is manually controlled with a fine valve and de- 4 of carbonized cellulose samples using the Lorentz-oscillator fit positsaremadeincontinuousflowkeptat∼0.1mbar,afterpas- methodintherangeof200-500nmbasedonreflectancemea- sivationofthechamberwiththeprecursor. surements. This was done later for gas-phase condensed soots TheR.F.dischargeisoperatedinaglasstube(length=1m, from120nmtothemid-infrared(Ja¨geretal.2008).Fewlabora- φ =65mm),allowingfortheplasmatosymmetricallyenvelop ext torybaseddeterminationsofopticalconstantsofcarbonanalogs thesampleholder.TheR.F.powerisinductivelycoupledtothe existforλ<120nm.Finketal.(1984)measuredtheEELSspec- plasma by means of an impedance matching network linked to 2 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction Figure1:SICAL-ICPisasetupallowingplasma-inducedchem- icalvapordeposition.Itiscomprisedofaglasstubeinwhichan inductively coupled plasma (ICP) on a continuum hydrocarbon gasflowismaintainedbyanR.F.source.Theplasmaenvelopes Figure2: Nanograins, an experimental setup for the prepara- thesampleholderplacednearthematchingbox. tionofsoots.Thisschemeshowstheburningregion,theextrac- tionconeinquartz,andthegasflowregionshapedbyanozzle wherethesootsamplesarecollectedbyimpactiononawindow a copper coil around the glass cylinder. The tuning box allows (Carpentieretal.2012). extracting a portion of the R.F. power coupled to the substrate holder acting as an externally applied bias. For most samples, the power was kept at 100 W, with 5 W reflected. The sam- ple holder consists of a gold-coated copper block capable of holding 20 mm windows. The holder can be internally cooled by water, and the substrate can be installed by removing a me- The byproducts were then extracted by a water-cooled quartz chanical cover. The estimated ion energies are on the order of cone (hole diameter = 1 mm) inserted into the flame at 30 mm 80 eV, thereby producing films with a hydrogen content up to fromtheburner.Theburnedgasandsootflowthroughanozzle 40% (Dworschak 1990). This R.F. source allows lower ion en- into a chamber at 5×10−2 mbar. Soot particles were deposited ergydensitiesthanwiththe2.45GHzsourcepreviouslyusedby on MgF /KBr/NaCl windows or Au/C/Pt membranes, inserted 2 Dartois et al. (2005), giving a-C:H films with higher hydrogen directly into the molecular flow. The thicknesses of the soot content due to the decreased preferential sputtering of the C-H nanoparticlefilmsvariedinarangeofafewtensofnmto1µm, bondsvs.theC-Cbonds.Lowerpressuresleadingtohigherion depending both on the production rate and the exposure time, energies also lead to sputtering of hydrogen. Samples are pre- tooptimizethespectralresponseinthedifferentwavelengthdo- pared at room temperature, although the substrate temperature mainsfromtheIRtotheVUV. hasastronginfluenceonthefilmproperties(Dworschak1990). Tocontrolthedepositionrateforthefilms,weusedthecor- relation between the optical depth of the 3.4 µm band and the 2.3. InstrumentsforUVandIRspectroscopy thicknessofthefilms(d)forfilmswithd>100nm,usingtheir Fabry-Perot interference fringes that are due to internal reflec- Ultravioletmeasurementsofourcarbonanalogswereperformed tions within the film itself. We extrapolated this correlation for with three instruments. At the IAS we use a UV-Vis spectrom- films with d < 100 nm (see Appendix A for details). As a first eter (λ = 210 nm - 710 nm) with a sub-nm resolution. It con- estimateoftherefractionindexofthesefilmsintheoptical,we sists of a deuterium lamp, whose light is conducted by optical usedtherelationin(Godard2011)betweentheopticalgap(E ) fibersandilluminatesthesample.Thetransmittedsignalisthen 04 and the refraction index measured for different a-C:H and a-C collected and carried by optical fibers toward a grating spec- (amorphous carbon) films (e.g., Dischler et al. (1983); Lazar trometer (Maya PRO UV, Ocean Optics). For measurements in (1998); Kassavetis et al. (2007)). For our a-C:H materials, we thevacuumultraviolet,weusetheAPEXbranchoftheDISCO derived the Tauc band gap E = 2.5 eV, or E = 3.1 eV, and beamline at the SOLEIL synchrotron. The APEX chamber al- g 04 usingtheaforementionedrelation,weestimaten ∼1.4-1.8. lowsmeasurementsatλ=50nm-260nminwindowlessmode 0 (Giulianietal.2009),withabeamsizeatthesampleof≤2mm. Fromnowon,weinterchangebetweenthetermsVUVandFUV 2.2. Preparationofsootfilms to refer to this wavelength range. Finally, a spectrophotometer (Specord, Analytikjena) allowed measurements on MgF win- Soot samples were produced at the Institut des Sciences 2 dowsatλ=190-1000nm. Mole´culairesd’Orsay(France)usingthesetupNanograins(Pino etal.2008;Carpentieretal.2012).Inthesetup,whosescheme Infraredmeasurementsforthethicker(d>300nm)filmsde- is shown in Fig. 2, a flat burner (McKenna) provides flames of positedonMgF windowsweremadeusinganevacuatedFTIR 2 premixedhydrocarbonandoxygengas.Suchalaminarflameis spectrometer (Bruker Vertex 80V) equipped with a KBr beam- a one-dimensional chemical reactor offering a broad range of splitterandan(MCT)detectorworkinginthe7000to400cm−1 combustion conditions and sampling of byproducts. Here the (2.5 to 15 µm) spectral range at 1 cm−1 resolution. To mea- pressure was maintained at 40 mbar by continuous pumping. sure the infrared spectra of ultra-thin films (d < 100 nm) we Thefuelusedwasethylene(C H )premixedwithoxygenbefore used the infrared microscope available at the SMIS beam line 2 4 flowingthroughtheburneratacontrolledflowrate(4liters/min), attheSOLEILsynchrotron.Thismicroscopebenefitsfromhigh and a C/O ratio set to 1.05. An N shield around the burn- synchrotron brilliance in the 2.5 - 100 µm spectral range and a 2 ing region was applied at a controlled flow rate of 3 liters/min. 10×10µmspotsizeonthesample. 3 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction (a) Figure3:VUVmeasurementsofultra-thinfilms:a-C:Handsoot optical depth spectra normalized to τ(∼10 µm−1). a-C:H film, —: MgF (Specord), —: MgF (DISCO), —: TEM membrane 2 2 (DISCO). Soot film, —: MgF (Specord), —: MgF (DISCO), 2 2 —:TEMmembrane(DISCO).Dashedlinesshowmeasurement dispersion. 3. Measurements 3.1. UVspectra:a-C:Handsoots Transmissionspectrawereobtainedbycorrectingeachspectral measurementbyanelectronicoffsetandthendividingthespec- traofthedesiredcarbonfilmdepositedonthesubstrate(MgF or 2 amembrane)bythespectraofthesubstratealone.Weassumed thattherearenoopticaleffectsduetothesubstrates,whichwe further discuss in Appendix B. The resulting normalized opti- cal depth spectra for an a-C:H and a soot nanoparticle film are (b) showninFig.3. Figure4: VUV optical depth in the VUV of (a) an a-C:H film The UV-VUV spectra reveal the electronic structure of the and(b)asootnanoparticlefilm(describedinthetext).Thede- carbon analogs, arising from transitions between threefold (sp2 convolutedspectralfeaturesarelistedinTable1. bonding)andfourfold(sp3)bondingcoordination,andanymix- tureofthesetwobondings(spbondingisnotconsideredhereas itisaminorcomponentinoursamples).Theopticalgapreaches fromstatesinthevalenceσandπbandtostatesintheconduc- π∗ transitionsand/orn-σ∗ transitionsfromoxygencontamina- tionσ∗ andπ∗ bands.Theπ-π∗ bandsduetosp2 sitestypically tionasdiscussedinGadallahetal.(2011).Thethirdabsorption occur from 200 to 500 nm (2 - 5 µm−1) and dominate the op- (G3)peakat ∼9 µm−1 (115nm)in thefar-UVisassignedto σ tical gap value. The σ - σ∗ transitions peak below 200 nm (5 - - σ∗ transitions. A fourth peak (G4) is found at ∼16 µm−1 (58 10 µm−1). Both of these bands produce an absorption from the nm).Atentativeidentificationofthisfourthpeakisgivenbelow. UVtothevisibleandinfrareddomain.Theopticalgapinamor- phousordisorderedcarboncanextendtotheIRinducedbyde- ThesootUVabsorptionspectrumwasfittedbyaLorentzian, fectstates.Itcantakeavalueof0eVforgraphite,alongaplane, three Gaussians, and a linear function (slope ∼0.01 in energy andupto5.5eVfordiamond. units).Thefirstpeak(L1)iswell-adjustedbyaLorentzianfunc- An a-C:H sample of thickness ≥ 30 nm becomes optically tion peaking at 3.92 µm−1 and assigned to π - π∗ transitions. thickintheVUV.However,thesefilmsareopticallythininthe The relatively strong intensity of this feature points to a highly UV-Visrange,whichallowsustodiscernweakerabsorptionfea- poly-aromaticmaterial,closeinshapebutnotinpositiontothe tures, such as the absorption bands at ∼4 - 5 µm−1. The recon- interstellarUVbumpat4.6µm−1.Aweakpeak(G2)at5.4µm−1 structed VUV spectra of an ultra-thin a-C:H film (d ∼20 nm ) isassignedtoπ-π∗ transitionsfromcarbonand/orn-σ∗ tran- and soot film (d ∼50 nm) are shown in Figs. 4 (a) and (b), re- sitionsfromoxygencontamination.Athirdbroadpeak(G3)oc- spectively.FittingparametersaregiveninTable1. curs at 10 µm−1 (100 nm) and a fourth peak (G4) is present at Forthea-C:Hfilm,weidentifyfourabsorptionfeatures,fit- about 19 µm−1 (52 nm). The linear function helps fit the soot tedbyGaussiandistributions.Twooverlappingabsorptionpeaks opacityfrom1µm−1(whilenolinearfunctionisrequiredforthe (G1, G2) occur at ∼4 and at 5 µm−1. G1 is assigned to π - π∗ a-C:Hfit). transitionsduetolocallyaromaticcarbonclusters(Robertson& Thepositionofpeaksinthesootfilmarefoundathigheren- O’Reilly1987).G2isassignedtoasuperpositionofcarbonπ- ergiesthanforthea-C:H,with∆(L1-G1)=0.19eV,∆G2=0.45 4 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction Table1:Best-fitparametersforVUVspectra 3.2. Mid-infraredspectra:a-C:Hsandsoots WemeasuredthecarbonanalogthinfilmsintheMIRwithtwo Function Parameter[µm−1] soot a-C:H objectives.Thefirstistocorrelatetheintegrated3.4µmbandto area 3.33 the thickness of an a-C:H film to normalize the corresponding Lorentzian(L1) center 3.92 laboratoryUVspectratointerstellarextinctioncurves.Thesec- width 2.01 ondobjectiveistoassessthehomogeneityofthefilmsandcom- height 0.06 parespectrafromthesamespatialregionwheretheUVspectra Gaussian(G1) center 3.83 is measured. To this end, spectra with the SMIS FTIR micro- width 5.64 scopeweretakenevery0.2mmacrosstheultra-thina-C:Hfilms depositedonMgF andonTEMgridstocheckthereproducibil- 2 height 0.22 0.11 ityofdepositions. Gaussian(G2) center 5.42 5.05 width 6.37 6.13 height 1.14 0.71 Gaussian(G3) center 9.71 8.67 width 1.81 1.83 height 1.58 1.21 Gaussian(G4) center 19.2 17.4 width 4.41 4.55 eV, ∆G3 = 1.62 eV, ∆G4 = 2.47 eV. Two π-electronic transi- tionsarefoundbetween200-260nminbothmaterials.Forthe hydrogen-richera-C:H,thelowersp2 carbonfractiondecreases theπdensityofstates,whichaccountsfortheweakerπ-π∗band strengths.BytakingtheopticaldepthratiooftheL1toG3fea- ture in the soot spectra (Fig. 4a) and dividing it by the optical depth ratio of the G1 to G3 feature in the a-C:H spectra (Fig. 4b), we find that the π - π∗ resonance is ∼10 times stronger in sootthanina-C:H. LaboratoryspectraofgasphasePAHshaveshowntheircon- Figure5:Rawtransmissionspectraofana-C:Hfilmandasoot tributiontoaFUVrisefromabandwithanextrapolatedmaxi- nanoparticlefilm(shiftedby+65%forcomparison). mumat∼17.7eV(70nm)(Joblinetal.1992).Lateron,Malloci etal.(2004)computedtheabsolutephoto-absorptioncrosssec- Figure 5 shows the raw transmission mid-infrared spectra tions of 20 PAHs in the VUV. They found a good agreement for an a-C:H and soot film. The continuum absorption is at- both for the lower-lying bands of π - π∗ character and for the tributed to low-lying electronic transitions (Carpentier et al. collective single broad absorption peak at ∼17 - 18 eV, com- 2012), while the superimposed bands are due to vibrational posed of σ - σ∗, π - σ∗, σ - π∗ and Rydberg state transitions, modes. The CH stretching bond region is seen at 2800 - 3100 with possible contributions from collective effects (e.g., plas- cm−1. The bands between 1460 and 1380 cm−1 correspond to mons). In graphite, in addition to the σ and π interband tran- the aliphatic CHn bending mode counterparts. The region be- sitions, a band at 27 eV, measured in reflectance, was assigned tween1000-720cm−1correspondstoout-of-planearomaticCH to the collective excitations of the π + σ plasmon (Djurisˇic´ & bendingmodesthatarenon-detectableduetothelowamountof Li1999).Indiamond-likecarbonfilms(DLC),inadditiontothe sp2CH.Carbonylisdetectedat∼1718cm−1,mainlyduetooxy- σandπinterbandtransitions,aFUVcontributiontoabsorption gencontamination.AweakOHbandispresentat∼3400-3500 wasdetectedusingsynchrotronellipsometry,peakingataround cm−1. 22 eV (56 nm, Franta et al. (2011), Fig. 5). The transitions in The intensity of the 3.4 µm band compared to the 6.2 and thisrangeareattributedbytheauthorstovalenceσtoextended 8 µm bands is much lower for soots than for the a-C:H, where states transitions σ - ξ∗. Figure 3 and Table 1 in Franta et al. aliphaticfeaturesdominate.Forthea-C:HfilmsweproduceH/C (2011) depict the density of states for the corresponding band ∼1, while for soots, the H/C ratio is lower (∼0.01). The soot model.Amarkeddouble-peakstructurewaspredictedbytheo- spectrumshowsa6.2µmband(at1584cm−1),duetotheC=C reticalstudiesofthefrequency-dependentdielectricpermittivity sp2 stretchingmodes.The8.2µmband(at1225cm−1)isdueto intheopticaltoVUVdomainofmodeledcarbonsootnanopar- C-C(sp3)stretchingmodesprobablyarisingfromdefects,with ticles(Moulinetal.2008;Langletetal.2009).Thecalculations a contribution at 1160 cm−1 due to sp2 aromatic CH bending predictedtwopeaksinthe∼20-30eVrange.Thedouble-peak modes. An alkyne CH stretching mode is present for soots at structurewassuggestedtoarisefromthepolyaromaticunitswith 3300cm−1 andisnon-detectableforthea-C:H.Bandpositions asizedistributionrangingfromafewangstromsuptoafewnm. arecoherentwithpreviouslaboratorysootinfraredspectra(Pino Inlightofthesefindings,wetentativelyassigntheG4bandob- etal.2008;Carpentieretal.2012). served in both analogs to the features observed in this energy Figure 6 (a) shows the deconvolution of the vibrational rangeinothercarbonaceousmaterials.Thesetransitionsinvolve modesofthe3.4µmbandfora-C:HasinDartoisetal.(2004b). excitationsfromπandσstatestowardextendedstatesabovethe The-CH and-CH groupsdominatethespectrumoftheband 2 3 σ∗ band.Thenatureoftheseexcitedstatesisstillunknownand at3.4µm,buttheshoulderat∼3050cm−1indicatesthepresence workisinprogresstoexploreit. ofolefinicandaromaticC-Hbonds. 5 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction mode at 3.289 µm, A(CH) = 1.9 × 10−18 cm/group (Joblin et al. 1994), we find N(CH) /N(CH ) = 1.1 ± 0.3, arom 2,3 aliph in agreement with Carpentier et al. (2012). Using the band strengths from methyl-substituted PAHs (Yang et al. 2013), we findN(CH) /N(CH ) =0.96±0.2. arom 2,3 aliph 4. VUVopticalconstants Optical constants were extracted from the transmission spectra ofa-C:Hfilmsofvaryingthickness.Forthesootfilm,athickness ∼50nmwasestimateddirectlyviaAFM.Fromthetransmission spectra, we obtained first-order values for the imaginary index ofrefraction,k(ν¯),accordingtotheBeer-Lambertlaw, τ(ν¯) k∼ , (1) 4πν¯d where τ is the optical depth, ν is in wave number units, and d (a) is the sample thickness. Before this, a baseline for the interfer- ence fringes due to multiple internal reflections was removed. Byfittingtheabsorptionink byaseriesofGaussianprofiles,k was then extrapolated to 0 eV and to higher energies, to apply the Kramers Kronig relations, closure relations linking the real and imaginary parts of the complex dielectric index of refrac- tion (Bohren & Huffman 1998). To derive the real part of the complex index of refraction from our absorption data, we used the subtractive Kramers-Kronig (SKK) method (Warren 1984). In this method, we fixed n(ν ), known as the anchor point, a 0 knownvaluefortheindexofrefractionatareferencefrequency farfromanystrongabsorptioninthematerialconsidered,gener- allyintheNIR-visible.SKKisthepreferredmethodifkisonly knownoveralimitedintervalandtheintegralsareevaluatednu- merically.Fortherealindex, 2 (cid:90) ∞ ν(cid:48)k(ν(cid:48)) n(ν)=1+ P dν(cid:48), (2) π ν(cid:48)2−ν2 0 where P denotes the Cauchy principal value of the integral. (b) Inversely,fortheimaginaryindex, Figure6: Gaussian deconvolution of the 3.4 µm band of an (a) 2ν (cid:90) ∞ n(ν(cid:48)) a-C:H film and (b) soot film. The black lines correspond to the k(ν)= P dν(cid:48). (3) -CH3 groups,thebluelinestothe-CH2 groups.Thefitresidual π 0 ν2−ν(cid:48)2 isingray. ForimprovedaccuracyweusedtheformulationinTrotta& Schmitt(1996),whichreducestheerrorbyusingafinitewave- lengthintegrationrange, Theobservedinterstellar3.4µmbandinthediffusemedium andthemeasuredIRspectraoftheproduceda-C:Hfilmsagree well (Dartois et al. 2005, 2007; Godard & Dartois 2010). We n(ν)=n(ν )+ 2P(cid:90) ν2(cid:20)k(ν(cid:48))ν(cid:48)−k(ν)ν − k(ν(cid:48))ν(cid:48)−k(ν0)ν0(cid:21)dν(cid:48). usedtheoscillatorstrengthoftheobservedmodestodetermine 0 π ν(cid:48)2−ν2 ν(cid:48)2−ν2 the aliphatic CH /CH ratio of our a-C:H films (Dartois et al. ν1 0 (4) 2 3 2004a,2007).TheoscillatorstrengthfortheCH antisymmetric For a-C:H we took n = 1.5 as an anchor point at 1 µm. 3 0 mode,at3.38µm,A(a-CH )=12.5×10−18cm/group,whilefor Forsootwetookn =1.7(Schnaiteretal.1998).TheKramers- 3 0 CH antisymmetric + Fermi resonance at 3.377 µm, A(a-CH ) Kronignumericalintegrationcalculatesthedesirednvalueover 2 2 =8.4×10−18 cm/group(Dartoisetal.2004a,2007).Thecalcu- the input energy range. Subsequently, the complex index of re- latedN(CH )/N(CH )ratioobtainedfromfittingthevibrational fraction values were used to numerically simulate a synthetic 2 3 modes of the 3.4 µm band is 2.4 ± 0.3, in agreement with ob- transmission value at each wavelength. For this, we used the servationstowardCygOB2No.12,whichsamplesonlydiffuse modelofSwanepoel(1983),whoderivedtheexpressionforthe ISMdust(Pendleton&Allamandola2002),wherearatioof2.5 transmissionofathinabsorbingfilmonatransparentsubstrate ± 0.4 is found, and to observations toward the infrared galaxy (MgF in our case). We constructed a real index template for a 2 IRAS08572+3915(Dartoisetal.2007). substratemadeofMgF from120-1000nm.Forλ=50-120 2 Figure 6 (b) shows the deconvolution of the vibrational nmaninversionwasmade,keepingaconstantnvalue,buteven- modes of the 3.4 µm band for the soot nanoparticle film. From tually, a more sophisticated scattering model should take into this, the calculated aliphatic N(CH )/N(CH ) ratio = 7 ± 3. accounttheeffectsofanon-transparentsubstrate.Thedifference 2 3 Using the oscillator strength for the aromatic CH vibrational betweenthesyntheticandmeasuredtransmissionwascalculated 6 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction 5. Astrophysicalimplications (a) Figure8: Normalized extinction, A(λ)/A(V), of representative lines of sight from Fitzpatrick & Massa (2007) (solid purple and black). Laboratory spectra for an a-C:H re-normalized to theopticaldepthoftheobserved3.4µmband(dottedgreen)and renormalizedlaboratorysootspectratoitsVbandopticaldepth (dotted blue). Calculated extinction curves from laboratory de- rivedopticalconstantsforana-C:H(dashedgreencurve)anda soot(dashedblue). Fitzpatrick&Massa(2007)analyzed328Galacticinterstel- lar extinction curves from the UV to the IR. Figure 8 shows (b) twoselectedextinctioncurves(HD21007andALS8107)which may represent a-C:H and soot components. The laboratory a- Figure7:Derivedopticalconstantsfor(a)ana-C:Hfilmand(b) asootnanoparticlefilm,measureddowntoλ=50nm.Thedot- C:Hspectrumisscaledtoitslaboratory3.4µmopticaldepthand to the expected observational ratio of 250 toward the Galactic tedlinesrepresentthecompoundederrorbarsdominatedbyun- center(Fig.8).Observationsoftheopticaldepthofthe3.4µm certaintyinthethicknessandanchorpoints(n ). 0 bandhavebeencomparedtothevariationsinvisualextinction, A ,towardGalacticsourcesanddiffuseISMlinesofsight,and V acorrelationbetweenthesetwohasbeenfound(Sandfordetal. 1995;Godard2011).AratioofA /τ ∼250hasbeenestimated V 3.4 ateachpointuntilthedifferencebetweentheobservedandsyn- for lines of sight of the local ISM, while observations toward theticspectrawasminimized,whichoccurredafterafewitera- theGalacticcentergivearatioofAV/τ3.4 ∼150(Sandfordetal. tions. 1995; Rawlings et al. 2003), although the difference is proba- blylower(Godardetal.2011).Thesootopticaldepthspectrum The optical constants derived for the laboratory a-C:H and (Fig.8)isscaledtoitsopticaldepthintheVband(551nm). sootfilmsareshowninFig.7(a)and(b).Fora-C:Hthesystem- We used the laboratory optical constants obtained in Sect. atic uncertainty is mostly due to the thickness estimated from 4 to calculate the extinction, Q , that is due to a distribution then*thicknessvs.3.4µmcorrelation(seeApp.A),whereun- ext of grain sizes, computed using the Mie formulae (Bohren & certaintiesinthethicknessoftheultra-thinfilmgoupto∼50% Huffman 1998). Our primary objective is to illustrate the effect fora-C:H.Theuncertaintyforthesootfilmthicknessisaslarge ofthelaboratoryopticalconstantsfromthisstudyonextinction as∼25%(estimatedfromAFMmeasurements).Theimaginary curves.Asafirstattempt,wetookintoaccountasimplesizedis- indexofrefractionreflectsthemajorabsorptivefeaturesseenin tributionforVerySmallGrains(VSGs)fromDesertetal.(1990), the laboratory spectra, that is, two FUV bumps for both mate- thatis, rials at ≥ 10 µm−1 and a Lorentzian peak at ∼4 µm−1 for the soot. The uncertainty in the thickness measurement dominates n(a)∝a−p (5) the systematic uncertainty, demonstrating the experimental dif- where p = 2.6, and the grain sizes varied between a = 1 to ficulty of measuring ultra-thin films in the VUV. As in Franta min a =15nm.Thetotalextinctionisthencalculatedas etal.(2011),whomeasuredtheopticalpropertiesofDLCfilms max byellipsometryinthe5-30eVrange,thepresentstudyshows (cid:90) amax thatdirectopticalmeasurements(e.g.,intransmission)arenec- Cext[cm−1]∝ πa2n(a)Qextda. (6) essarytoremoveambiguitiesincalculatingopticalconstantsin amin the VUV, especially concerning the contribution of the band at This analysis is limited to spherical, homogeneous, optically ∼22eV,whichareexpectedbythemodelsdescribedinSect.3.1. isotropic particles, and the resulting extinction is given by the 7 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction greenandbluedashedcurvesinFig.8.Theseopticalconstants sorption, which peaked in the 16 - 19 eV range. This band is should be implemented in more sophisticated extinction mod- predictedbycalculationsandispresentatvaryinglevelsinother els.Thecalculatedextinctionshowsthatbothmaterialspresent carbonaceous materials. It involves interband transitions to ex- asteepFUVrise.However,thepositionoftheFUVriseispri- tendedstates. marily dictated by the position of the maximum of the σ - σ∗ By combining UV measurements to IR measurements, we band. For a-C:H band maximum positions occur at lower ener- scaled the UV contribution to the 3.4 µm band to compare the giesthanforsoots,whichdominatethesteepFUVrise.TheUV observedUVextinctiontoourlaboratorya-C:Hmeasurements. peakofthecalculatedextinctioncurvecalculatedforlaboratory We derived the optical constants for a laboratory a-C:H and sootsiscloserinpositiontotheaveragegalacticextinctionUV sootfromseveralsetsoftransmissionmeasurementsatdifferent bumpat4.6µm−1(Fitzpatrick&Massa2007). thicknesses. We used these optical constants to calculate Draine&Lee(1984)suggestedthatcrystallinegraphitepar- extinction curves that show that a-C:Hs contribute to the steep ticles could be a carrier of the UV bump, but due to the diffi- FUV rise, while soots are suitable carriers of the UV bump. culty of condensing graphite in space and the need for specific Astronomical spectra of dust shortward of the Lyman limit are size distributions for spectral agreement (Czyzak et al. 1981), currentlylacking,mostlyduetotheabsorptionlinesofhydrogen othercarriersforthisbumpweresought.Mennellaetal.(1996, and helium, which have large FUV and extreme-UV (EUV) 1999) and later Gadallah et al. (2011) showed that an increase effective absorption cross sections (Hawkins & Wright 1991). of the sp2 carbon fraction as a result of UV irradiation of their However, in dusty regions (where the opacity due to the gas carbon materials could give rise to the UV bump. Considering component may be lower than the dust opacity), the laboratory themid-infraredandUVfeatures,theirsamplesaremorecom- FUVspectralfeaturesofcarbondustmaybeobserved. parable to our soot than to our a-C:H sample. Li et al. (2008) used buckyonions to reproduce observed interstellar extinction Acknowledgments. We thank Christophe Sandt (SOLEIL) for his curves. Ja¨ger et al. (1998) synthesized carbon analogs by py- helpwiththeinfraredmicroscopeattheSMISbeamline.VUVmea- rolizingcellulosematerialsandlaterbylaserablationofgraphite surements were made at the DISCO beam line of the SOLEIL syn- (Ja¨geretal.2008).However,theironion-likecarbonnanoparti- chrotron radiation facility (projects: 20141074 & 20130778). This cles did not show a strong UV bump. Polycyclic aromatic hy- workhasbeensupportedbytheFrenchprogram“PhysiqueetChimie drocarbons (PAH) were proposed to simultaneously contribute du Milieu Interstellaire”, the ANR COSMISME project (grant ANR- to the 217.5 nm bump and the FUV rise (Malloci et al. 2004; 2010-BLAN-0502).L.G.acknowledgessupportfromtheCNESpost- Joblin et al. 2009). Steglich et al. (2010, 2013) suggested that doctoralfellowshipprogram. PAHswithsizesaround50-60carbonatomspermoleculecould beresponsible fortheUVbump throughaheterogenous distri- butionofsizesandnotthroughsingleisolatedspecies.Cecchi- References Pestellini et al. (2008) showed that these two spectral features Allamandola,L.J.,Tielens,A.G.G.M.,&Barker,J.R.1985,ApJ,290,L25 and their variations can be accounted for by mixtures of PAHs Bohren,C.F.&Huffman,D.R.1998,AbsorptionandScatteringofLightby indifferentionizationstates.Morerecently,hydrogenatedamor- SmallParticles,WileyScienceSeries(Weinheim:Wiley-VCH) phous carbon grains, believed to be more easily formed in car- Carpentier,Y.,Fe´raud,G.,Dartois,E.,etal.2012,A&A,548,A40 Cecchi-Pestellini,C.,Malloci,G.,Mulas,G.,Joblin,C.,&Williams,D.A.2008, bonstaratmospheres,havebeenconsideredaspotentialcarriers A&A,486,L25 of the UV bump, particularly when irradiated by UV photons Colangeli,L.,Bussoletti,E.,Pestellini,C.C.,etal.1997,AdvancesinSpace (Mennellaetal.1996,1997;Gadallahetal.2011). Research,20,1617 Li&Greenberg(1997)modeledinterstellarextinctionbyus- Colangeli,L.,Mennella,V.,Blanco,A.,etal.1993,ApJ,418,435 ingathree-componentdustmodel:silicates,amorphouscarbons, Czyzak,S.J.,Hirth,J.P.,&Tabak,R.G.1981,VistasinAstronomy,25,337 Dartois,E.,Geballe,T.R.,Pino,T.,etal.2007,A&A,463,635 and PAHs. Recent extinction models including only two com- Dartois,E.,Marco,O.,Mun˜oz-Caro,G.M.,etal.2004a,A&A,423,549 ponents (silicates and a-C/a-C:H) (Jones 2012a,b) have found Dartois,E.,Mun˜ozCaro,G.M.,Deboffle,D.,&d’Hendecourt,L.2004b,A&A, goodagreementwithpreviouswork.Moreimportantly,theyac- 423,L33 count for the FUV rise and the UV bump only by means of Dartois,E.,Mun˜ozCaro,G.M.,Deboffle,D.,Montagnac,G.,&D’Hendecourt, L.2005,A&A,432,895 the size-dependent properties of the carbonaceous component. Desert,F.-X.,Boulanger,F.,&Puget,J.L.1990,A&A,237,215 The calculated extinction curves (using a a size distribution of Dischler,B.,Bubenzer,A.,&Koidl,P.1983,AppliedPhysicsLetters,42,636 carbondustgrainscharacterizedbyouropticalconstants)show Djurisˇic´,A.B.&Li,E.H.1999,JournalofAppliedPhysics,85,7404 that soot-like nanograins could be an important contributor to Draine,B.T.2003,ARA&A,41,241 theUVbump,whilea-C:Hscancontributemoresignificantlyto Draine,B.T.&Lee,H.M.1984,ApJ,285,89 Duley,W.W.1994,ApJ,430,L133 the steep FUV rise. However, other dust components (like sili- Duley,W.W.&Seahra,S.1998,ApJ,507,874 cates)shouldbeconsideredinacompletemodeloftheobserved Dworschak,W.1990,ThinSolidFilms,189,257 extinction. Fink,J.,Mu¨ller-Heinzerling,T.,Pflu¨ger,J.,etal.1984,Phys.Rev.B,30,4713 Fitzpatrick,E.L.&Massa,D.2005,AJ,130,1127 Fitzpatrick,E.L.&Massa,D.2007,ApJ,663,320 6. Conclusions Franta,D.,Necˇas,D.,Zaj´ıcˇkova´,L.,Bursˇ´ıkova´,V.,&Cobet,C.2011,ThinSolid Films,519,2694 Wehavedescribedthepreparationoflaboratorya-C:Handsoot Furton,D.G.,Laiho,J.W.,&Witt,A.N.1999,ApJ,526,752 nanoparticleanalogstodustfoundintheISM.Wecharacterized Gadallah,K.A.K.,Mutschke,H.,&Ja¨ger,C.2011,A&A,528,A56 Gail,H.-P.,Zhukovska,S.V.,Hoppe,P.,&Trieloff,M.2009,ApJ,698,1136 thinfilms(d<100nm)ofthesematerialstomeasuretheirtrans- Giuliani, A., Jamme, F., Rouam, V., et al. 2009, Journal of Synchrotron mission spectra in the λ = 1 µm to 50 nm range. These curves Radiation,16,835 canbedecomposedintoabsorptionfeaturesinvolvingtransitions Godard,M.2011,Theses,Universite´ParisSud-ParisXI from states in the valence π band to states in the conduction σ Godard,M.&Dartois,E.2010,A&A,519,A39 Godard,M.,Fe´raud,G.,Chabot,M.,etal.2011,A&A,529,A146 bandaround5and10eV,thepositionandrelativeintensityvary- Goto,M.,Kwok,S.,Takami,H.,etal.2007,ApJ,662,389 ing with the sp2 content of the material. The description of the Greenberg,J.M.&Chlewicki,G.1983,ApJ,272,563 measurements required adding another band to explain the ab- Greenberg,J.M.&Li,A.1999,AdvancesinSpaceResearch,24,497 8 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction Hawkins,I.&Wright,E.L.1991,inExtremeUltravioletAstronomy,ed.R.F. Malina&S.Bowyer,333 Henning,T.,Ja¨ger,C.,&Mutschke,H.2004,inAstronomicalSocietyofthe PacificConferenceSeries,Vol.309,AstrophysicsofDust,ed.A.N.Witt, G.C.Clayton,&B.T.Draine,603 Henning,T.&Salama,F.1998,Science,282,2204 Ja¨ger,C.,Mutschke,H.,&Henning,T.1998,A&A,332,291 Ja¨ger,C.,Mutschke,H.,Henning,T.,&Huisken,F.2008,ApJ,689,249 Ja¨ger,C.,Mutschke,H.,Henning,T.,&Huisken,F.2011,inEASPublications Series,Vol.46,EASPublicationsSeries,ed.C.Joblin&A.G.G.M.Tielens, 293–304 Jenniskens,P.1993,A&A,274,653 Joblin,C.,Berne´,O.,Simon,A.,&Mulas,G.2009,inAstronomicalSociety ofthePacificConferenceSeries,Vol.414,CosmicDust-NearandFar,ed. T.Henning,E.Gru¨n,&J.Steinacker,383 Joblin,C.,D’Hendecourt,L.,Leger,A.,&Defourneau,D.1994,A&A,281,923 Joblin,C.,Leger,A.,&Martin,P.1992,ApJ,393,L79 Joblin,C.&Tielens,A.G.G.M.,eds.2011,EASPublicationsSeries,Vol.46, PAHsandtheUniverse:ASymposiumtoCelebratethe25thAnniversaryof thePAHHypothesis Jones,A.P.2012a,A&A,540,A1 FigureA.1: Correlation between n*thickness of films (d > 300 Jones,A.P.2012b,A&A,540,A2 nm)vs.theintegrated3.4µmbandarea.Thisisusedtoestimate Jones,A.P.,Ysard,N.,Koehler,M.,etal.2014,ArXive-prints n*thicknessfortheultra-thinfilms(d<100nm)usingtheirinte- Kassavetis,S.,Patsalas,P.,Logothetidis,S.,Robertson,J.,&Kennou,S.2007, grated3.4µmvalues.Theinsetshowsthe3.4µmbandofa-C:H DiamondandRelatedMaterials,16,1813 Langlet, R., Vanacharla, M., Picaud, S., & Devel, M. 2009, Journal of filmsproducedwithdifferentdepositiontimes. Quantitative Spectroscopy and Radiative Transfer, 110, 1615 , {XI} Conference on Electromagnetic and Light Scattering by Non-Spherical Particles:2008 Lazar,G.1998,ActaPhysicaPolonicaA,100,67 Leger,A.&Puget,J.L.1984,A&A,137,L5 Li,A.,Chen,J.H.,Li,M.P.,Shi,Q.J.,&Wang,Y.J.2008,MNRAS,390,L39 whereαistheabsorptioncoefficient,anddisthefilmthickness. Li,A.&Draine,B.T.2012,ApJ,760,L35 Li,A.&Greenberg,J.M.1997,A&A,323,566 The absorption coefficient α is related to the imaginary part of Malloci,G.,Mulas,G.,&Joblin,C.2004,A&A,426,105 thecomplexindexofrefraction,k(ν)by Mennella,V.,Baratta,G.A.,Colangeli,L.,etal.1997,ApJ,481,545 Mennella,V.,Brucato,J.R.,Colangeli,L.,&Palumbo,P.1999,ApJ,524,L71 Mennella,V.,Colangeli,L.,Palumbo,P.,etal.1996,ApJ,464,L191 4πκ(ν) Molster,F.J.&Waters,L.B.F.M.2003,inLectureNotesinPhysics,Berlin α(ν)= , (A.2) SpringerVerlag,Vol.609,Astromineralogy,ed.T.K.Henning,121–170 ν Moulin,F.,Devel,M.,&Picaud,S.2008,J.Quant.Spec.Radiat.Transf.,109, 1791 which gives a first iteration of the κ(ν) index. From the Snell- Papoular,R.,Conard,J.,Guillois,O.,etal.1996,A&A,315,222 Peeters,E.,Hony,S.,VanKerckhoven,C.,etal.2002,A&A,390,1089 Decarteslaw,weknowthattheopticalpathdifferenceδbetween Pendleton,Y.J.&Allamandola,L.J.2002,ApJS,138,75 abeamtraversingthefilmandbeingreflectedovereachfaceof Pino,T.,Dartois,E.,Cao,A.-T.,etal.2008,A&A,490,665 thefilmis Rawlings,M.G.,Adamson,A.J.,&Whittet,D.C.B.2003,MNRAS,341,1121 Robertson,J.&O’Reilly,E.P.1987,Phys.Rev.B,35,2946 δ=2n dcos(θ ). (A.3) Sandford,S.A.,Pendleton,Y.J.,&Allamandola,L.J.1995,ApJ,440,697 0 f Schnaiter, M., Mutschke, H., Dorschner, J., Henning, T., & Salama, F. 1998, ApJ,498,486 Theinterferencefringesofthefilmwillhaveamaximumwhen Schnaiter,M.,Mutschke,H.,Henning,T.,etal.1996,ApJ,464,L187 Scott,A.D.,Duley,W.W.,&Jahani,H.R.1997,ApJ,490,L175 Sloan,G.C.,Jura,M.,Duley,W.W.,etal.2007,ApJ,664,1144 m+1 Smith,F.W.1984,JournalofAppliedPhysics,55,764 δ=mλ= , (A.4) Stecher,T.P.&Donn,B.1965,ApJ,142,1681 ∆σ Steglich,M.,Ja¨ger,C.,Huisken,F.,etal.2013,ApJS,208,26 Steglich,M.,Ja¨ger,C.,Rouille´,G.,etal.2010,ApJ,712,L16 where ∆σ is the interfringe in wave numbers. Combining the Swanepoel,R.1983,JournalofPhysicsEScientificInstruments,16,1214 Tielens,A.G.G.M.2008,ARA&A,46,289 previoustwoequations,wefindthatthethicknessofthefilmis Tosatti,E.&Bassani,F.1970,NuovoCimentoBSerie,65,161 givenby Trotta,F.&Schmitt,B.1996,inNATOAdvancedStudyInstituteontheCosmic DustConnection,3rdCourseoftheInternationalSchoolofSpaceChemistry, 1 p.179-184,179–184 d= 2n ∆σ, (A.5) vanDiedenhoven,B.,Peeters,E.,VanKerckhoven,C.,etal.2004,ApJ,611,928 0 Warren,S.G.1984,Appl.Opt.,23,1206 Yang,X.J.,Glaser,R.,Li,A.,&Zhong,J.X.2013,ApJ,776,110 wheren isassumedtobewavelengthinvariant,whichisreason- 0 Zubko,V.G.,Mennella,V.,Colangeli,L.,&Bussoletti,E.1996,MNRAS,282, ableforvisibleandnear-infraredwavelengths.Measurementsin 1321 themid-infrared(from400to8000cm−1)givealimitforthede- tectablehalfinterfringeof∼200nm.Thismeansthattheinfrared interfringeofultra-thinfilmsisnotmeasurable.Weusedthecor- relation between the integrated 3.4 µm band and n*thickness AppendixA: Thicknessestimationofana-C:Hfilm (from the interfringe measurements of the thicker films, from Theopticaldepth,τ,obtainedfromtransmissionspectra,isequal Eq.A.5)toestimatethethicknessfortheultra-thinfilms.Figure to A.1 shows this correlation fitted by a linear function y = m*x, τ=αd, (A.1) wherem=0.059±0.01,alongwith3σerrorbars. 9 L.Gavilanetal.:VUVspectroscopyofcarbondustanalogs:contributiontointerstellarextinction AppendixB: SubstratesintheVUV FigureB.1:Transmissionspectraofdifferentcarbonmembranes (10-25nmthick)usedforVUVmeasurements(dashedlines), andcarbonmembranes+a-C:Horsootdeposits(solidlines). Tostudytheinfluenceofthesubstrateonthetransmissionspec- tra of a-C:H and soot films in the VUV, we studied the spec- traldispersionofthesubstratesandthefilmsdepositedonsuch substrates, seen in Fig. B.1. These spectra are divided by the scaledspectralirradianceoftheVUVbeam.Spectraofsubstrate C1 (thickness = 15 - 25nm) show very low dispersion(< 0.01 ∆τ)forconsecutivemeasurements(C1a)andlowdispersion(< 0.1 ∆τ) between two series of measurements. Spectra of refer- ence C2 (thickness ∼10 nm) show low dispersion (< 0.2 ∆τ) betweenconsecutivemeasurements.Thefilms(a-C:Horsoots) depositedonC1orC2showtheexpectedincreasedopticaldepth with characteristic peak positions different from the substrate. Divisionbytherespectivesubstrategivesusthespectraintrans- missionforsuchfilms,asshowninFigs.3-4. 10