ebook img

Voting, Arbitration, and Fair Division PDF

227 Pages·2007·2.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Voting, Arbitration, and Fair Division

Voting, Arbitration, and Fair Division The mathematics of social choice Marcus Pivato Trent University March 10, 2007 ii Copyright c Marcus Pivato, 2007 (cid:13) You are free to reproduce or distribute this work, or any part of it, as long as the following conditions are met: 1. You must include, in any copies, a title page stating the author and the complete title of this work. 2. You must include, in any copies, this copyright notice, in its entirety. 3. You may not reproduce or distribute this work or any part of it for commercial purposes, except with explicit consent of the author. For clarification of these conditions, please contact the author at [email protected] This is a work in progress. Updates and improvements are available at the author’s website: http://xaravve.trentu.ca/pivato Colophon All text was prepared using Leslie Lamport’s LATEX2e typesetting language. Pictures were generated using William Chia-Wei Cheng’s excellent TGIF object-oriented drawing program. This book was prepared entirely on computers using the RedHat Linux and Ubuntu Linux operating systems. Contents I Voting and Social Choice 1 1 Binary Voting Procedures 3 1A Simple Majority Voting: May’s Theorem . . . . . . . . . . . . . . . . . . . . . . 3 1B Weighted Majority Voting Systems . . . . . . . . . . . . . . . . . . . . . . . . . 6 1C Vector-Weighted Voting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1D Voting Power Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Multi-option Voting Systems 17 2A Plurality voting & Borda’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . 17 2B Other voting schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2B.1 Pairwise elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2B.2 The Condorcet Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2B.3 Borda Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2B.4 Approval voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2C Abstract Voting Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2C.1 Preferences and Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2C.2 Voting procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2C.3 Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2D Sen and (Minimal) Liberalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2E Arrow’s Impossibility Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2F Strategic Voting: Gibbard & Satterthwaite . . . . . . . . . . . . . . . . . . . . 46 II Social Welfare Functions 53 3 Utility and Utilitarianism 55 3A Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3B The problem of interpersonal comparisons . . . . . . . . . . . . . . . . . . . . . 60 3C Relative Utilitarianism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3D The Groves-Clarke Pivotal Mechanism . . . . . . . . . . . . . . . . . . . . . . . 62 3E Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 iii iv CONTENTS III Bargaining and Arbitration 69 4 Bargaining Theory 71 4A The von Neumann-Morgenstern Model . . . . . . . . . . . . . . . . . . . . . . . 71 4B The Nash Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4C Hausdorff Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 The Nash Program 89 5A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5B Normal-form games and Nash equilibria . . . . . . . . . . . . . . . . . . . . . . 93 5C The Nash demand game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5D The Harsanyi-Zeuthen concession model . . . . . . . . . . . . . . . . . . . . . . 103 5E Discount Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5F The Rubinstein-St˚ahl Alternating Offers model . . . . . . . . . . . . . . . . . . 109 5G Proof of Rubinstein’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Interpersonal Comparison Models 131 6A The Utilitarian Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6B The Proportional Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6C Solution Syzygy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6D Contractarian Political Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 149 7 Renormalized Solutions 155 7A Kalai & Smorodinsky’s Relative Egalitarianism . . . . . . . . . . . . . . . . . . 155 7B Relative Utilitarianism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 IV Fair Division 161 8 Partitions, Procedures, and Games 163 8A Utility Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8B Partition Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8C Partition Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 9 Proportional Partitions 171 9A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9B Banach and Knaster’s ‘Last Diminisher’ game . . . . . . . . . . . . . . . . . . . 171 9C The Latecomer Problem: Fink’s ‘Lone Chooser’ game . . . . . . . . . . . . . . 175 9D Symmetry: Dubins and Spanier’s ‘Moving Knife’ game . . . . . . . . . . . . . . 178 9E Connectivity: Hill and Beck’s Fair Border Procedure . . . . . . . . . . . . . . . 180 9E.1 Appendix on Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 CONTENTS v 10 Pareto Optimality 189 10A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10B Mutually Beneficial Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 10C Utility Ratio Threshold Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 192 10D Bentham Optimality & ‘Highest Bidder’ . . . . . . . . . . . . . . . . . . . . . . 196 11 Envy and Equitability 199 11A Envy-freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 11B Equitable Partitions & ‘Adjusted Winner’ . . . . . . . . . . . . . . . . . . . . . 203 11C Other issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11C.1 Entitlements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11C.2 Indivisible Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 11C.3 Chores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11C.4 Nonmanipulability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Bibliography 215 vi CONTENTS Part I Voting and Social Choice 1 Chapter 1 Binary Voting Procedures Democracy is the worst form of government except all those other forms that have been tried from time to time. —Winston Churchill The word ‘democracy’ has been used to describe many different political systems, which often yield wildly different outcomes. The simple rule of ‘decision by majority’ can be made complicated in several ways: Granting veto power to some participants (e.g. the permanent members of the UN Se- • curity Council or the President of the United States), possibly subject to ‘override’ by a sufficiently large majority of another body (e.g. the United States Senate). . Requiring a majority by two different measures (e.g. in a federal system, a constitutional • ammendment might require the support of a majority of the population and a majority of states/provinces). Giving different ‘weight’ to different voters (e.g. different shareholders in a publically • traded corporation, or different states in the European Union). Forcing voters to vote in ‘blocs’ (e.g. political parties) • In this chapter we will consider the simplest kind of democratic decision-making: that between two alternatives. Nevertheless, we will see that aforementioned complications engender many surprising phenomena. 1A Simple Majority Voting: May’s Theorem Prerequisites: 2C.1 Recommended: 2C.3 § § The most obvious social choice function for two alternatives is the simple majority vote. The more elaborate voting procedures (Borda count, pairwise votes, approval voting, etc.) all reduce to the majority vote when = 2. Indeed, the conventional wisdom says that majority |A| 3 4 CHAPTER 1. BINARY VOTING PROCEDURES vote is the ‘only’ sensible democratic procedure for choosing between two alternatives. The good news is that, for once, the conventional wisdom is right. Suppose that = A,B . In 2C.3 we introduced three desiderata which any ‘reasonable’ A { } § voting procedure should satisfy: ρ (M) (Monotonicity) Let ρ be a profile such that A B. Let v be some voter such that ⊑ ∈ V ρ B A, and let δ be the profile obtained from ρ by giving v a new preference ordering (cid:22) v δ δ δ , such that A B (all other voters keep the same preferences). Then A B. (cid:23) (cid:23) ⊑ v v (A) (Anonymity) Let σ : be a permutation of the voters. Let ρ be a profile, and let V−→V δ be the profile obtained from ρ by permuting the voters with σ. In other words, for any ρ δ v , δ(v) = ρ σ(v) . Then A B A B . ∈ V ⊒ ⇐⇒ ⊒ (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (N) (Neutrality) Let ρ be a profile, and let δ be the profile obtained from ρ by reversing the positions of A and B for each voter. In other words, for any v , ∈ V ρ δ A B B A . (cid:23) ⇐⇒ (cid:23) (cid:18) v (cid:19) (cid:18) v (cid:19) Then the outcome of δ is the reverse of the outcome of ρ. That, is, for any B,C , ∈ A ρ δ A B B A . ⊒ ⇐⇒ ⊒ (cid:16) (cid:17) (cid:16) (cid:17) A semistrict voting procedure is a function Π : R∗( , ) ( ). Thus, the voters must V A −→P A provide strict preferences as input, but the output might have ties. Let V := #( ). We say Π V is a quota system if there is some Q [0..V] so that, for any ρ R( , ), ∈ ∈ V A ρ ρ (Qa) If # v ; A B > Q, then A = B. ∈ V ≻ v (cid:26) (cid:27) ρ ρ (Qb) If # v ; B A > Q, then B = A. ∈ V ≻ v (cid:26) (cid:27) ρ (Qc) If neither of these is true, then A B. ≈ For example: The simple majority vote is a quota system where Q = V/2. • The two thirds majority vote is a quota system where Q = 2V. If an alternative does • 3 not obtain at least two thirds support from the populace, then it is not chosen. If neither alternative gets two thirds support, then neither is chosen; the result is a ‘tie’.

Description:
This book was prepared entirely on computers using the RedHat Linux and .. The totally indecisive system is one where Q = V ; hence condition (Qc) is always true, Claim 2 says Q satisfies property (Qa) of a quota system. Whenever you find yourself in the majority, it is time to stop and reflect.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.