ebook img

Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD

Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD∗ V. V. Braguta IHEP,Protvino,Moscowregion,142284Russia ITEP,B.Cheremushkinskayastr. 25,Moscow,117218Russia P. V. Buividovich InstituteofTheoreticalPhysics,UniversityofRegensburg,Universitätsstrasse31,D-93053 Regensburg,Germany 3 1 M. N. Chernodub†‡ 0 2 CNRS,LaboratoiredeMathématiquesetPhysiqueThéorique,UniversitéFrançois-Rabelais Tours,ParcdeGrandmont,37200Tours,France n a DepartmentofPhysicsandAstronomy,UniversityofGent,Krijgslaan281,S9,B-9000Gent, J Belgium 8 2 A. Yu. Kotov and M. I. Polikarpov ITEP,B.Cheremushkinskayastr. 25,Moscow,117218Russia ] t MIPT,Institutskiiper. 9,Dolgoprudny,MoscowRegion,141700Russia a l - In the background of the strong magnetic field the vacuum is suggested to possess an electro- p e magnetically superconducting phase characterised by the emergence of inhomogeneous quark- h antiquark vector condensates which carry quantum numbers of the charged ρ mesons. The ρ- [ meson condensates are inhomogeneous due to the presence of the stringlike defects (the ρ vor- 1 tices) which are parallel to the magnetic field (the superconducting vacuum phase is similar to v 0 themixedAbrikosovphaseofatype-IIsuperconductor). Inagreementwiththeseexpectations, 9 we have observed the presence of the ρ vortices in numerical simulations of the vacuum of the 5 6 quenchedtwo-colorlatticeQCDinstrongmagneticfieldbackground. Wehavefoundthatinthe . 1 quenchedQCDtheρ vorticesformaliquid. Thetransitionbetweentheusual(insulator)phaseat 0 lowBandthesuperconductingvortexliquidphaseathighBturnsouttobeverysmooth,atleast 3 1 inthequenchedQCD. : v XthQuarkConfinementandtheHadronSpectrum i X 8-12October2012 r TUMCampusGarching,Munich,Germany a ∗TheworkofP.V.B.wassupportedbytheS.KowalewskajaawardfromtheAlexandervonHumboldtFoundation (Germany);theworkofM.N.C.waspartiallysupportedbygrantNo.ANR-10-JCJC-0408HYPERMAGofAgenceNa- tionaledelaRecherche(France).TheworkoftheMoscowgroupwassupportedbyGrant"LeadingScientificSchools" No. NSh-6260.2010.2, RFBR-11-02-01227-a, FederalSpecial-PurposeProgram"Cadres"oftheRussianMinistryof ScienceandEducationandbyagrantfromtheFAIR-RussiaResearchCenter. Numericalcalculationswereperformed attheITEPcomputersystems“Graphyn”and“Stakan”(authorsaremuchobligedtoA.V.Barylov,A.A.Golubev,V. A.Kolosov,I.E.KorolkoandM.M.Sokolovforthevaluablehelp). †Speaker. ‡OnleavefromITEP,Moscow,Russia. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub 1. Introduction Recentlyitwassuggestedthatinthemagneticfieldbackgroundthevacuumbecomeselectro- magneticallysuperconductingifthestrengthofthemagneticfieldexceedsthecriticalvalue[1,2]: B =m2/e≈1016Tesla, (1.1) c ρ wherem =775.5MeVisthemassoftheρ meson. Themagneticfieldswhicharetwo-threetimes ρ strongerthanthecriticalvalue(1.1)areexpectedtobeexperimentallyreachableattheLHC[3]. If the strength B ≡ |(cid:126)B| of the uniform static magnetic field (cid:126)B = (0,0,B) is higher then the critical value (1.1), then the usual vacuum ground state should experience a tachyonic instability towardstheemergenceofanewgroundstatecharacterisedbythepresenceofthefollowingquark- antiquarkcondensates: (cid:104)u¯γ d(cid:105)=ρ(x ), (cid:104)u¯γ d(cid:105)=−iρ(x ). (1.2) 1 ⊥ 2 ⊥ The complex scalar field ρ is a function of the (transverse) spatial coordinates x =(x ,x ). The ⊥ 1 2 quark-antiquarkcondensates(1.2)carrythequantumnumbersoftheelectricallychargedρ mesons sothatthisphenomenonmayalsobeinterpretedastheρ-mesoncondensation. Since the condensed pairs (1.2) are electrically charged states, their condensation implies, almost automatically, the emergence of the electromagnetic superconductivity in the new vacuum state at B>B . The emerging superconducting vacuum state has quite unusual properties (for a c detailedreview,seeRef.[5]): (i) Anisotropy: the ground state is a perfect conductor for the electric currents directed strictly alongthemagneticfieldaxis. Inthetransversedirectionsthesuperconductivityisabsent. (ii) Inhomogeneity: thetransportcoefficientsdependonthetransversecoordinatesx . ⊥ (iii) AbsenceoftheMeissnereffect: theinducedsuperconductivitycannotscreenthebackground magneticfieldduetothementionedspatialanisotropy. (iv) In-tandemsuperfluidity: onecanarguethatthesuperconductingstate(1.2)shouldalwaysbe accompaniedbyasuperfluidityoftheneutralρ(0) mesons[1,4]. (iv) Optically,thevacuumsuperconductorismetamaterialwithaperfectlensproperties[6]. Inthemagnetic-field-inducedvacuumsuperconductivity,thequark-antiquarkcomposites(1.2) playthesameroleastheCooperpairsplayinaconventionalsuperconductor. Thisanalogymaygo evendeeper: inaverystrongmagneticfieldaconventionaltype-IIsuperconductorwassuggestedto enteraquantumlimitof“reentrantsuperconductivity”characterisedbya p-wavespin-tripletpair- ing, absence of the Meissner effect, and a superconducting flow along the magnetic field axis [7]. Itisencouragingthattheseareexactlythefeatureswhichweexpecttoberealisedinthesupercon- ductingvacuumstateatB>B . c Thereareindicationsfromholographic[8,9]andnumerical[10]approachesthattheρ-mesons shouldbecondensedinthestrongmagneticfield;seealsotheongoingdiscussioninRefs.[11,12]. 2 VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub 2. Vortexlatticegroundstateinthemean-fieldapproximation Theρ-mesoncondensationcanbecharacterisedbyasinglescalarfunction, 1 ρ(x)= u¯(x)γ d(x), γ =γ +iγ , (2.1) + + 1 2 2 where the combination γ of the Dirac matrices corresponds to the s =+1 projection of the ρ- + z mesonspinontothemagneticfieldaxis. Inthesmall-condensatelimit,|ρ|(cid:28)m ,thegroundstate ρ oftheρ-mesoncondensatescanbedescribedbythefollowinggeneralform[1,2,4,9]: (cid:114) ρ(z)= ∑ C exp(cid:110)− π (cid:0)|z|2+z¯2(cid:1)−πν2n2+2πνn z¯ (cid:111), L = 2π , (2.2) n 2L2 L B eB n∈ZZ B B where L is the magnetic length and ν is a real parameter. The solution (2.2) is similar to – and B inspiredby–theAbrikosovvortexlatticeconfigurationwhichappearsinamixedstateofatype-II superconductorinthemagneticfieldbackground[18]. In Eq. (2.2) the complex coefficientsC are fixed by the energy minimisation condition. It is n usuallyassumedthatthecoefficientsC obeytheN–foldsymmetry,whereN isaninteger[18]: n C =C , N =1,2,... (2.3) n+N n sothatthecondensate(2.2)hasaperiodicstructureinthetransverse(x ,x )plane. Acondensateof 1 2 theform(2.2)possessesaninfinitesetofzeros,whichmarkthecentresofthetopologicalstringde- fectscalledtheρ vortices[1]. SimilarlytotheAbrikosovvorticesinconventionalsuperconductors, thecondensateρ acquiresthephaseshift2π aswecircumventthesezeros. Figure1: (left)Theequilateraltriangularvortexlatticeinthemean-fieldapproximationtothegroundstate ofQCDand(right)itssuggestedmeltingduetothepresenceofquantumand/orthermalfluctuations. The simplest configuration with N =1 (allC ’s are equal) corresponds to the square vortex n lattice. However,thetruemean-fieldgroundstateisgivenbyanequilateraltriangularvortexlattice (whichissometimesalsocalled“hexagonallattice”)withthefollowingsetofparameters[4,9,18]: √ √ N =2, C =±iC , ν = 4 3/ 2≈0.9306. (2.4) 1 0 Thus,inthemeanfieldapproximation,theρ-mesonvortexstateissimilartothetruegroundstate oftheAbrikosovlatticeinatype-IIsuperconductor[18];seeFig.1(left)foranillustration. 3 VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub The analytic results of Ref. [4] suggest that the ρ vortices are weakly interacting with each other in the vortex lattice state. This fact means that the presence of thermal and/or quantum fluctuations may either melt the vortex lattice state to a liquid vortex state or even evaporate it by formingavortexgas(suchphenomenaareknowntohappenwiththeAbrikosovvortexlatticesin conventionalsuperconductors[14]). Thevortexliquidstateisasuperconductingstatecharacterised by the brokenU(1) electromagnetic gauge symmetry while the vortex gas state is, generally, e.m. a normal (non-superconducting) state with the unbroken U(1) group. In the context of the e.m. solidstatephysics,thevortexlattice-liquid-gasphasediagramformagnetic-field-inducedreentrant superconductivitywasdiscussedinRef.[13]. 3. Numericalsimulations InournumericalsetupwebasicallyfollowRef.[10]. WeuselatticeMonte-Carlosimulations of SU(2) Yang-Mills lattice gauge theory. The quark fields are introduced by the overlap lattice Dirac operator D with exact chiral symmetry [16], and – due to the presence of the magnetic field – with twisted spatial boundary conditions [17]. The quarks are treated in the quenched approximation so that the vacuum quark loops are absent in our approach. We have studied 184 and194 latticesinawiderangeofthemagneticfieldstrengths,eB=(0...2.14)GeV2 withlattice spacingsa≈0.11fm. Wehaveused20gaugeconfigurationspereachvalueofthemagneticfield. Anexplicitmanifestationofthesuperconductingphasewouldbethepresenceoftheconden- sate(1.2). Unfortunately,theobservable(1.2)cannotbecomputeddirectlyinourapproach,while itcanbeaccessedviathefollowingsimplestρ-mesoncorrelator: (cid:18) (cid:19) φ(x)≡φ(x;A,B)=(cid:10)ρ†(0)ρ(x)(cid:11) ≡Tr 1 γ 1 γ , (3.1) A,B D (A,B)+m µ D (A,B)+m ν u d where the ρ meson field is defined by Eq. (2.1). The subscripts in Eq. (3.1) indicate that the correlationfunctionφ(x)iscomputedinthefixedbackgroundofboththenon-Abeliangaugefield AandtheAbelianmagneticfieldB. Equation(3.1)representsthisvectorcorrelatorintermsofthe (overlap)DiracpropagatorsinthebackgroundofbothAbelianandnon-Abeliangaugefields. WenoticethatundertheAbeliantransformationfromtheelectromagneticgaugegroupU(1) e.m. thefield(3.1)transformsasachargedscalarfield1: φ(x)→eieω(x)φ(x). However,theeffectivefield φ(x)isstillatwo-pointcorrelationfunctionwhichfallsoffexponentiallyasthedistancexincreases. This property is not a desired behaviour for a genuine local scalar field so that the quantity (3.1) cannot,strictlyspeaking,beassociatedwiththeρ-mesonfielditself. Fortunately, we may get an insight from Ref. [15] where a qualitatively similar issue was encountered. InthatworkthechromoelectricfluxtubewasstudiedusingarectangularWilsonloop W asasourceandthelocalenergydensityoperatorO asaprobe. Althoughtheexpectationvalue oftheWilsonloopfallsoffexponentiallyastheareaoftheWilsonloopgrows,theenergydensity in the presence of the Wilson loop, given by the normalised energy ratio (cid:104)O(cid:105) =(cid:104)OW (cid:105)/(cid:104)W (cid:105), W has,generally,anon-vanishingprofileastheareaoftheWilsonloopgrows. 1Thegaugetransformationattheorigin,ϕ(x)→eieω(0)ϕ(x),actsasaglobalphasewhichisnotessentialforour interpretationoftheeffectivefieldφ(x). 4 VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub By analogy with Ref. [15], we consider the normalised scalar energy of the ρ-meson field E(x), the normalised electric (super)current j (x) generated by the ρ-meson field, and the local µ vortex density υ(x) in transversal (x,y) plane, respectively (we use the continuum notations in ordertosimplifytheexpressions): |D φ(x)|2 µ E(x) = , D =∂ −ieA , (3.2) |φ(x)|2 µ µ µ →− ←− φ∗(x)D φ(x)−φ∗(x)D φ(x) µ µ j (x) = , (3.3) µ 2i|φ(x)|2 εab ∂ ∂ υ(x) = singargφ(x)≡ argφ(x), a,b=1,2. (3.4) 2π ∂x ∂x a b (x,y)plane (x,z)plane Figure2: Twotypesofthe“probe”cross-sectionsofthe(expected)meltedρ-vortexlattice,Fig.1(right). Insearchofsignaturesofthe(perhaps,melted)ρ-vortexlatticewehavestudied(configuration- by-configuration)thebehaviourofthenormalisedenergydensity(3.2)inthe(x,y)and(x,z)planes (we remind that the magnetic field is directed along the z axis); see Fig. 2. In the center of a physical ρ vortex the energy density is higher than the energy density outside the vortex. Thus, if the physical ρ vortices are formed in the (sufficiently strong) magnetic field background, than we may expect the formation of the pointlike lumps of the energy density in the (x,y) plane [see Fig.2(left)]andtheformationofthelinelikestructuresinthe(x,z)plane[seeFig.2(right)]. Typicalexamplesofthebehaviouroftheenergydensityinthe(x,y)and(x,z)planesareshown for weak (eB = 0.356GeV2), moderate (eB = 1.07GeV2) and high (eB = 2.14GeV2) magnetic fields in Fig. 3. In accordance with our qualitative expectations, at low magnetic field the vortex lattice is not formed. At the moderate magnetic field the formation of a coherent vortex structure is seen while the vortices are not strictly ordered in the transversal plane and they are not quite parallel to the magnetic field. At higher magnetic field the physical picture is visually consistent withthepresenceofameltedlattice(liquid)oftheρ vortices;seeFig.1(right). Thepeaksintheenergydensity(3.2)arecorrelatedwiththeρ vortexpositions(3.4)andthat theρ vorticesareencircledbythesupercurrents(3.3). ThelatterfeatureisshowninFig.4. Thus, thenumericallyobservedvorticesdoindeedbeartheessentialfeaturesofthephysicalvortices. The nature of the ρ-vortex state may be characterised by the normalised vortex-vortex cor- relation function (cid:104)υ(0)υ(R)(cid:105)/(cid:104)υ(0)(cid:105)2, where the ρ vortex density is given in Eq. (3.4). At low magneticfields thisfunction isa monotonicallyrising functionof theinter-vortex distanceR, Fig.5(left),implyingthattheρ vorticesconstitutea(nonsuperconducting)gas. 5 VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub Figure 3: Typical behaviour of the energy density in the (x,y) planes (the left column) and in the (x,z) planes (the right column) for eB=0.356GeV2 (the upper panel), eB=1.07GeV2 (the middle panel) and eB=2.14GeV2(thelowerpanel). Thenumberofelementaryfluxesisn=eBL L /(2π). Intheleftcolumn x y themagneticfieldisperpendiculartothepageandintherightcolumnthemagneticfieldisdirectedvertically. 6 VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub Figure4: Examplesofthesuperconductingcurrents(thebluelines),Eq.(1.6),aroundthevortices(thered squares), Eq.(2.7), inthe(x,y)planesateB=1.07GeV2 (left)andeB=2.14GeV2 (right). Accordingto the analytical expectations [1, 4] the currents should encircle the ρ vortices in the clockwise direction (an exampleofthemean-fieldsolution,Eqs.(1.4),(1.6),isshownintheinsetoftherightfigure,fromRef.[4]). At higher magnetic fields a non-monotonic behaviour manifests itself via the formation of a widemaximumatintermediatedistances; seeFig.5(right). Theappearanceofthepeakindicates thepresenceoftheanticipatedsuperconductingρ-vortexliquid. Figure5: Thenormalisedvortex-vortexcorrelationfunction(cid:104)υ(0)υ(R)(cid:105)/(cid:104)υ(0)(cid:105)2 inthe(x,y)plane. The monotonic(nonmonotonic)behaviourofthecorrelatorsignalsthepresenceofthegas(liquid)vortexstate atlow(high)valuesofthemagneticfieldBasshownintheleft(right)plot. The melting of the vortex lattice in quenched QCD may make it difficult to observe the sug- gested ρ vortex condensation using the standard numerical tools. Indeed, in the vortex lattice state[describedbyEqs.(2.2)andEq.(2.4)]thephaseoftheρ-mesonfieldchangesby2π around each vortex so that the ρ-field is an oscillatory function of the transverse coordinates x and y. Thus,inthesuperconductingstateatB>B ,thespace-averaged(bulk)condensateisalwayszero, c (cid:104)ρ(x)(cid:105) ≡0,despitethefactthatthelocalρ-mesoncondensateislargeandthegroundstateisa bulk superconductor(thesameistruefortheAbrikosovmixedstateinatype-IIsuperconductor[18]). However, if the vortices were strictly straight, then the ρ-meson condensation could in prin- ciple still be determined by studying a long-distance limit (taken along the straight vortex world- sheets) of the correlation function (3.1) averaged over gluon fields. In this straight-vortex case theoscillatingphasewouldnotcontributetothecorrelationfunctionsothatlong-distancecorrela- tor should generally be nonzero, lim (cid:10)ρ(0)ρ(x(cid:107))(cid:11) ∼ |(cid:104)ρ(0)(cid:105)|2 with x(cid:107) = (0,0,x,t). However, x(cid:107)→∞ 7 VortexliquidinsuperconductingvacuumofquenchedlatticeQCD M.N.Chernodub in the liquid vortex phase the vortex worldsheets are not flat surfaces so that the vortex wob- bling may, in general, add large phase fluctuations to the correlator of the ρ-meson field, hence lim (cid:10)ρ(0)ρ(x(cid:107))(cid:11)≡0inthissuperconductingstate. Thus,onemayencounteratechnicaldifficulty x(cid:107)→∞ indeterminationoftheexactρ-mesoncondensateintheliquidstatebyusingtheρ-fieldcorrelators. 4. Conclusions Wehavenumericallyobservedtheformationoftheρ-vortexliquidinthevacuumofquenched two-colorQCDinstrongmagneticfieldbackground. Thevortexliquidphaseisanelectromagnet- ically superconducting phase characterised by the inhomogeneous order parameter (the ρ meson condensate), similarly to the mixed (Abrikosov) phase of an ordinary type-II superconductor. We arguethatinthisphasethecalculationofthe(highlyinhomogeneous)ρ-mesoncondensatebyus- ing the standard methods should be taken with care. The transition between the usual (insulator) phaseatlowBandthesuperconductingvortexliquidphaseathighBturnsouttobeverysmooth. References [1] M.N.Chernodub,Phys.Rev.D82,085011(2010). [2] M.N.Chernodub,Phys.Rev.Lett.106,142003(2011). [3] A.BzdakandV.Skokov,Phys.Lett.B710,171(2012);W.-T.DengandX.-G.Huang,Phys.Rev.C 85,044907(2012). [4] M.N.Chernodub,J.VanDoorsselaereandH.Verschelde,Phys.Rev.D85,045002(2012). [5] M.N.Chernodub,toappearinLect.NotesPhys."Stronglyinteractingmatterinmagneticfields" (Springer),editedbyD.Kharzeev,K.Landsteiner,A.Schmitt,H.-U.Yee;arXiv:1208.5025[hep-ph]. [6] I.I.Smolyaninov,Phys.Rev.Lett.107,253903(2011);Phys.Rev.D85,114013(2012);J.Phys.G: Nucl.Part.Phys.40,015005(2013). [7] M.Rasolt,Phys.Rev.Lett.58,1482(1987);Z.Tešanovic´,M.RasoltandL.Xing,Phys.Rev.Lett.,63 2425(1989);M.RasoltandZ.Tešanovic´,Rev.Mod.Phys.64,709(1992). [8] N.Callebaut,D.DudalandH.Verschelde,ActaPhys.Polon.Supp.4,671(2011);arXiv:1105.2217 [hep-th];M.Ammon,J.Erdmenger,P.KernerandM.Strydom,Phys.Lett.B706,94(2011) [9] Y.-Y.Bu,J.Erdmenger,J.P.ShockandM.Strydom,arXiv:1210.6669[hep-th]. [10] V.V.Bragutaetal,Phys.Lett.B718,667(2012). [11] Y.HidakaandA.Yamamoto,arXiv:1209.0007[hep-ph]. [12] M.N.Chernodub,Phys.Rev.D86,107703(2012). [13] Z.Tešanovic´,Phys.Rev.B596449(1999); [14] B.RosensteinandD.Li,Rev.Mod.Phys.82,109(2010). [15] G.S.Bali,K.SchillingandC.Schlichter,Phys.Rev.D51,5165(1995)[hep-lat/9409005]. [16] H.Neuberger,Phys.Lett.B417,141(1998). [17] M.H.Al-HashimiandU.J.Wiese,AnnalsPhys.324,343(2009). [18] A.A.Abrikosov,Sov.Phys.JETP5,1174(1957);A.A.Abrikosov,FundamentalsoftheTheoryof Metals(NorthHolland,Amsterdam,1988). 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.