Astronomy&Astrophysicsmanuscriptno.Weigelt-ver6 (cid:13)cESO2016 September9,2016 VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12000. Studies of the primary star wind and innermost wind-wind collision zone(cid:63) (cid:63)(cid:63) G.Weigelt1,K.-H.Hofmann1,D.Schertl1,N.Clementel2,M.F.Corcoran3,4,A.Damineli5,W.-J.deWit6, R.Grellmann7,J.Groh8,S.Guieu6,T.Gull9,M.Heininger1,D.J.Hillier10,C.A.Hummel11,S.Kraus12,T.Madura9, A.Mehner6,A.Mérand6,F.Millour13,A.F.J.Moffat14,K.Ohnaka15,F.Patru16,R.G.Petrov13,S.Rengaswamy17, N.D.Richardson18,T.Rivinius6,M.Schöller11,M.Teodoro9,andM.Wittkowski11 (Affiliationscanbefoundafterthereferences) ReceivedSeptember15,1996;acceptedMarch16,1997 ABSTRACT Context.Themasslossfrommassivestarsisnotunderstoodwell.ηCarinaeisauniqueobjectforstudyingthemassivestellarwindduringthe LuminousBlueVariablephase.Itisalsoaneccentricbinarywithaperiodof5.54yr.Thenatureofbothstarsisuncertain,althoughweknowfrom X-raystudiesthatthereisawind-windcollisionwhosepropertieschangewithorbitalphase. Aims.WewanttoinvestigatethestructureandkinematicsofηCar’sprimarystarwindandwind-windcollisionzonewithahighspatialresolution of∼6mas(∼14au)andhighspectralresolutionofR=12000. Methods.ObservationsofηCarwerecarriedoutwiththeESOVeryLargeTelescopeInterferometer(VLTI)andtheAMBERinstrumentbetween approximatelyfiveandsevenmonthsbeforetheAugust2014periastronpassage.Velocity-resolvedaperture-synthesisimageswerereconstructed fromthespectrallydispersedinterferograms.Interferometricstudiescanprovideinformationonthebinaryorbit,theprimarywind,andthewind collision. Results.Wepresentvelocity-resolvedaperture-synthesisimagesreconstructedinmorethan100differentspectralchannelsdistributedacrossthe Brγ 2.166µmemissionline.Theintensitydistributionoftheimagesstronglydependsonwavelength.Atwavelengthscorrespondingtoradial velocities of approximately −140 to −376 kms−1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocityof−277kms−1,thepositionangleofthesymmetryaxisofthefanis∼ 126◦.Thefan-shapedstructureextendsapproximately8.0mas (∼18.8au)tothesoutheastand5.8mas(∼13.6au)tothenorthwest,measuredalongthesymmetryaxisatthe16%intensitycontour.Theshape oftheintensitydistributionssuggeststhattheobtainedimagesarethefirstdirectimagesoftheinnermostwind-windcollisionzone.Therefore,the observationsprovidevelocity-dependentimagestructuresthatcanbeusedtotestthree-dimensionalhydrodynamical,radiativetransfermodelsof themassiveinteractingwindsofηCar. Keywords. Stars:winds,outflows–stars:individual:ηCarinae–stars:massive–stars:mass-loss–binaries:general–techniques:interferometric 1. Introduction oftheX-raylightcurves(e.g.,Maduraetal.2013)andthenear constancy of Heii0.4686µm (e.g., Teodoro et al. 2016), which Studies of the mass-loss process are of crucial importance for indicatemuchsmallerchangesinthemass-lossrate. improvingourunderstandingofstellarevolution.Infraredlong- The distance of η Car is ∼ 2.35 kpc (Allen & Hillier 1993; baseline interferometry provides us with a unique opportunity Davidson&Humphreys1997;Smith2006).Itissurroundedby to study the mass loss from the colliding wind binary η Car. the spectacular bipolar Homunculus nebula. The inclination of The primary star of the system is an extremely luminous and thepolaraxisoftheHomunculusnebulawiththeline-of-sightis massive (M ∼ 100 M(cid:12)) unstable Luminous Blue Variable star ∼41◦(Davidsonetal.2001;Smith2006),andthepositionangle (LBV) with a high mass-loss rate of ∼ 10−3M(cid:12)yr−1 (Davidson (PA) of the projected Homunculus axis is ∼ 132◦ (Davidson & & Humphreys 1997; Davidson et al. 2001; Hillier et al. 2001, Humphreys1997;Davidsonetal.2001;Smith2006). 2006; Groh et al. 2012b). A decrease in the observed strength of Hα and Feii emission lines, and a change in the strength of Using ESO’s Very Large Telescope Interferometer (VLTI), Niilines,provideindicationsthattheprimarywinddensityhas the diameter of η Car’s wind region was measured to be about 5 mas (50% encircled-intensity diameter measured in the field- decreased,eitherduetoaglobalreductioninmasslossortolat- of-view,FOV,of70mas)intheK-bandcontinuum(vanBoekel itudinalchanges(e.g.,Davidsonetal.2015;Mehneretal.2012, et al. 2003; Kervella 2007; Weigelt et al. 2007). The measured 2010b).However,thereiscontradictoryevidencefromanalysis visibilitiesareingoodagreementwiththepredictionsfromthe detailed spectroscopic model by Hillier & Miller (1998) and (cid:63) BasedonobservationscollectedattheEuropeanOrganisationfor Hillieretal.(2001,2006).AgoodagreementbetweentheHillier Astronomical Research in the Southern Hemisphere under ESO pro- model and interferometric observations of the LBV P Cyg was gram092.D-0289(A). reportedbyRichardsonetal.(2013). (cid:63)(cid:63) The images in Fig. 4 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via Firstspectro-interferometricVLTI-AMBERobservationsof http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/ ηCar(Weigeltetal.2007)withmediumandhighspectralreso- Articlenumber,page1of20 A&Aproofs:manuscriptno.Weigelt-ver6 lutionintheHei2.059µmandtheBrγ2.166µmemissionlines Table1.Summaryofobservations allowed us to study the spatial structure of η Car’s wind as a functionofwavelengthwithahighspatialresolutionof∼5mas Date Nobsa Nvisb Cal andspectralresolutionsof1500and12000.Themeasuredline 2013Dec31 1 2 HD92305 2014Jan04 1 3 HD28749 visibilitiesagreewithpredictionsoftheradiativetransfermodel 2014Jan19 2 1 HD18660 of Hillier et al. (2001). We derived 50% encircled-intensity di- 2014Jan20 9 5 HD23319 ameters of 4.2 mas (9.9 au), 6.5 mas (15.3 au), and 9.6 mas 2014Jan21 10 0 - (22.6au)inthe2.17µmcontinuum,theHei2.059µm,andthe 2014Feb03 1 0 - Brγ 2.166µmemissionlines,respectively(forcomparison,the 2014Feb06 1 0 - radiusR∗ oftheprimarystarofηCaris∼100R(cid:12) ∼0.47au∼ 2014Feb07 1 0 - 0.20mas;however,R∗isnotknownwell;Hillieretal.2001). 2014Feb08 1 0 - Smith et al. (2003) studied the stellar light reflected by the 2014Feb09 1 0 - Homunculus nebula and found that the velocity of the primary 2014Feb13 1 0 - stellarwindishighernearthesouthpolethanatthelatitudecor- 2014Feb14 1 0 - 2014Feb21 2 0 - responding to our line-of-sight. Other studies suggest that the 2014Feb22 3 0 - spectroscopicandinterferometricobservationscanbeexplained 2014Feb23 1 0 - by the wind-wind collision zone (Groh et al. 2012b; Mehner 2014Feb24 1 0 - etal.2012). 2014Feb25 1 0 - Studies of the binary or binary wind-wind collision zone 2014Feb26 2 0 - were reported by many authors (e.g., Damineli 1996; Damineli 2014Feb27 3 0 - etal.1997,1998,2000,2008b;Davidson1997;Davidsonetal. 2014Feb28 2 0 - 2005, 2015; Smith & Gehrz 2000; Smith et al. 2004; Smith 2014Mar04 2 0 - 2010; Pittard & Corcoran 2002; Corcoran et al. 1997, 2001; 2014Mar05 3 3 HD46933 Corcoran 2005; Ishibashi et al. 1999; Soker 2003, 2007; Weis Notes.aNumber of observations at different hour angles per night. et al. 2005; Gull et al. 2006, 2009, 2011, 2016; Nielsen et al. bNumber of visibilities calibrated with an interferometric calibrator 2007;Weigeltetal.2007;Kashi&Soker2007,2009a,b;Parkin star. et al. 2009; Groh et al. 2010, 2012b,a; Madura & Owocki 2010; Madura et al. 2012, 2013; Mehner et al. 2010a, 2011, 2012,2015; Richardsonetal.2010; Teodoroetal.2013, 2016; uv coverage 100 Clementel et al. 2015a,b; Hamaguchi et al. 2016). The X-rays are believed to arise from a collision between the winds from the LBV and a hotter O or WR-type star. The CHANDRA X- m] rcaoyllisspieocntroufmthceanprbimeeaxryplsatianrewdi(nPditt(aMr˙d=&2C.5or×co1r0a−n42M0(cid:12)0y2r)−b1y,ttehre- ate [ 50 minalvelocity∼ 500kms−1)andthewindofahotcompanion din (M˙ = 10−5M(cid:12)yr−1, terminal velocity ∼ 3000 kms−1; probably oor 0 anextremeOforaWRstarperhapssimilartothethreeluminous c y WNLhstarsseenelsewhereintheCarinaNebula). e n The wind collision leads to a wind-wind collision cavity a (e.g.,Pittard&Corcoran2002;Humphreysetal.2008;Okazaki v pl -50 u et al. 2008; Parkin et al. 2009, 2011; Gull et al. 2009, 2011; Madura&Owocki2010;Maduraetal.2012,2013;Grohetal. 2010,2012a,b).Radiativetransfermodelsofthewind-windcol- -100 lisionzonewerereportedbyClementeletal.(2015a,b).Three- dimensional (3D) smoothed particle hydrodynamic simulations -100 -50 0 50 100 were used to determine the orientation of the binary’s orbit uv plane x coordinate [m] (semimajoraxislength∼15.4au)inspaceandonthesky(e.g., Okazaki et al. 2008; Madura et al. 2012). Madura et al. (2012) Fig.1.uvcoverageofallVLTI/AMBERobservationslistedinTable1. derived an orbit inclination of 130 to 145◦ and a PA of the or- bital axis projected on the sky of 302 to 327◦. Therefore, the orbital axis of the binary is closely aligned with the Homuncu- thecentralstar(e.g.,Hillier&Allen1992;Weigeltetal.1995; lussystemaxis.Theargumentofperiapsisplacesthesecondary Davidsonetal.1995,1997;Hillieretal.2001;Smithetal.2002, star and wind-wind collision zone on the observer’s side of the 2004; Mehner et al. 2010a; Madura et al. 2013). To study this systemwhenthecompanionstarisatapastron. occultingmaterial,Falckeetal.(1996)performedspecklemask- Detailed HST/STIS imaging of η Car with a resolution of ingimagingpolarimetry(inHαpluscontinuum).Thepolarized about 0.1(cid:48)(cid:48) allowed Gull et al. (2009, 2011), Mehner et al. flux image (Fig. 2b in the polarimetry paper) shows a bar with (2010a), Teodoro et al. (2013), and Gull et al. (2016) to image alengthof∼ 0.4(cid:48)(cid:48) alongaPAof∼45and225◦,whichwasin- thecircumstellarenvironmentofηCaracrossemissionlinesand terpretedasanobscuringequatorialdisk.Interestingly,thispo- atseveralorbitalphases.Thediscoveredstructuresaretheresult larized45◦barhasapproximatelythesamelengthandPAasthe ofthewind-windcollisionoverthepast∼20yr.Thesestructures fossilwindbardiscoveredbyGulletal.(2011,2016). arecalledfossilwindstructures,becausetheywerecreatedover Inthispaper,wepresenthighspatialandhighspectralreso- severalorbitalcyclesinthepast. lutionaperture-synthesisimagingofηCar’sinnermostwindre- Variousobservationssuggestthatdisk-likeortoroidalmate- gion.WedescribetheobservationsinSection2,whileinSection rial in our line-of-sight to the central object partially obscures 3,wepresentthevelocity-resolvedaperture-synthesisimagesre- Articlenumber,page2of20 G.Weigeltetal.:AMBER/VLTIobservationsofηCarinae nits] 1.0 nits] 1.0 u 0.8 u 0.8 y y ar 0.6 ar 0.6 bitr 0.4 bitr 0.4 ar ar x [ 0.2 x [ 0.2 u u fl 0.0 15.3 m / 85.0° fl 0.0 68.4 m / 67.0° 1.0 18.6 m / 38.5° 1.0 82.2 m / 4.3° 31.1 m / 59.3° 128.9 m / 32.5° 0.8 0.8 y y bilit 0.6 bilit 0.6 si si vi 0.4 vi 0.4 0.2 0.2 0.0 0.0 15.3 m / 85.0° 68.4 m / 67.0° se []° 19305 1381..61 mm // 3589..53°° se []° 19305 12882.9.2 m m / /3 42..35°° a a ph 45 ph 45 al 0 al 0 enti -45 enti -45 er -90 er -90 diff -135 diff -135 -180 -180 e []° 19305 e []° 19305 as 45 as 45 h h closure p --94005 closure p --94005 -135 -135 -180 -180 2.156 2.160 2.164 2.168 2.172 2.176 2.156 2.160 2.164 2.168 2.172 2.176 λ [µm] λ [µm] Fig.2.IllustrativeexampleofanAMBERHR-mode(R=12000)ob- Fig.3. SameasFig.2,butdifferenttelescopeconfiguration. servationofηCar(seeSect.2).Th1efigureshowsfromtoptobottom: 1 exampleinterferogram,spectrumoftheBrγregion(heliocentricwave- lengths;thetelluriclinesarenotremoved),wavelengthdependenceof oftheobservations.Thespatial-filterfibersinAMBERlimitthe thevisibilitiesatthreebaselines(PAsandprojectedbaselinelengthsare FOVtothediameterofthefibersonthesky(∼250masforthe indicatedinthepanels),wavelength-differentialphases(thecurveofthe ATs).TheobservationswerecarriedoutaspartoftheOHANA shortestbaselineisshiftedupby90◦andthelongestdownby90◦),and (Riviniusetal.2015)backuptargetproject(Observatorysurvey closurephases. atHighANgularresolutionofActiveOBstars;Prog-ID:092.D- 0289). Figures 2 and 3 present two examples of high spectral res- constructed from theVLTI data. All images show the extended olution η Car AMBER observations (the dates of observations windregion,whichismoreextendedacrosstheBrγlinethanin shown in Figs. 2 and 3 are 20 January 2014, 8:15 UT and 4 thecontinuum.InSection4,wediscusstheresults.Section5is January 2014, 5:31 UT, respectively). The figures show, from asummaryandconclusion. top to bottom, an example of an AMBER interferogram, the line profile, the visibilities obtained at three different baselines 2. Observationsanddataprocessing as a function of wavelength, the wavelength-differential phases at three baselines, and the wavelength dependence of the clo- 2.1. Visibilities,wavelength-differentialphases,andclosure surephase.Fortheobservations,theFINITOfringetracker(Le phases Bouquinetal.2008)wasemployed.Theobservationswereob- TheobservationsofηCarlistedinTable1werecarriedoutwith tained between seven and five months before the 2014.6 peri- the ESO Very Large Telescope Interferometer (VLTI; Schöller astron passage (see Table 1). The observing dates correspond 2007)andtheAMBERinterferometryinstrument(Petrovetal. to an average orbital phase of ∼ 0.90 if calculated as described 2007).Withprojectedbaselinelengthsuptoabout129mofthe in Mehner et al. (2011) and 0.91 if calculated as described in Auxilliary1.8mTelescopes(ATs)used,anangularresolutionof Daminelietal.(2008b)orTeodoroetal.(2016). ∼ 6 mas (∼ 14 au) was obtained in the K band. Interferograms Weanalyzedwhethertheinterferometricobservables(spec- wererecordedwiththehighspectralresolutionmode(HRmode; trum, visibilities, and phases of the object Fourier transform) spectralresolutionR=12000).Figure1showstheuvcoverage changedoverthetwo-month-longobservingintervalandfound Articlenumber,page3of20 A&Aproofs:manuscriptno.Weigelt-ver6 negligible changes. Therefore, all observations were combined weusedtheminimizationalgorithmASA-CG(Hager&Zhang to compute an averaged image. While the orbital eccentricity 2006), as described in (Hofmann et al. 2014). The images pre- is ∼ 0.90 (Corcoran et al. 2001; Pittard & Corcoran 2002), the sentedinFigs.4,5,6,B.1,andB.2werereconstructedwiththis changeinpositionofthecompanionrelativetotheprimarystar differential-phasemethod. is small and the temporal evolution of the cavity is expected to Alternatively, we can reconstruct images from visibilities be small over the observing interval. The latter is substantiated andclosurephases(Jennison1958).Thismethodisbrieflycalled bysmallchangesin3-Dhydrodynamicmodelsofthewind-wind closure-phasemethodinthefollowingsections.WeusedtheIR- cavitythatwerecomputedatorbitalphases0.50,0.90,and0.952 Bismethod(InfraredBispectrumimagereconstructionmethod) (Maduraetal.2012,2013). for image reconstruction (Hofmann et al. 2014). The images ThedatawerereducedwithourownAMBERdataprocess- presented in Fig. A.1 in Appendix A were reconstructed with ing software package, which uses the pixel-to-visibility matrix the closure-phase method. Data processing is discussed in Ap- algorithmP2VM(Tatullietal.2007;Chellietal.2009)inorder pendixAinmoredetail. toextractvisibilities,differentialphases,andclosurephasesfor eachspectralchannelofanAMBERinterferogram.Wederived 50 wavelength-dependent closure phases and 150 wavelength- 3. Velocity-resolvedaperture-synthesisimagesof differential phases from the interferograms. For only 14 of the ηCar’sstellarwindandwind-windcollisionzone observationsaresuitablecalibratorstarmeasurementsavailable acrosstheBrγline to calibrate the interferometric transfer function and the visi- bilities (see Table 1). The number of calibrator measurements We reconstructed images with both methods (differential- and is small because the data were recorded within a backup-target closure-phasemethod)discussedinSect.2.Bothmethodswere programme(Prog-ID:092.D-0289).Thewavelengthcalibration used to illustrate the similarities and differences of the recon- wasperformedusingtelluriclines.Weusedthesamemethodas structions. describedinAppendixAofWeigeltetal.(2007). Figure 4 presents the images reconstructed from the obser- TheperformanceofthefringetrackerFINITOisusuallydif- vations listed in Table 1 using the differential-phase method ferentduringtargetandcalibratorobservations,becausetheper- (Sect. 2). The images clearly show a strong wavelength depen- formanceofFINITOdependsonatmosphericconditions,target denceacrosstheBrγ line.Oneofthemostremarkablefeatures brightness, and target visibility. This can lead to visibility cali- oftheimagesisthefan-shapedstructureextendingtothesouth- brationsoflowquality.Therefore,weusedtheVLTIReflective east (SE; from PA ∼ 90◦ to ∼ 180◦) at velocities between ap- Memory Network Recorder (RMNrec) data (Le Bouquin et al. proximately −376 and −140 kms−1. Figure 5 shows the image 2009; Mérand et al. 2012) to improve the visibility calibration at −277 kms−1 to illustrate the asymmetric, fan-shaped struc- by rejecting 46% of the exposures that showed a disagreement tureanditssize.Aswewilldiscussinthenextsection,thesize, betweentheRMNrecvaluesofcalibratorandscienceobject. structure,andvelocitydependenceoftheseimagessuggestthat The calibrated continuum visibilities were fit with a two- wehaveobtainedthefirstdirectimagesofthewallsofthewind- dimensional exponential function in Fourier space, because the windcollisioncavity.Anotherinterestingandunexpectedstruc- measured visibilities and the Fourier transform of the Hillier tureisthebar-likestructurethatextendstothesouthwest(SW) continuum model curves are approximately exponential func- intheimagesatvelocitiesfrom−426to−339kms−1. tions (van Boekel et al. 2003; Kervella 2007; Weigelt et al. The images presented in Fig. A.1 in Appendix A were re- 2007). From this visibility, we derived an axis ratio of 1.07 ± constructedwiththeclosure-phasemethod(seeSect.2).Forthe 0.14 and a PA of the major axis of 159.5 ± 47◦. The axis ratio reconstructionsinFig.A.1,weusedthesamedatasetasforthe andthePAarenotwellconstrainedbecausethevisibilityerrors reconstructionsshowninFig.4. arelargeandthenumberofcalibratedvisibilitiesissmall.This Figures 4 to 6 present images that consist of both contin- modelvisibilityfunctionwasusedtocalibratethevisibilitiesof uumandBrγlinecomponents.Toassistintheinterpretationof theobservationsmadewithoutacalibrator(seeTable1). the Brγ line images, we additionally computed the continuum- subtracted Brγ line images shown in Figs. B.1 and B.2 in Ap- pendix B (these two figures show images of different velocity 2.2. Differential-phaseandclosure-phaseimage ranges). The white crosses are the centers of the continuum reconstructionmethods images. The images reconstructed with the differential-phase We used two different image reconstruction methods, called method(Fig.4)seemtohaveaslightlyhighersignal-to-noisera- below differential-phase method and closure-phase method. tiothantheclosure-phaseimages(Fig.A.1)becauseofthelarger If spectrally dispersed interferograms are available, the amount of Fourier phase information (i.e., 150 Fourier phases wavelength-differentialphasesinspectralchannelsacrossemis- instead of 50 closure phases). Therefore, the differential-phase sionlinescanbeusedtoderivephasesoftheFouriertransform imageswereusedtocomputeallcontinuum-subtractedBrγline of the object in spectral channels across emission lines (Petrov images. et al. 2007; Schmitt et al. 2009; Millour et al. 2011; Ohnaka Thecontinuum-subtractedimagesinFigs.B.1andB.2show et al. 2011, 2013; Mourard et al. 2015). This is possible if the the correct Brγ brightness of the images, because they are not phaseoftheFouriertransformoftheobjectinthecontinuumis normalized to the peak brightness as the images in all previous known(forexample,ifthecontinuumobjectisunresolvable)or figures.Thecomputationofthecontinuum-subtractedimagesis canbederivedfromacontinuumimagereconstructedfromcon- discussedinAppendixB. tinuum visibilities and continuum closure phases using a clo- Surprisingly, in the continuum-subtracted images at highest sure phase method. The reconstruction of images from a set negative velocities (≤ −563 kms−1) in Fig. B.1, the center of of visibilities and phases of the object Fourier transforms de- the Brγ line emitting region is clearly shifted about 1–2 mas rivedfromdifferentialphasesisdiscussedinAppendixA.This to the northwest (NW) of the center of the continuum image. methodiscalleddifferential-phasemethodinthefollowingsec- To study this unexpected offset in more detail, we computed tions.Toreconstructimagesusingthedifferential-phasemethod, the continuum-subtracted images shown in Fig. B.2 (wider ve- Articlenumber,page4of20 G.Weigeltetal.:AMBER/VLTIobservationsofηCarinae heliocentric radial velocity [km/s] -2000 -1500 -1000 -500 0 500 1000 1500 2000 ux 3.5 d fl 3.0 e 2.5 z ali 2.0 m 1.5 or 1.0 n 2.15 2.16 2.17 2.18 heliocentric wavelength [micrometer] Fig.4.Aperture-synthesisimagesofηCarreconstructedwiththedifferential-phasemethod(seeSect.2;spectralresolutionR=12000).Top: Continuum-normalizedBrγlineprofile.ThepresentedspectrumistheaverageofallspectraofthedatalistedinTable1.Thesmallcorrectiondue tothesystemvelocityof−8kms−1(Smith2004)hasbeenneglected.Bottom:Wavelengthandvelocitydependence(velocitiesinunitsofkms−1 belowtheimages)ofthereconstructedηCarimagesacrosstheBrγline.TheFOVofthereconstructedimagesis50×50mas(118×118au; 1mascorrespondsto2.35au).Northisup,andeastistotheleft.Ina1llimages,thepeakbrightnessisnormalizedtounity.Atradialvelocities betweenapproximately−339and−252kms−1,theimagesarefan-shapedandextendedtotheSEofthecenterofthecontinuumwindregion. Articlenumber,page5of20 A&Aproofs:manuscriptno.Weigelt-ver6 locityrange)inadditiontothecontinuum-subtractedimagesin Fig.B.1(noticethedifferentcolorcoderequiredbecauseofthe faintnessofmostoftheimages). The differential-phase (Fig. 4) and closure-phase (Fig. A.1) images are similar, but there are also differences. Both types of images present the discussed fan-shaped wind structure. To show the differences, we derived contour plot images of the differential-phase and closure-phase images at velocities be- tween−376and−277kms−1showninFig.C.1inAppendixC. FigureD.1inAppendixDpresentsthevelocitydependence ofthephotocentershiftoftheimagesshowninFig.4(i.e.,con- tinuum plus line flux images) with respect to the center of the continuum images. Figure D.2 shows both the velocity depen- dence of the size of the images in Fig. 4 (measured as 50% encircled-intensity radius) and the velocity dependence of the photocentershiftoftheimagesinFig.4withrespecttothecen- terofthecontinuumimages.Thebiggestphotocentershiftsare caused by the fan-shaped structure seen at many high negative velocities. InAppendixE,wecomparethemeasuredvisibilities,differ- ential phases, and closure phases shown in Figs. 2 and 3 with thevisibilitiesandphasesderivedfromtheimagesreconstructed with the differential-phase method to check whether the inter- ferometricquantitiesofthereconstructedimagesapproximately agreewiththeobservations. 4. Discussion The reconstructed images in Fig. 4 show a strong wavelength dependenceoftheintensitydistributionacrosstheBrγline. – Atwavelengthscorrespondingtoradialvelocitieslowerthan about −426 kms−1 and higher than about +400 kms−1, the continuumwindregionisdominant. – Atvelocitiesbetweenapproximately−426and−339kms−1, a bar-like extension appears in the southwest (SW) of the continuumwind. – Betweenapproximately−376and−140kms−1,afan-shaped structure is visible in the SE of the continuum wind. This unexpected fan-shaped structure is discussed in Figs. 5 and 6inmoredetail. – Thewindintensitydistributionismoreextendedatmosthigh negativevelocities(e.g.,−350to−250kms−1)thanathigh positivevelocities(e.g.,+250to+350kms−1). Fig.5.Top:Fan-shapedηCarimageatvelocityof−277kms−1(image – At all velocities, the continuum wind region is shining from Fig. 4). The FOV of the image is 50 × 50 mas (118 × 118 au; through the Brγ emitting wind region, suggesting that the thecenterofthecontinuumregionisatcoordinatezero).Contourlines line-emittingregionisopticallythin. areplottedat8,16,32,and64%ofthepeakintensity.ThePAofthe symmetryaxisofthefanis∼126◦(whitearrow).Thefan-shapedstruc- – Thecontinuum-subtractedimagesinFigs.B.1andB.2show tureextends∼ 18.8au(8.0mas;bluearrow)totheSEand∼ 13.6au thatafaintline-emittingregionisvisibleathighnegativeand (5.8 mas) to the NW, measured with respect to the center of the con- positive velocities. At some high negative velocities (e.g., tinuumwindalongthefansymmetryaxisatthe16%intensitycontour. about−563to−825kms−1inFig.B.2),thecenteroftheline Forcomparison,theradiusR∗oftheprimarystarofηCaris∼100R(cid:12)∼ emissionisoffsettotheNWofthecenterofthecontinuum 0.47au∼0.20mas(R isnotwellknown; Hillieretal.2001).There- ∗ wind(seeSect.4.1). fore, thehuge wind extensionto t1heSE isabout 40 timeslarger than R .Bottom:Overlayofasketchoftheorbitofthesecondarystarrel- ∗ Figure 5 illustrates the geometry of the fan-shaped image ativetotheprimarystaronthesky(yellow)andthefan-shapedimage at −277 kms−1. Figure 6 (second row) has the goal to high- at−277kms−1.TheorbitisadoptedfromTeodoroetal.2016(phase lighttheevolutionofthefan-shapedstructurebetween−364and 0.91computedasdescribedinthispaper).Thetworeddotsarethepri- maryandthesecondarystaratthetimeofourobservations.Thebinary −277 kms−1 and (third row) compare images obtained at neg- separationandPAwereapproximately4.9mas(11.5au)and315◦,re- ative and positive velocities to illustrate the structure and size spectively,atthetimeofobservation(Sect.4).Thebluearrowindicates differences. For example, the images at velocities of −277 and the motion direction and the bar at the bottom right the length of the +271kms−1clearlyshowabigsizedifference.Thiscomparison majoraxisoftheorbit(30.9au;Maduraetal.2012). andthecavitymodelsketchatthebottomofFig.6areneededin thefollowingdiscussions. Articlenumber,page6of20 G.Weigeltetal.:AMBER/VLTIobservationsofηCarinae heliocentric radial velocity [km/s] -2000 -1500 -1000 -500 0 500 1000 1500 2000 ux 3.5 d fl 3.0 ze 2.5 ali 2.0 m 1.5 nor 1.0 2.15 2.16 2.17 2.18 heliocentric wavelength [micrometer] 2200 2200 2200 2200 s]s] s]s] s]s] s]s] aa 1100 aa 1100 aa 1100 aa 1100 mm mm mm mm n [n [ n [n [ n [n [ n [n [ sitiositio 00 sitiositio 00 sitiositio 00 sitiositio 00 oo oo oo oo pp pp pp pp el. el. --1100 el. el. --1100 el. el. --1100 el. el. --1100 rr rr rr rr --2200 --2200 --2200 --2200 --22 00 --11 00 00 11 00 22 00 --22 00 --11 00 00 11 00 22 00 --22 00 --11 00 00 11 00 22 00 --22 00 --11 00 00 11 00 22 00 rreell.. ppoossiittii oonn [[mmaass]] rreell.. ppoossiittii oonn [[mmaass]] rreell.. ppoossiittii oonn [[mmaass]] rreell.. ppoossiittii oonn [[mmaass]] Fig.6.ComparisonofηCarimageswithmodeldensitydistributions.Top:Continuum-normalizedBrγlineprofile(sameasinFig.4).Second row:SWbarstructureatvelocitiesof−364to−352kms−1andfan-shapedSEstructureatvelocitiesofabout−339to−277kms−1(imagesfrom Fig.4;theFOVis50×50masor118×118au;1mascorrespondsto2.35au;northisup,andeastistotheleft).Contourlinesareplottedat8,16, 32,and64%ofthepeakintensity.Thefan-shapedSEstructuressuggestthatthereconstructedimagesaredirectimagesofthewind-windcollision zone.Thirdrow:Fromlefttoright,imagesatvelocitiesof−464kms−1 (continuum),−277kms−1 (fan-shapedSEextension),+271kms−1,and +458kms−1 (continuum).Atvelocityof−277kms−1,theimageisasymmetric,fan-shaped,andmoreextendedthantheimageatvelocityof +271kms−1.Bottomleft:IllustrationoftheV-shapedwind-windcollisionmodel,ourviewingdirectionatthetimeofobservation,andtheradial velocitiesseenbytheobserver.Theiso-densitycontoursareextractedfromthemodelpresentedinFig.B1(phase0.90)inMaduraetal.(2013). Two density contours (10−16 g cm−3 and 10−14 g cm−3) of the model density distribution are shown. The binary orbit (semimajor axis length ∼15.45au)issketchedasablueline.Theprojectedellipticalorbitisa1lineintheshownplaneperpendiculartotheorbitalplane(Maduraetal. 2012,2013).Thetworeddotsmarkthepositionsoftheprimaryandsecondarystaratthetimeofobservation(binaryseparation∼4.9masor 11.5au;seeSect.4).Bottomright:Line-of-sightviewofathree-dimensionaliso-densitysurface(density10−16 gcm−3)ofthewindatthetime ofobservation(northisup,andeastistotheleft;FOVis∼50×50mas).Thisiso-densitydistributionisasmoothedversionofmodeliso-density derivedbyMaduraetal.(2013).AsmallpartoftheBrγprimarywindisvisibletotheSE.Thecontinuumprimarywindisnotvisiblebecauseits diameterissmallerthantheBrγprimarywind.ThebinaryseparationandPAwereapproximately4.9mas(11.5au)and315◦,respectively,atthe timeofobservation.Thesecondarystarisnotvisibleintheimages,becauseitisatleastabout100timesfainterthantheprimarystar,whichis alsonotvisibleduetohighextinction. Articlenumber,page7of20 A&Aproofs:manuscriptno.Weigelt-ver6 At velocity of −277 kms−1, the reconstructed image has a 4.2. Toroidaloccultinggasanddustintheline-of-sighttothe fan-shapedintensitydistribution(seeFig.5).ThePAofthesym- centralobject metryaxisofthefanis∼126◦.Thefan-shapedstructureextends ∼8.0mas(18.8au)totheSEalongaPAof∼126◦and∼5.8mas Occultinggasintheline-of-sighttothecentralobjectmayinflu- (13.6au)totheNWalongaPAof∼306◦measuredwithrespect ence the observed intensity distributions for the following rea- tothecenterofthecontinuumwindimageatthe16%intensity sons.ThethreeejectedobjectsηCarB,C,andDatseparations contour. between 0.1(cid:48)(cid:48)(235 au) and 0.3(cid:48)(cid:48) (Weigelt & Ebersberger 1986; Hofmann&Weigelt1988)wereonlyabout12timesfainterthan TheobservedimageasymmetriesindicatethattheLBVwind thecentralobjectin1985atthewavelengthofabout900nm.In isnotsphericalorthatthereisanexternalinfluenceonthewind. theUV(at∼190nm),whereobscuringmaterialleadstomuch For the discussions in the next sections, we need to know the moreextinction,theseobjectsBtoDwereonlyaboutthreetimes positionofthesecondarystarontheskyatthetimeofobserva- fainterthanthecentralobjectin1991(Weigeltetal.1995). tion.The3-DorientationofηCar’sorbitwasderivedbyMadura etal.(2012).Usingtheseresultsandassumingthelatestorien- This seems to be puzzling because the objects B, C, and D tationparametersandorbit,asshowninFig.17inTeodoroetal. are objects illuminated by the central object (and only a very (2016), we derived the projected binary separation of approxi- smallfractionofthestarfluxhitstheseobjects).Therefore,sev- mately 4.9 mas (11.5 au) and PA of 315◦ at the time of obser- eralauthorssuggestedthatdisk-likeortoroidaloccultingmate- vation.Thesecondarystarisnotvisibleinourimages,because rial in our line-of-sight to the central object may partially ob- it is at least about 100 times fainter than the primary star (e.g., scurethecentralstar,butnottheobjectsB,C,andD,justlikea Hillieretal.2006;Weigeltetal.2007).Theprimaryisalsonot naturalcoronagraph(Hillier&Allen1992;Weigeltetal.1995; visibleduetohighextinction. Davidsonetal.1995,1997;Hillieretal.2001;Smithetal.2002, 2004;Mehneretal.2010a;Maduraetal.2013). In the next sections, we discuss the high-velocity gas Tostudythisoccultingtoroidalmaterial,Falckeetal.(1996) (Sect. 4.1), the toroidal gas (Sect. 4.2), the fossil wind performedspecklemaskingimagingpolarimetryintheHαline. (Sect.4.3),thepolarwind(Sect.4.4),andthewind-windcolli- The image obtained in polarized light (see Fig. 2b in the po- sion(Sect.4.5),becauseallofthemmayinfluencetheobserved larimetry paper) shows a bar with a length of ∼ 0.4(cid:48)(cid:48)(940 au) images. along a PA of ∼ 45◦ and ∼ 225◦ (about equal to the PA of the equatorial plane of the Homunculus). It was interpreted as an obscuring equatorial disk. Interestingly, this polarized bar has 4.1. High-velocitystructureinthecontinuum-subtracted approximatelythesamelengthandPAasthefossilwindbardis- images cussedinthenextsection. In the continuum-subtracted images presented in Fig. B.2, the Furthermore,inFig.4,abar-orarc-likestructurealongPA centerofmostoftheBrγlineimagesisatthecenterofthecon- of∼225◦canbeseenatvelocitiesbetweenapproximately−426 tinuum images (marked by white crosses). However, in the ve- and−339kms−1 thatmaybecausedbygasintheinnerregion locityrangeofabout−613to−825kms−1,thecenteroftheBrγ oftheequatorialdiskortorus. lineemittingregionisclearlyshiftedabout1–2mastotheNW ofthecenterofthecontinuumimage.At−663kms−1,theNW offset is 1.7 ± 0.4 mas along a PA of 292 ± 20◦. At velocities 4.3. Fossilwind smaller than about −837 kms−1, the high-velocity structure is stillvisible,buttheNWoffsetdisappeared. Thebar-likeSWextensionatPAof∼225◦inFigs.4to6andB.1 ismainlyvisibleatvelocitiesbetweenapproximately−426and IntheBrγlineprofile,theouterhigh-velocityregionisdom- −339kms−1.ItsPAof∼225◦approximatelyagreeswiththePA inatedbytheelectronscatteringwings(e.g.,Hillieretal.2001; ofthefossilwindstructurereportedbyGulletal.(2011,2016) Grohetal.2010).However,inthebluelinewing,theremayalso andthepolarisationbar(Falckeetal.1996).Theimagesofthe be additional line contributions from (1) fast moving primary fossil wind structure (at ∼ 0.1–0.5(cid:48)(cid:48)) in Gull et al. (2011) were windgas(inthewindcavity)acceleratedbythefastsecondary madebyintegratingtheHST/STISobservationsovertheveloc- wind(Daminelietal.2008a;Grohetal.2010),and(2)theweak ity range of −400 to −200 kms−1 (see also the wind studies in Hei2.16127µmline(thecenterofthislineisapproximatelyat Gulletal.2009;Madura&Owocki2010;Teodoroetal.2013). velocity of about −550 kms−1 in the Brγ line profile). Model Thefossilwindmayslightlyinfluencetheintensitydistribution spectra of η Car computed with the radiative transfer model of of the dominant inner wind region. However, the fossil wind is Hillier & Miller (1998) and Hillier et al. (2001) show that the faintcomparedtotheinnermostwind-windcollisionzone. peakbrightnessofthisHei2.16127µmlineisabout50to100 Interestingly, both the intensity contours of the blueshifted timesweakerthanthepeakbrightnessoftheBrγline. Feiii 0.4659 µm HST/STIS map in Mehner et al. (2010a) and Thecauseoftheobserved∼1–2mas(2.35–4.7au)NWoff- theaforementionedblue-wingimagesinGulletal.(2011)show setofthelineimagesatabout−613to−825kms−1isunknown, asimilarasymmetricstructureassomeofourfan-shapedVLTI but the high negative velocity and location of the high-velocity images, although of course HST’s angular resolution was infe- structure suggest that the emitting region (of both the above rior.Mehneretal.(2010a)discussvariousoriginsofthisstruc- discussed high-velocity Brγ emission and the Hei 2.16127 µm ture, for example, the near side of a latitude-dependent struc- emission) is located in the innermost region of the wind-wind tureintheouterstellarwind,theinnerpartsoftheHomunculus collision cavity (Damineli et al. 2008a; Groh et al. 2010), be- ejecta, or the obscuring material that causes about two magni- cause the innermost region of the cavity was in the NW of the tudesmoretheextinctioninfrontoftheprimarystarthaninfront centerofthecontinuumimageatthephaseofourobservations oftheejectaatseparationsbetween0.1and0.3(cid:48)(cid:48).Thefan-shaped (binaryseparationandPAwere4.9masor11.5auand315◦ at imagesalsolooklikeinclinedbipolarnebulaewithasymmetry thetimeofobservation). axisparalleltotheHomunculusaxis. Articlenumber,page8of20 G.Weigeltetal.:AMBER/VLTIobservationsofηCarinae 4.4. High-densityfastpolarwind wind model (Madura et al. 2013) at the time of observation. In thenextparagraphs,wewilldiscussthesizeandstructureofthe In the SE of the continuum center, we are looking at the south imagesatdifferentvelocities. polarregionofthestellarwind(Smithetal.2003),becausethe inclinationofthepolaraxisoftheHomunculusnebulawiththe (1) High positive radial velocities. At high positive radial line-of-sight is ∼ 41◦ (Davidson et al. 2001; Smith 2006) and velocities,forexample+200to+400kms−1,theobservedBrγ the PA of the projected Homunculus axis is ∼ 132◦ (Davidson windintensitydistributionsareonlyslightlywiderthanthecon- & Humphreys 1997; Davidson et al. 2001; Smith 2006). Smith tinuumwindregion(seeFigs.4,A.1,B.1,andthe+271kms−1 etal.(2003)studiedthestellarlightreflectedbydifferentregions image in the third row of Fig. 6). The sketch at the bottom of oftheHomunculusnebulaandfoundthatthewindvelocityand Fig.6illustratesthattheemissionregioncorrespondingtothese densityofthemassiveprimarywindofηCarishigheratthepo- highpositiveradialvelocitiesispredictedtobeonthebackside lar region than at latitudes corresponding to our line-of-sight, oftheprimarywind(i.e.,onthefarsidebehindtheprimarystar) and the polar wind axis is approximately parallel to the Ho- and to have a smaller angular diameter than, for example, the munculus axis. Therefore, the SE extension of our images may emissionregionwithverysmallradialvelocity(e.g.,zero).The at least partially be caused by an increased wind density at the primarywindonthebacksideisnotdisturbedbythewind-wind southpole.Ontheotherhand,otherstudiessuggestthatthespec- collisionzoneattheorbitalphaseofourobservations.Wenote troscopic and interferometric observations can be explained by that in all images in Figs. 4 to 6 and A.1, the peak brightness the wind-wind collision zone (Groh et al. 2012b; Mehner et al. is normalized to unity. This explains why the compact wind at 2012). high positive velocities is not more visible in spite of the high linefluxatthesewavelengths. 4.5. Wind-windcollisionzone (2) Low radial velocities. The sketch in Fig. 6 shows that 3-DsmoothedparticlehydrodynamicsimulationsofηCar’scol- the model region of small positive radial velocities (marked as lidingwindspredictabowshockwithanenhanceddensityand "low, positive radial velocities" at the top of the sketch) is the an extended wind-wind collision cavity or bore hole (Okazaki upper cavity region. This upper cavity region is in the NW of et al. 2008; Gull et al. 2009, 2011; Groh et al. 2010; Madura the continuum center because of the orientation of the orbit & Owocki 2010; Madura et al. 2012, 2013; Clementel et al. (Madura et al. 2012). This NW extension is only weakly vis- 2015b,a) that has a density distribution more extended than the ible in the reconstructed images in Fig. 4 (e.g., at velocities undisturbed primary wind region, as in our observed images. of +22 to +77 kms−1). The reason may be the small cross- This large extension of the wind-wind collision zone can, for section of the outer region in our viewing direction (i.e., we example, be seen in the model density distributions presented arelookingthroughonlyasmallamountofmaterial).However, in Fig. 18 (see insets) in Gull et al. (2009), Fig. 6 in Madura thefaintlow-velocityNWextensionoftheintensitydistribution etal.(2012),Figs.B1(orangeregion),1,and10inMaduraetal. of the wind collision zone is clearly visible in the continuum- (2013), Fig. 2 in Clementel et al. (2015b), and in the sketch in subtractedimages(seeFig.B.1). Fig.6. Becauseoftheorbitorientationinspace,thesecondarystar (3) High negative radial velocities in the range of approx- of η Car spends most of the time in front of the primary star imately −140 to −376 kms−1. The sketch in Fig. 6 suggests (e.g., Madura et al. 2012, 2013). Only for a few weeks around that the wind collision cavity was opened up into our line-of- theperiastronpassagearethesecondarystarandthewind-wind sight at the time of observation, and that the emission from the collisionzonebehindtheprimarystar(onthebackorfarsideof lowerarmofthecavityhashighnegativeradialvelocities.The the primary wind). According to aforementioned hydrodynam- lower arm is in the SE of the center of the continuum wind ical simulations, at the time of observation, the secondary star because of the orientation of the orbit (Madura et al. 2012). wasinfrontoftheprimarystar,andwewerelookingattheex- At radial velocities between −215 and −376 kms−1, the recon- tendedwind-windcollisioncavity(e.g.,Maduraetal.2012).In structed images (Fig. 4) clearly show a fan-shaped SE exten- other words, the wind collision cavity was opened up into our sion as predicted by the wind-wind collision model (sketch in line-of-sightatthetimeofobservation. Fig. 6). This suggests that our images are direct images of the Unfortunately, no η Car model images of the Brγ intensity inner wind-wind collision cavity. Our observations provide de- distribution(e.g.,3-Dsmoothedparticlehydrodynamicsimula- tailed velocity-dependent image structures that can be used to tions combined with radiative transfer modeling) are available. test 3-D hydrodynamical, radiative transfer models of massive Therefore,weusethedensitydistributionof3-Dsmoothedpar- interactingwinds. ticle hydrodynamic simulations (see above references) for the followingdiscussion. Thiswind-windcavityinterpretationofourimagesatnega- Figure6(bottomleft)illustratesthewind-windcollisioncav- tivevelocitiesappearstobemorelikelythanthehigh-densitypo- ityandourviewingdirectionatorbitalphaseof0.90.Twoden- larwindinterpretationbecauseahigh-densitypolarwindwould sitycontourlines(density10−16gcm−3and10−14gcm−3)ofthe beexpectedtoshowablue-shiftedextensiontotheSE(nearthe windcollisioncavitymodelpresentedinFig.B1inMaduraetal. south pole) and potentially a red-shifted extension to the NW (2013)areshown(bottomleft).Thelowerarmofthewind-wind (north pole). Instead we see a blue-shifted extension to the SE collisioncavitydepictedinthesketchinFig.6(bottomleft)can (at approximately −140 and −376 kms−1) and no red-shifted beseeninthereconstructedimages(Figs.4and6)totheSEof extension to the NW at similar positive velocities (see Fig. 4). the center of the continuum wind, given the orientation of the However,wecannotexcludethattheadditionalemissionsources orbit(Maduraetal.2012). discussedinSect.4.1(e.g.,thefaintHei2.16127µmemission Toillustratethecomplicated3-Dwindstructure,Fig.6(bot- line),thefossilwind,toroidaloccultingmaterialinline-of-sight, tom right) shows a line-of-sight view of a smoothed three- and a high-density polar wind slightly influence the observed dimensional iso-density surface (density 10−16 g cm−3) of the windcavityintensitydistributions. Articlenumber,page9of20 A&Aproofs:manuscriptno.Weigelt-ver6 5. Summaryandconclusions Australia,10,338 Chelli,A.,Utrera,O.H.,&Duvert,G.2009,A&A,502,705 We have presented the first VLTI-AMBER aperture-synthesis Clementel,N.,Madura,T.I.,Kruip,C.J.H.,&Paardekooper,J.-P.2015a,MN- images of η Car. The angular resolution of the images is ∼ RAS,450,1388 6 mas (∼ 14 au). Velocity-resolved images were obtained in Clementel,N.,Madura,T.I.,Kruip,C.J.H.,Paardekooper,J.-P.,&Gull,T.R. morethan100differentspectralchannelsdistributedacrossthe 2015b,MNRAS,447,2445 Corcoran,M.F.2005,AJ,129,2018 Brγ2.166µmemissionline.TheimagesshowthatηCar’sstellar Corcoran,M.F.,Ishibashi,K.,Davidson,K.,etal.1997,Nature,390,587 windregionisstronglywavelength-dependentandasymmetric. Corcoran,M.F.,Ishibashi,K.,Swank,J.H.,&Petre,R.2001,ApJ,547,1034 At high negative velocities of −675 to about −825 kms−1, Damineli,A.1996,ApJ,460,L49 Damineli,A.,Conti,P.S.,&Lopes,D.F.1997,NewAstronomy,2,107 the center of the Brγ line emission is located in the NW of the Damineli,A.,Hillier,D.J.,Corcoran,M.F.,etal.2008a,MNRAS,386,2330 centerofthecontinuumimage(offset∼1–2masor2.35–4.7au; Damineli,A.,Hillier,D.J.,Corcoran,M.F.,etal.2008b,MNRAS,384,1649 Fig.B.2).Thecauseofthisoffsetisunknown,butthehighnega- Damineli,A.,Kaufer,A.,Wolf,B.,etal.2000,ApJ,528,L101 tivevelocityandlocationofthishigh-velocitystructuresuggest Damineli,A.,Stahl,O.,Kaufer,A.,etal.1998,A&AS,133,299 Davidson,K.1997,NewA,2,387 thattheemittingregionislocatedintheinnermostregionofthe Davidson,K.,Ebbets,D.,Johansson,S.,etal.1997,AJ,113,335 windcollisioncavity(Daminelietal.2008a;Grohetal.2010), Davidson,K.,Ebbets,D.,Weigelt,G.,etal.1995,AJ,109,1784 becauseboththesecondarystarandtheinnermostregionofthe Davidson,K.&Humphreys,R.M.1997,ARA&A,35,1 Davidson,K.,Martin,J.,Humphreys,R.M.,etal.2005,AJ,129,900 wind-windcollisioncavitywerelocatedtotheNWofthecenter Davidson, K., Mehner, A., Humphreys, R. M., Martin, J. C., & Ishibashi, K. ofthecontinuumimageatthephaseofourobservations. 2015,ApJ,801,L15 Athighpositiveradialvelocities(e.g.,+250to+350kms−1), Davidson,K.,Smith,N.,Gull,T.R.,Ishibashi,K.,&Hillier,D.J.2001,AJ,121, thereconstructedBrγimagesshowamuchnarrowerwindinten- 1569 sitydistributionthanathighnegativeradialvelocities(e.g.,−350 Falcke,H.,Davidson,K.,Hofmann,K.-H.,&Weigelt,G.1996,A&A,306,L17 Groh,J.H.,Hillier,D.J.,Madura,T.I.,&Weigelt,G.2012a,MNRAS,423, to−250kms−1),becauseatthesepositivevelocities,weseethe 1623 backsideoftheBrγprimarywindbehindtheprimarystar.This Groh,J.H.,Madura,T.I.,Hillier,D.J.,Kruip,C.J.H.,&Weigelt,G.2012b, back-sidewindregionislessextendedthanthefront-sidewind ApJ,759,L2 becauseitislessdisturbedbythewindcollisionzoneinfrontof Groh,J.H.,Nielsen,K.E.,Damineli,A.,etal.2010,A&A,517,A9 Gull,T.R.,Kober,G.V.,&Nielsen,K.E.2006,ApJS,163,173 theprimarystar. Gull,T.R.,Madura,T.I.,Groh,J.H.,&Corcoran,M.F.2011,ApJ,743,L3 The images at velocities between approximately −140 and Gull, T. R., Madura, T. I., Teodoro, M., et al. 2016, ArXiv e-prints −376 kms−1 show a large fan-shaped structure. At velocity of [arXiv:1608.06193] −277kms−1(seeFig.5),thePAofthesymmetryaxisofthefan Gull,T.R.,Nielsen,K.E.,Corcoran,M.F.,etal.2009,MNRAS,396,1308 Hager,W.W.&Zhang,H.2006,SIAMJ.Optim.,17,526 is∼126◦.Thefan-shapedstructureextends∼8.0mas(18.8au) Hamaguchi,K.,Corcoran,M.F.,Gull,T.R.,etal.2016,ApJ,817,23 to the SE and ∼ 5.8 mas (13.6 au) to the NW, measured along Hillier,D.J.&Allen,D.A.1992,A&A,262,153 thefansymmetryaxisatthe16%intensitycontour. Hillier,D.J.,Davidson,K.,Ishibashi,K.,&Gull,T.2001,ApJ,553,837 3-DsmoothedparticlehydrodynamicsimulationsofηCar’s Hillier,D.J.,Gull,T.,Nielsen,K.,etal.2006,ApJ,642,1098 Hillier,D.J.&Miller,D.L.1998,ApJ,496,407 collidingwindspredictalargedensitydistributionofthewind- Hofmann,K.-H.&Weigelt,G.1988,A&A,203,L21 wind collision zone that is more extended than the undisturbed Hofmann,K.-H.&Weigelt,G.1993,A&A,278,328 primary wind. At the time of our observations, the secondary Hofmann,K.-H.,Weigelt,G.,&Schertl,D.2014,A&A,565,A48 Humphreys,R.M.,Davidson,K.,&Koppelman,M.2008,AJ,135,1249 starofηCarwasinfrontoftheprimarystar,andthecavitywas Ishibashi,K.,Corcoran,M.F.,Davidson,K.,etal.1999,ApJ,524,983 opened up into our line-of-sight. The observed SE fan-shaped Jennison,R.C.1958,MNRAS,118,276 structureatnegativeradialvelocities(Figs.4to6andB.1)sug- Kashi,A.&Soker,N.2007,MNRAS,378,1609 geststhatourreconstructionsaredirectimagesofthewind-wind Kashi,A.&Soker,N.2009a,NewA,14,11 Kashi,A.&Soker,N.2009b,MNRAS,397,1426 collisionzone.However,thefossilwind,toroidaloccultingma- Kervella,P.2007,A&A,464,1045 terialintheline-of-sight,thefaintHei2.16127µmemissionline, LeBouquin,J.-B.,Abuter,R.,Bauvir,B.,etal.2008,inSocietyofPhoto-Optical andahigh-densitypolarwindmayalsoslightlyinfluencetheob- InstrumentationEngineers(SPIE)ConferenceSeries,Vol.7013,Societyof served image intensity distributions. Our observations provide Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,18 LeBouquin,J.-B.,Abuter,R.,Haguenauer,P.,etal.2009,A&A,493,747 detailedvelocity-dependentimagestructuresthatcanbeusedto Madura,T.I.,Gull,T.R.,Okazaki,A.T.,etal.2013,MNRAS,436,3820 test three-dimensional hydrodynamical, radiative transfer mod- Madura,T.I.,Gull,T.R.,Owocki,S.P.,etal.2012,MNRAS,420,2064 elsofmassiveinteractingwinds. Madura,T.I.&Owocki,S.P.2010,inRevistaMexicanadeAstronomiayAs- Future AMBER, GRAVITY, and MATISSE observations trofisicaConferenceSeries,Vol.38,RevistaMexicanadeAstronomiayAs- trofisicaConferenceSeries,52–53 with a better uv coverage combined with 3-D smoothed parti- Mehner,A.,Davidson,K.,Ferland,G.J.,&Humphreys,R.M.2010a,ApJ,710, clehydrodynamicsimulationswillprovideauniqueopportunity 729 tostudythewind-windcollisionzoneofηCaratmanydifferent Mehner,A.,Davidson,K.,Humphreys,R.M.,etal.2012,ApJ,751,73 linesingreatdetail. Mehner,A.,Davidson,K.,Humphreys,R.M.,etal.2010b,ApJ,717,L22 Mehner,A.,Davidson,K.,Humphreys,R.M.,etal.2015,A&A,578,A122 Acknowledgements. WethankallESOcolleaguesfortheexcellentcollabora- Mehner,A.,Davidson,K.,Martin,J.C.,etal.2011,ApJ,740,80 tion.ThetelluricspectrausedinthisworkforspectralcalibrationoftheAMBER Mérand, A., Patru, F., Berger, J.-P., Percheron, I., & Poupar, S. 2012, in datawerecreatedfromdatathatwaskindlymadeavailablebytheNSO/KittPeak Proc.SPIE,Vol.8445,OpticalandInfraredInterferometryIII,84451K Observatory.ThispublicationmakesuseoftheSIMBADdatabaseoperatedat Millour,F.,Meilland,A.,Chesneau,O.,etal.2011,A&A,526,A107 CDS,Strasbourg,France.Wethanktherefereeforhelpfulsuggestions.AFJMis Mourard,D.,Monnier,J.D.,Meilland,A.,etal.2015,A&A,577,A51 gratefulfor financialaid fromNSERC (Canada)and FQRNT(Quebec). S.K. Nielsen,K.E.,Corcoran,M.F.,Gull,T.R.,etal.2007,ApJ,660,669 acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) Ohnaka,K.,Hofmann,K.-H.,Schertl,D.,etal.2013,A&A,555,A24 andERCStartingGrant(GrantAgreementNo.639889).WethankAlexander Ohnaka,K.,Weigelt,G.,Millour,F.,etal.2011,A&A,529,A163 Kreplinforhelpfuldiscussions. Okazaki,A.T.,Owocki,S.P.,Russell,C.M.P.,&Corcoran,M.F.2008,MN- RAS,388,L39 Parkin,E.R.,Pittard,J.M.,Corcoran,M.F.,&Hamaguchi,K.2011,ApJ,726, 105 References Parkin,E.R.,Pittard,J.M.,Corcoran,M.F.,Hamaguchi,K.,&Stevens,I.R. 2009,MNRAS,394,1758 Allen,D.A.&Hillier,D.J.1993,ProceedingsoftheAstronomicalSocietyof Petrov,R.G.,Malbet,F.,Weigelt,G.,etal.2007,A&A,464,1 Articlenumber,page10of20
Description: