ebook img

Vlasov-Maxwell-Boltzmann diffusive limit PDF

0.47 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vlasov-Maxwell-Boltzmann diffusive limit

VLASOV-MAXWELL-BOLTZMANN DIFFUSIVE LIMIT 6 0 JUHIJANG 0 2 Abstract. WestudythediffusiveexpansionforsolutionsaroundMaxwellian n equilibrium and in a periodic box to the Vlasov-Maxwell-Boltzmann system, a the most fundamental model for an ensemble of charged particles. Such an J expansion yieldsasetofdissipativenewmacroscopicPDE’s,theincompress- 0 ible Vlasov-Navier-Stokes-Fourier system and its higher order corrections for 3 describing a charged fluid, where the self-consistent electromagnetic field is present. The uniform estimate on the remainders is established via a unified ] nonlinearenergymethodanditguarantees theglobalintimevalidityofsuch P anexpansionuptoanyorder. A . h t a 1. Introduction and Formulation m [ The dynamics of charged dilute particles can be described by the celebrated 1 Vlasov-Maxwell-Boltzmannsystem: v 0 ∂ F +v F +(E+v B) F =Q(F ,F )+Q(F ,F ), t + x + v + + + + 4 (1.1) ·∇ × ·∇ − 7 ∂tF +v xF (E+v B) vF =Q(F ,F+)+Q(F ,F ), − ·∇ −− × ·∇ − − − − 1 with initial data F (0,x,v)=F (x,v). For notational simplicity we have set all 0 0, ± ± 6 physicalconstantstobeunity,see[8]formorebackground. HereF (t,x,v) 0are ± ≥ 0 the spatially periodic number density functions for the ions (+) and electrons (-) / respectively, at time t 0, position x = (x ,x ,x ) [ π,π]3 = T3 and velocity th v = (v1,v2,v3) R3.≥The collision betwe1en2par3tic∈les−is given by the standard a ∈ Boltzmann collision operator Q(G ,G ) with hard-sphere interaction: m 1 2 v: (1.2) Q(G1,G2)= (u v) ω G1(v′)G2(u′) G1(v)G2(u) dudω, i ZR3×S2| − · |{ − } X where v =v [(v u) ω]ω and u =u+[(v u) ω]ω. ′ ′ r The self-con−siste−nt, sp·atially periodic electro−magn·etic field [E(t,x),B(t,x)] in a (1.1) is coupled with F (t,x,v) through the Maxwell system: ± ∂ E B = v(F F )dv, B =0, t + (1.3) −∇× −ZR3 − − ∇· ∂ B+ E =0, E = (F F )dv, t + ∇× ∇· ZR3 − − with initial data E(0,x)=E (x), B(0,x)=B (x). 0 0 It turns out that it is convenient to consider the sum and difference of F and + F as proposed in [4]. Defining − (1.4) F F +F and G F F , + + ≡ − ≡ − − Date:January27,2006. 1 2 JUHIJANG (1.1) and (1.3) can be rewritten as following: ∂ F +v F +(E+v B) G=Q(F,F), t x v ·∇ × ·∇ ∂ G+v G+(E+v B) F =Q(G,F), t x v ·∇ × ·∇ (1.5) ∂ E B = v Gdv, B =0, t −∇× −ZR3 ∇· ∂ B+ E =0, E = Gdv, t ∇× ∇· ZR3 with initial data F(0,x,v) = F (x,v), G(0,x,v) = G (x,v), E(0,x) = E (x) and 0 0 0 B(0,x)=B (x). 0 Now we introduce the diffusive scaling to (1.5): for any ε>0, 1 ε∂ Fε+v Fε+(Eε+v Bε) Gε = Q(Fε,Fε), t x v ·∇ × ·∇ ε 1 ε∂ Gε+v Gε+(Eε+v Bε) Fε = Q(Gε,Fε), t x v ·∇ × ·∇ ε (1.6) ε∂ Eε Bε = v Gε dv, Bε =0, t −∇× −ZR3 ∇· ε∂ Bε+ Eε =0, Eε = Gε dv. t ∇× ∇· ZR3 For notational simplicity, we normalize the global Maxwellian as 1 (1.7) µ(v)= e v2/2. −| | (2π)3/2 We consider the following formal expansion in ε around the equilibrium state [F,G,E,B]=[µ,0,0,0]: for any n 1, ≥ Fε(t,x,v)=µ+√µ εf (t,x,v)+ε2f (t,x,v)+...+εnfε(t,x,v) , { 1 2 n } Gε(t,x,v)=√µ εg (t,x,v)+ε2g (t,x,v)+...+εngε(t,x,v) , (1.8) { 1 2 n } Eε(t,x)= εE (t,x)+ε2E (t,x)+...+εnEε(t,x) , { 1 2 n } Bε(t,x)= εB (t,x)+ε2B (t,x)+...+εnBε(t,x) . { 1 2 n } To determine the coefficients f (t,x,v),...,f (t,x,v); g (t,x,v),...,g (t,x,v); 1 n 1 1 n 1 − − E (t,x),...,E (t,x); B (t,x),...,B (t,x), we plug the formal diffusive expan- 1 n 1 1 n 1 − − sion (1.8) into the rescaled equations (1.6): (1.9) (ε∂ +v ) εf +...+εnfε t ·∇x { 1 n} 1 + ε(E +v B )+...+εn(Eε +v Bε) [√µ εg +...+εngε ] √µ{ 1 × 1 n × n }·∇v { 1 n} 1 = Q(µ+√µ εf +...+εnfε , µ+√µ εf +...+εnfε ), ε√µ { 1 n} { 1 n} (ε∂ +v ) εg +...+εngε t ·∇x { 1 n} 1 + ε(E +v B )+...+εn(Eε +v Bε) [µ+√µ εf +...+εnfε ] √µ{ 1 × 1 n × n }·∇v { 1 n} 1 = Q(√µ εg +...+εngε , µ+√µ εf +...+εnfε ), ε√µ { 1 n} { 1 n} VLASOV-MAXWELL-BOLTZMANN DIFFUSIVE LIMIT 3 ε∂ εE +...+εnEε εB +...+εnBε = v√µ εg +...εngε dv, t{ 1 n}−∇×{ 1 n} −ZR3 { 1 n} ε∂ εB +...+εnBε + εE +...+εnEε =0, t{ 1 n} ∇×{ 1 n} εE +...+εnEε = √µ εg +...εngε dv, ∇·{ 1 n} ZR3 { 1 n} εB +...+εnBε =0. ∇·{ 1 n} ToexpandtherighthandsideQintheabove,wedefineLthewell-knownlinearized collision operator and another linearized operater as L 1 (1.10) Lf Q(µ,√µf)+Q(√µf,µ) , ≡−√µ{ } 1 (1.11) g Q(√µg,µ), L ≡−√µ and the nonlinear collision operator Γ as (non-symmetric) 1 (1.12) Γ(f,g) Q(√µf,√µg). ≡ √µ Note that Lf and g can be written as following in terms of Γ: L (1.13) Lf = Γ(√µ,f)+Γ(f,√µ) , g = Γ(g,√µ). −{ } L − Now we equate the coefficients on both sides of the equation (1.9) in front of different powers of the parameter ε. Let f =f 0, g =g 0, E 0, B 0 1 0 1 0 0 0 − ≡ − ≡ ≡ ≡ to obtain 1 ∂ f +v f + (E +v B ) (√µg ) t m x m+1 i i v j ·∇ √µ × ·∇ i+jX=m+1 i,j 1 ≥ = Lf + Γ(f ,f ), m+2 i j − i+jX=m+2 i,j 1 (1.14) ≥ 1 ∂ g +v g + (E +v B ) (√µf ) E v√µ t m x m+1 i i v j m+1 ·∇ √µ × ·∇ − · i+jX=m+1 i,j 1 ≥ = g + Γ(g ,f ), m+2 i j −L i+jX=m+2 i,j 1 ≥ for 1 m n 3 as well as − ≤ ≤ − ∂ E B = vg √µdv, B =0, t m m+1 m+1 m+1 −∇× −Z ∇· (1.15) ∂ B + E =0, E = g √µdv, t m m+1 m+1 m+1 ∇× ∇· Z for0 m n 2. Moreover,wecancollecttermsleftin(1.9)withpowersεn 1 or − ≤ ≤ − higher and divide by εn 1 to get the equations for the remainders fε,gε,Eε,Bε. − n n n n 4 JUHIJANG Notethatalltheεm+1-thordertermsvanishform n 3becauseof(1.14). First, ≤ − we write equations for fε and gε: n n (1.16) ε2∂ fε+εv fε+Lfε = t n ·∇x n n 1 ∂ f v f (E +v B ) (√µg )+ Γ(f ,f ) t n 2 x n 1 i i v j i j {− − − ·∇ − − √µi+jX=n 1 × ·∇ i+Xj=n } i,j 1− i,j 1 ≥ ≥ 1 +ε ∂ f (E +v B ) (√µg )+ Γ(f ,f ) t n 1 i i v j i j {− − − √µi+Xj=n × ·∇ i+jX=n+1 } i,j 1 i,j 1 ≥ ≥ n 1 − +εnΓ(fε,fε)+ εi Γ(fε,f )+Γ(f ,fε) + εi+j nΓ(f ,f ) n n { n i i n } − i j Xi=1 i+jXn+2 ≥ εn+1 (Eε +v Bε) (√µgε) − √µ n × n ·∇v n n 1 1 − εi+1 (E +v B ) (√µgε)+(Eε +v Bε) (√µg ) − √µ { i × i ·∇v n n × n ·∇v i } Xi=1 1 εi+j−n+1(Ei+v Bi) v(√µgj); − √µ × ·∇ i+jXn+1 ≥ ε2∂ gε +εv gε εEε v√µ+ gε = t n ·∇x n− n· L n 1 ∂ g v g (E +v B ) (√µf )+E v√µ t n 2 x n 1 i i v j n 1 {− − − ·∇ − − √µ × ·∇ − · i+jX=n 1 i,j 1− ≥ 1 + Γ(g ,f ) +ε ∂ g (E +v B ) (√µf ) i j t n 1 i i v j } {− − − √µ × ·∇ i+Xj=n i+Xj=n i,j 1 i,j 1 ≥ ≥ n 1 − + Γ(g ,f ) +εnΓ(gε,fε)+ εi Γ(gε,f )+Γ(g ,fε) i j } n n { n i i n } i+jX=n+1 Xi=1 i,j 1 ≥ εn+1 + εi+j−nΓ(gi,fj)− √µ (Enε +v×Bnε)·∇v(√µfnε) i+jXn+2 ≥ n 1 1 − εi+1 (E +v B ) (√µfε)+(Eε +v Bε) (√µf ) − √µ { i × i ·∇v n n × n ·∇v i } Xi=1 1 εi+j−n+1(Ei+v Bi) v(√µfj). − √µ × ·∇ i+jXn+1 ≥ Similarly, by (1.15), we get the remainders for Eε,Bε: n n ε∂ Eε Bε = ∂ E vgε√µdv, Bε =0, (1.17) t n−∇× n − t n−1−ZR3 n ∇· n ε∂ Bε + Eε = ∂ B , Eε = gε√µdv. t n ∇× n − t n−1 ∇· n ZR3 n VLASOV-MAXWELL-BOLTZMANN DIFFUSIVE LIMIT 5 The fluid equations can be obtained through the conditions (1.14) and (1.15). WefirstrecallthattheoperatorL 0,andforanyfixed(t,x),thenullspaceofLis ≥ generatedby [√µ,v√µ, v 2√µ]. Foranyfunctionf(t,x,v) wethus candecompose | | f =P1f + I P1 f { − } where P1f (hydrodynamic part) is the L2v projection on the null space for L for given (t,x). We can further denote v 2 3 (1.18) P1f = ρf(t,x)+v uf(t,x)+(| | )θf(t,x) √µ. { · 2 − 2 } Here we define the hydrodynamic field of f to be [ρ (t,x),u (t,x),θ (t,x)] f f f which representsthe density, velocity and temperature fluctuations physically. For the velocity field u (t,x), we further define its divergent-free part as f P u = the divergent-free projection of u 0 f f so that P u 0. 0 f ∇·{ }≡ Similarly, one can show that 0 and for any fixed (t,x), the null space of L ≥ L is one dimensional vector space generated by [√µ]. Likewise, any g(t,x,v) can be decomposed into g =P2g+ I P2 g { − } where P2g (hydrodynamic part) is the L2v projection on the null space for L for given (t,x). We can further denote (1.19) P2g =σg(t,x)√µ. Here σ (t,x), the hydrodynamic field of g, can be interpreted as the concentration g difference. Formoredetailsabout andP2,werefer[4]. Beforegoingon,westate L thecoercivityofLand whichwillbeoftenusedinthesubsequentsections: there L exists a δ >0 such that (1.20) hLf,fi≥δ|(I−P1)f|2ν, hLg,gi≥δ|(I−P2)g|2ν. SeeLemma1in[8]foritsproof. NotethattheoperatorLdefinedin[8]isequivalent to [L, ] in our case. L Now define [ρ ,u ,θ ,σ ] to be the corresponding hydrodynamic field of the m m m m m-th coefficients f and g . As for the first coefficients f (t,x,v) and g (t,x,v), m m 1 1 from (1.14) (1.21) I P1 f1 =0 and I P2 g1 =0 { − } { − } which immediately yield that (1.22) B =0 and E = φ 1 1 1 ∇ up to constant and for some function φ (t,x) satisfying φ = σ ; in particular, 1 1 1 △ B may be assumed to be zero physically in a sense that nonzero constants B do 1 1 not cause the hydrodynamic equations (1.25)-(1.28) to change. It will be shown in Lemma 3.1 that its velocity fluctuation u (t,x) is incompressible: 1 (1.23) u 0 or u =P u , 1 1 0 1 ∇· ≡ 6 JUHIJANG anditsdensityandtemperaturefluctuationsρ (t,x)andθ (t,x)satisfytheBoussi- 1 1 nesq relation: (1.24) ρ +θ 0. 1 1 ≡ Moreover, [u ,θ ,σ ] satisfies the nonlinear incompressible Vlasov-Navier-Stokes- 1 1 1 Fourier equations: (1.25) ∂ u +u u + p =η∆u +σ φ , t 1 1 1 1 1 1 1 ·∇ ∇ ∇ (1.26) ∂ σ +u σ =α∆σ ασ , t 1 1 1 1 1 ·∇ − (1.27) ∆φ =σ , 1 1 (1.28) ∂ θ +u θ =κ∆θ , t 1 1 1 1 ·∇ where p (t,x) is the pressure and η, κ, α>0 are physical constants. 1 Asforthecoefficientsf (t,x,v), g (t,x,v)form 2,by(1.14),themicroscopic m m ≥ part of f and g is determined by: m m I P1 fm =L−1 ∂tfm 2 v xfm 1+ Γ(fi,fj) { − } {− − − ·∇ − i+Xj=m i,j 1 ≥ 1 (1.29) (E +v B ) (√µg ) , i i v j −√µ × ·∇ } i+jX=m 1 i,j 1− ≥ I P2 gm = −1 ∂tgm 2 v xgm 1+ Γ(gi,fj) { − } L {− − − ·∇ − i+Xj=m i,j 1 ≥ 1 (1.30) (E +v B ) (√µf )+E v√µ . i i v j m 1 −√µi+jX=m 1 × ·∇ − · } i,j 1− ≥ On the other hand, for the hydrodynamic field of f and g : m m v 2 3 P1fm = ρm(t,x)+v um(t,x)+ | | θm(t,x) √µ, { · { 2 − 2} } P2gm = σm(t,x)√µ, we can deduce an m-th order incompressibility condition (1.31) I P u = ∂ ρ , 0 m t m 1 ∇·{ − } − − an m-th order Boussinesq relation (1.32) ρ +θ =∆ 1 u (P u ) P u u +E σ +E σ m m − 1 0 m 1 0 m 1 1 1 m 1 m 1 1 ∇·{− ·∇ − − − ·∇ − − v 2√µ 5 +Rmu−1}+h| |3 ,L−1({I−P1}v·∇xP1fm−1)i− 2θ1θm−1−um−1·u1, and an m-th order linear Vlasov-Navier-Stokes-Fouriersystem for [P u ,θ ,σ ]: 0 m m m (1.33) (∂ +u η∆)P u +P u u + p (E σ +E σ )=Ru, t 1·∇− 0 m 0 m·∇ 1 ∇ m− 1 m m 1 m (1.34) (∂ +u α∆+α)σ +P u σ =Rσ, t 1·∇− m 0 m·∇ 1 m (1.35) (∂ +u κ∆)θ +P u θ =Rθ , t 1·∇− m 0 m·∇ 1 m VLASOV-MAXWELL-BOLTZMANN DIFFUSIVE LIMIT 7 (1.36) E = ∂ B , E =σ , m t m 1 m m ∇× − − ∇· (1.37) Bm = I P2 gmv√µdv+∂tEm 1, Bm =0, ∇× ZR3{ − } − ∇· with compatibility conditions coming from conservation laws d (1.38) E dx= α E dx+ℓ , B dx=0. m m m 1 m dtZT3 − ZT3 − ZT3 HereRu,Rσ,Rθ andℓ ,definedpreciselyin(3.2),(3.3),(3.4)and(3.20),essen- m m m m 1 − tiallydependonlyonfj, gj, Ej, Bj forj m 1,since I P1 fm, I P2 gm, ≤ − { − } { − } I P u , as well as ρ +θ have been determined. 0 m m m { − } In order to state our results precisely in the next section, we introduce the following norms and notations. We use , to denote the standard L2 inner product in R3, while we use ( , ) to denoht·e ·Li2 inner product either in T3 R3 or in T3 withvcorresponding L·2 ·norm . We use the standard notation H×s to ||·|| denote the Sobolev space Ws,2. For the Boltzmann collision operator (1.2), define the collision frequency to be (1.39) ν(v) v v µ(v )dv , ′ ′ ′ ≡ZR3| − | which behaves like v as v . It is naturalto define the following weighted L2 | | | |→∞ norm to characterize the dissipation rate. g 2 g2(v)ν(v)dv, g 2 g2(x,v)ν(v)dvdx. | |ν ≡ZR3 || ||ν ≡ZT3 R3 × Observe that for hard sphere interaction, (1.40) (1+ v )21g C g ν. || | | ||≤ || || In order to be consistent with the hydrodynamic equations, we define (1.41) ∂β =∂γ1∂γ2∂γ3∂β1∂β2∂β3 γ x1 x2 x3 v1 v2 v3 where γ = [γ ,γ ,γ ] is related to the space derivatives, while β = [β ,β ,β ] is 1 2 3 1 2 3 related to the velocity derivatives. We now define instant energy functionals and the dissipation rate. Definition 1 (Instant Energy) For N 8, for some constant C > 0, an ≥ instant energy functional (f,g,E,B)(t) (t) satisfies: N N E ≡E 1 (1.42) (t) [∂βf, ∂βg] 2(t)+ [∂ E, ∂ B] 2(t) C (t). CEN ≤ || γ γ || || γ γ || ≤ EN X X β+γ N γ N | | | |≤ | |≤ Definition 2 (Dissipation Rate) For N 8, the dissipation rate (f,g)(t) N ≥ D is defined as N(f,g)(t)= [∂γP1f, ∂γP2g] 2(t) D || || X γ N (1.43) | |≤ 1 +ε2 ||[∂γβ{I−P1}f, ∂γβ{I−P2}g]||2ν(t). X β+γ N | | | |≤ Weremarkthatboththeinstantenergyandthedissipationratearecarefullyde- signedtocapturethestructureoftherescaledVlasov-Maxwell-Boltzmannequation 8 JUHIJANG (1.6). First of all, the electromagnetic field [E,B] is included only in the instant energy, which prevents the exponential decay on unlike the pure Boltzmann N E case for hard potentials. See [9] and [16]. Notice that there is no 1 factor in front ε2 of the hydrodynamic part [P1f,P2g] in the dissipation rate N(f,g), since only D themicroscopicpart[ I P1 f, I P2 g]shouldvanishasε 0. Fornotational { − } { − } → simplicity,theEinstein’s summationconvention isusedforGreekletteruptoorder N 8 throughout the paper, unless otherwise specified. We denote = and x ≥ ∇ ∇ use C to denote a constant independent of ε. We also use U() to denote a general · positive polynomial with U(0)=0. 2. Main Results The first result is to determine the coefficients f ,f ,...f ; g ,g ,...g ; E ,E , 1 2 m 1 2 m 1 2 ...E ; B ,B ,...B in a diffusive approximation (1.8). m 1 2 m Theorem2.1. Letmdivergent-freevector-valuedfunctions[u0(x),u0(x),...,u0 (x)], 1 2 m 2m scalar functions [θ0(x),θ0(x)...θ0 (x);σ0(x),σ0(x),...σ0 (x)] be given such that 1 2 m 1 2 m u0 + θ0 + σ0 M || 1||H2 || 1||H2 || 1||H2 ≤ and σ0(x)dx=0, u0(x)dx= E0(x) B0(x)dx, ZT3 r ZT3 r −i+Xj=rZT3 i × j i,j 1 ≥ 3 1 θ0(x)dx= E0(x) E0(x)+B0(x) B0(x)dx, ZT3 2 r −2i+Xj=rZT3 i · j i · j i,j 1 ≥ for 1 r m. HereE0,B0 are defined by E (0,x),B (0,x) which have been induc- ≤ ≤ i j i j tively determined at the precedents since i,j < r, starting with the average condi- tions B0dx =0 and E0dx =0. Then for sufficiently small M and given m T3 1 T3 1 real veRctors e1(=0),e2,..R.,em, there exist unique functions f1(t,x,v),f2(t,x,v),..., f (t,x,v); g (t,x,v),g (t,x,v),...,g (t,x,v); E (t,x),E (t,x),...,E (t,x) and m 1 2 m 1 2 m B (t,x),B (t,x),...,B (t,x) with 1 2 m σ (t,x)dx=0, P u (t,x)dx= E (t,x) B (t,x)dx, r 0 r i j ZT3 ZT3 −i+Xj=rZT3 × i,j 1 (2.1) ≥ 3 1 θ (t,x)dx= E (t,x) E (t,x)+B (t,x) B (t,x)dx, r i j i j ZT3 2 −2i+Xj=rZT3 · · i,j 1 ≥ such that initially P u (0,x) = u0(x), θ (0,x) = θ0(x), σ (0,x) = σ0(x) and 0 r r r r r r E (0,x)dx=e , andf (t,x,v),g (t,x,v),E (t,x),B (t,x)satisfy(1.21)-(1.28) T3 r r 1 1 1 1 Rand fr(t,x,v),gr(t,x,v),Er(t,x),Br(t,x) satisfy (1.29)-(1.38) for 2 r m. ≤ ≤ VLASOV-MAXWELL-BOLTZMANN DIFFUSIVE LIMIT 9 Moreover, for 1 r m, for any β, and for all s 3, there exists a polyno- ≤ ≤ ≥ mial U with U (0)=0 such that r,β,s r,β,s [∂βf , ∂βg (t)+ [∂ E , ∂ B ] (t) {|| τ r τ r||ν || τ r τ r || } X τ s (2.2) | |≤ ≤e−λtUr,β,s( {||u0j||H2s+4(r−j) +||θj0||H2s+4(r−j) +||σj0||H2s+4(r−j)}), 1Xj r ≤ ≤ where space-time derivatives ∂ =∂τ0∂τ1∂τ2∂τ3 τ t x1 x2 x3 and λ can be chosen as 1min η,κ,α for sufficiently small M. 4 { } We now turn to the most important questionabout the remainder estimates for fε, gε, Eε and Bε. We first study the classical case for the first order remainders n n n n fε fε, gε gε, Eε Eε, Bε Bε ≡ 1 ≡ 1 ≡ 1 ≡ 1 which satisfy the nonlinear Boltzmann type equations: 1 1 1 1 (2.3) ∂ fε+ v fε+ Lfε = Γ(fε,fε) (Eε+v Bε) (√µgε), t ε ·∇x ε2 ε − √µ × ·∇v 1 1 1 1 ∂ gε+ v ( gε √µEε)+ gε = Γ(gε,fε) (Eε+v Bε) (√µfε), t ε · ∇x − ε2L ε − √µ × ·∇v ε∂ Eε Bε = gεv√µdv, Bε =0, t −∇× −Z ∇· (2.4) ε∂ Bε+ Eε =0, Eε = gε√µdv. t ∇× ∇· Z Theorem 2.2. Let N 8. Let fε(0,x,v) = fε(x,v), gε(0,x,v) = gε(x,v) and ≥ 0 0 Eε(0,x) = Eε(x), Bε(0,x) = Bε(x) satisfy the mass, momentum and energy con- 0 0 servation laws: (fε,√µ)=0, (gε,√µ)=0, 0 0 (fε,v√µ)+ε Eε Bεdx=0, (2.5) 0 ZT3 0 × 0 (fε, v 2√µ)+ε Eε 2+ Bε 2dx=0. 0 | | ZT3| 0| | 0| Then there exists an instant energy functional (fε,gε,Eε,Bε)(t) such that N E if (fε,gε,Eε,Bε)(0) is sufficiently small, then N E d (2.6) (fε,gε,Eε,Bε)(t)+ (fε,gε)(t) 0. N N dtE D ≤ In particular, (2.7) sup (fε,gε,Eε,Bε)(t) (fε,gε,Eε,Bε)(0). N N E ≤E 0 t ≤ ≤∞ Moreover, for k 1 there exists C >0 such that N,k ≥ k (2.8) (fε,gε,Eε,Bε)(t) C (fε,gε,Eε,Bε)(0) 1+ t − . N N,k N+k E ≤ E (cid:26) k(cid:27) 10 JUHIJANG We remark that our initial data fε,gε,Eε,Bε are general and can contain ini- 0 0 0 0 tial layer for the Vlasov-Navier-Stokes-Fourier limit. We can easily include (one) temporal derivative ∂ in our definition of instant energy and dissipation rate, and t obtain the same uniform bound for such a new norm. With such a modification, the boundedness of ∂ fε, ∂ gε, ∂ Eε, ∂ Bε automatically removes the formation t 0 t 0 t 0 t 0 of any initial layer. For higher order remainders fε, gε, Eε, Bε with n 2, we have n n n n ≥ Theorem 2.3. Let N 8. Given f f ...f ; g g ...g ; E E ...E ; B B ...B 1, 2, n 1, 2, n 1, 2, n 1, 2, n ≥ constructed in Theorem 2.1 and let [u0,θ0,σ0] (t) ||| n n n |||N (2.9) ≡ {||u0i||H2N+10+4(n−j) +||θi0||H2N+10+4(n−j) +||σi0||H2N+10+4(n−j)}. 1Xj n ≤ ≤ And let Fε(0,x,v)≡µ+√µ{εf1(0,x,v)+...+εn−1fn−1(0,x,v)+εnfnε(0,x,v)}, (2.10) Gε(0,x,v)≡√µ{εg1(0,x,v)+...+εn−1gn−1(0,x,v)+εngnε(0,x,v)}, Eε(0,x) εE (0,x)+...+εn 1E (0,x)+εnEε(0,x), ≡ 1 − n−1 n Bε(0,x) εB (0,x)+...+εn 1B (0,x)+εnBε(0,x) ≡ 1 − n−1 n be given initial data satisfying the following conservation laws: Fε(0,x,v) µ(v) dvdx=0, Gε(0,x,v)dvdx=0, ZT3ZR3{ − } ZT3ZR3 (2.11) vFε(0,x,v)dvdx+ Eε(0,x) Bε(0,x)dx=0, ZT3ZR3 ZT3 × v 2 Fε(0,x,v) µ(v) dvdx+ Eε(0,x)2+ Bε(0,x)2dx=0. ZT3ZR3| | { − } ZT3| | | | Then there exist an instant energy functional and a positive polynomial U with N E U(0)=0 such that if both ε and (fε f ,gε g ,Eε E ,Bε B )(0) EN n− n n− n n− n n− n are sufficiently small, then sup (fε f ,gε g ,Eε E ,Bε B )(t) EN n− n n− n n− n n− n 0 t ≤ ≤∞ (2.12) ≤{eU(|||[u0n,θn0,σn0]|||N)EN(fnε−fn,gnε −gn,Enε −En,Bnε −Bn)(0) +ε2U( [u0,θ0,σ0] ) . ||| n n n |||N } Moreover, for k 1 there exists C >0 such that N,k ≥ (fε f ,gε g ,Eε E ,Bε B )(t) EN n− n n− n n− n n− n (2.13) ≤CN,k{eU(|||[u0n,θn0,σn0]|||N)EN+k(fnε−fn,gnε −gn,Enε −En,Bnε −Bn)(0) k t − +ε2U( [u0,θ0,σ0] ) 1+ . ||| n n n |||N }(cid:26) k(cid:27) Note that the conservation laws (2.11) in Theorem 2.3 imply the conservation laws for fε, gε, Eε, Bε due to (2.1). See (7.5) for the precise description. In n n n n addition, we remark that the positivity for the initial data (Fε Gε)(0,x,v) 0 ± ≥

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.