ebook img

Vlasov dynamics of 1D models with long-range interactions PDF

4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vlasov dynamics of 1D models with long-range interactions

Universit´e Libre de Bruxelles Center for Nonlinear Phenomena and Complex Systems 2 1 0 Vlasov dynamics of 1D models with 2 n long-range interactions a J 3 Pierre de Buyl ] h c e m - t a t s . t a m - d n o c [ 1 v 0 6 7 0 . 1 0 2 1 : v i X r a Academic year 2009-2010 Dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics Supervisor : Prof. Pierre Gaspard 2 Thoughtcrime does not entail death: thoughtcrime is death. Georges Orwell, Nineteen Eighty Four 3 4 `a Sophie, pour toujours. 5 6 Abstract Gravitational and electrostatic interactions are fundamental examples of sys- tems with long-range interactions. Equilibrium properties of simple models with long-range interactions are well understood and exhibit exotic behaviors : negative specific heat and inequivalence of statistical ensembles for instance. The understanding of the dynamical evolution in the case of long-range in- teracting systems still represents a theoretical challenge. Phenomena such as out-of-equilibrium phase transitions or quasi-stationary states have been found even in simple models. Thepurposeofthepresentthesisistoinvestigatethedynamicalpropertiesof systems with long-range interactions, specializing on one-dimensional models. The appropriate kinetic description for these systems is the Vlasov equation. A statistical theory devised by D. Lynden-Bell is adequate to predict in some situationstheoutcomeofthedynamics. Acomplementarynumericalsimulation tool for the Vlasov equation is developed. A detailed study of the out-of-equilibrium phase transition occuring in the Free-Electron Laser is performed and the transition is analyzed with the help of Lynden-Bell’s theory. Then, the presence of stretching and folding in phase space for the Hamiltonian Mean-Field model is studied and quantified from the point of view of fluid dynamics. Finally, a system of uncoupled pendula for which the asymptotic states are similar to the ones of the Hamiltonian Mean-Fieldmodel is introduced. Its asymptotic evolutionis predicted via both Lynden-Bell’s theory and an exact computation. This system displays a fast initial evolution similar to the violent relaxation found for interacting systems. Moreover,an out-of-equilibrium phase transition is found if one imposes a self- consistent condition on the system. In summary, the present thesis discusses original results related to the oc- curenceofquasi-stationarystatesandout-of-equilibriumphasetransitionsin1D models with long-range interaction. The findings regarding the Free-Electron Laser are of importance in the perspective of experimental realizations of the aforementioned phenomena. 7 R´esum´e Les interactions gravitationnelles et´electrostatiques sont deux exemples fonda- mentauxdesyst`emeseninteractiondelongueport´ee. Lespropri´et´esd’´equilibre de mod`eles simples en interaction de longue port´ee sont bien comprises et r´ev`elentdescomportemensexotiques: capacit´esp´ecifiquen´egativeetin´equivalence des ensembles statistiques par exemple. Lacompr´ehensiondel’´evolutiondynamiquedanslecasdesyst`emeseninter- action de longue port´ee repr´esente encore actuellement un d´efi th´eorique. Des mod`eles simples pr´esentent des propri´et´es telles que des transitions de phase hors d’´equilibre ou des ´etats quasi-stationnaires. Lebutdelapr´esenteth`eseestd’´etudierlespropri´et´esdynamiquesdesyst`emes en interaction de longue port´ee pour des mod`eles `a une dimension. La de- scription cin´etique ad´equate est donn´ee par l’´equation de Vlasov. Une th´eorie statistique propos´ee par D. Lynden-Bell est appropri´ee pour pr´edire dans cer- taines situations l’aboutissementde la dynamique. Un outil de simulationpour l’´equation de Vlasov compl`ete cette approche. Une´etuded´etaill´eedelatransitiondephasedansleLaser`aElectronsLibres est pr´esent´ee et la transition est analys´ee `a l’aide de la th´eorie de Lynden-Bell. Ensuite, la pr´esence d’´etirement et de repliement est ´etudi´ee dans le mod`ele Hamiltonian Mean-Field en analogie avec la dynamique des fluides. Enfin, un syst`eme de pendules d´ecoupl´es dont les ´etats asymptotiques sont similaires `a ceux du mod`ele Hamiltonian Mean-Fieldest introduit. Son´evolutionasympto- tique est pr´edite par la th´eorie de Lynden-Bell et par une approche exacte. Ce syst`eme pr´esente une ´evolution initiale rapide similaire `a la relaxation violente pr´esente dans des mod`eles plus compliqu´es. De plus, une transition de phase hors d’´equilibre est trouv´ee si une condition d’auto-consistence est impos´ee. En r´esum´e, la pr´esente th`ese comporte des r´esultats originaux li´es `a la pr´esence d’´etats quasi-stationnaires et de transitions de phase hors d’´equilibre dansdesmod`elesunidimensionnelseninteractiondelongueport´ee. Lesr´esultats concernant le Laser `a Electrons Libres offrent une perspective de r´ealisation exp´erimentale des ph´enom`enes d´ecrits dans cette th`ese. 8 Copyright notice The present thesis is copyrighted to Pierre de Buyl. Mostofthe resultsandfiguresinchapter4 haveappearedinde Buyl, Com- mun. Nonlin. Sci. Numer. Simulat. doi:10.1016/j.cnsns.2009.08.020 (2009). Most of the results and figures in chapter 5 have appeared in de Buyl et al, Phys. Rev. ST Accel. Beams 12 060704 (2009). List of publications Someofthe resultspresentedinthis thesishavebeenpresentedinthe following publications : Out-of-equilibrium mean-field dynamics of a model for wave-particle in- • teraction P. de Buyl, D. Fanelli, R. Bachelard and G. De Ninno PhysicalReviewSpecialTopics-AcceleratorsandBeams12060704(2009) Numerical resolution of the Vlasov equation for the Hamiltonian Mean- • Field model P. de Buyl Communications in Nonlinear Science and Numerical Simulation (2009) doi:10.1016/j.cnsns.2009.08.020 Transition de phases hors-d’´equilibre dans le Laser `a Electrons Libres • P. de Buyl, R. Bachelard,M.-E. Couprie, G. De Ninno and D. Fanelli `eme “Comptes-Rendusdela12 RencontreduNon-Lin´eaire”,Non-Lin´eaire Publications, 2009 Deep saturation dynamics in a Free-Electron Laser • R. Bachelard, M.-E. Couprie, P. de Buyl, G. De Ninno and D. Fanelli Proceedings of the FEL09 Conference, Liverpool, 2009 9 Table of contents Remerciements 14 1 Introduction 17 The long-range character of the interaction modifies significantly the macro- scopic behaviour of physical systems. We present general properties of such systems. The reasons motivating their investigations are observations in the contextofgalacticdynamicsandinsystemsofchargedparticles. Wespecialize ontheparticulartopicofthecollisionlessevolutionin1Dmodelsofsystemswith long-range interactions. The Vlasovian description of these systems has been thefocusofrecentinterest,inducingtheneedforanumericalimplementation. Definitions: systemswithlong-rangeinteractions,continuum limit. 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2 Examples of systems with long-range interactions . . . . . . . . . 18 1.3 Thermodynamical behaviour of long-range interacting systems . 21 1.4 Dynamical properties. . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 The Vlasov equation 29 WeintroducetheVlasovequationasthecontinuumlimitinsystemswithlong- rangeinteractions. WediscussitsderivationviatheBBGKYhierarchyofkinetic theoryandtheconservationpropertiesofVlasovdynamics. WepresentLynden- Bell’stheoryforthestatistical mechanicsofviolentrelaxation. Definitions:kineticdescription,filamentation,microscopicdescription,coarse- graineddistributionfunction,violentrelaxation. 2.1 The phase space description . . . . . . . . . . . . . . . . . . . . . 30 2.2 Kinetic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.2 Boltzmann’s equation . . . . . . . . . . . . . . . . . . . . 33 2.2.3 The Vlasov equation . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Properties of the Vlasov equation . . . . . . . . . . . . . . 34 2.2.5 Filamentation . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 The statistical theory of Lynden-Bell . . . . . . . . . . . . . . . . 35 2.3.1 Violent relaxation . . . . . . . . . . . . . . . . . . . . . . 36 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.