Visualizing quantummechanics in phase space Heiko Baukea) and Noya Ruth Itzhak Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (Dated: 17January2011) WeexaminethevisualizationofquantummechanicsinphasespacebymeansoftheWignerfunctionandtheWigner function flow as a complementaryapproach to illustrating quantum mechanics in configuration space by wave func- tions. TheWignerfunctionformalismresemblesthemathematicallanguageofclassicalmechanicsofnon-interacting particles. Thus,itallowsamoredirectcomparisonbetweenclassicalandquantumdynamicalfeatures. PACSnumbers:03.65.-w,03.65.Ca Keywords: 1 1 0 2 1. Introduction 2. Visualizing quantum dynamics in n a position space or momentum J Quantummechanicsisacornerstoneofmodernphysicsand space 1 technology. Virtually all processes that take place on an 1 atomar scale requirea quantummechanicaldescription. For example,itisnotpossibletounderstandchemicalreactionsor A (one-dimensional) quantum mechanical position space ] h thecharacteristicsofsolid stateswithouta soundknowledge wave function maps each point x on the position axis to a p of quantum mechanics. Quantum mechanicaleffects are uti- time dependent complex number Ψ(x,t). Equivalently, one - lized in manytechnicaldevicesrangingfrom transistorsand may considerthe wave functionΨ˜(p,t) in momentumspace, t n Flash memory to tunneling microscopes and quantum cryp- whichisgivenbyaFouriertransformofΨ(x,t),viz. a tography,justtomentionafewapplications. qu maQnusaenntsuems,etffheecmts,athhoewmeavteicr,aalrfeonrmotudliarteioctnlsyoacfcqeussainbtluemtomhue-- Ψ˜(p,t)= (2π~1)1/2 Z Ψ(x,t)e−ixp/~dx. (1) [ chanicsareabstractanditsimplicationsareoftenunintuitive Variousmethodstovisualizecomplex-valuedfunctionsinpo- 1 intermsofclassicalphysics. Thisposesamajorchallengein v teachingandlearningthefoundationsofquantummechanics sitionspaceormomentumspacehavebeendevised. Figure1 3 andmakesitdifficultforstudentstoformamentalpictureof exemplifies three different ways of visualizing a wave func- 8 tion.ItshowsaGaussianwavepacket quantumdynamicalprocesses. Therefore,teaching quantum 6 2 mechanics may be supported by visualizing the mathemati- 1 . calobjectsofquantummechanics’mathematicallanguagein Ψ(x,t)= 01 order to sharpenthe students’ understandingof abstract con- 2πσ2 1+ i~t 2 1/4 1 cepts. Infact,manytextbooks1–4 communicatequantumme- (cid:18) (cid:16) 2mσ2(cid:17) (cid:19) 1 chanicswiththeaidofvisualmeans. exp (x−x¯)2 + ip¯(x−x¯) ip¯2t 1+ i~t (2) : Visualizingquantumdynamicsistypicallyimplementedby − 4σ2 ~ − 2m~!, 2mσ2!! v providinga pictorialrepresentationof the quantummechani- i X calwavefunctioninpositionspace5 orinmomentumspace6. inpositionspacewithmassm,meanpositionx¯,meanmomen- r Inordertoestablisharelationbetweenquantumdynamicsand tum p¯,andwidthσattimet=0. a classicaldynamics, thephase spaceseemsto be moreappro- PartaofFig.1presentsthecomplexwavefunction(2)by priatebecauseclassicalHamiltonianmechanicsisformulated plottingitsrealanditsimaginarypartasseparatereal-valued in phase space. Thus, we will present in this contribution functions. Althougha complexfunctionis completelydeter- methodstovisualizequantumdynamicsinphasespace. minedbyspecifyingitsrealanditsimaginarypartitisdifficult Theremainderofthispaperisorganizedasfollows. Insec- to inferphysicallyrelevantinformationfromthese separated tion 2 we brieflyreviewhow to depictquantumdynamicsin quantities. position space or in momentum space using wave functions. Visualizing the wave-function’s squared modulus and its Insection3wegiveashortintroductiontoquantummechan- phase is more appropriatebecause the squaredmodulusof a ics in phase space and establish some connections between wavefunctionmaybeinterpretedasaprobabilitydistribution quantummechanicsandmany-particleclassicalmechanicsbe- andthechangeofitsphaseencodesinformationaboutthemo- fore we visualize quantum dynamics in phase space in sec- mentum. Thus, we picture the wave function (2) in part b tion4. ofFig.1 bysmalldirectionalarrows. Eacharrow’slengthis determinedbythewave-function’smodulus,itsdirection(an- gle between the arrow and the horizontal axis) by the wave- function’sphase. ThearrowsinFig.1baresometimescalled a)Electronicmail:[email protected] phasors. The method to portray a wave function by phasors 2 Fig. 1 is 2π-periodic and contiguous. Encoding the phase as a color allows to plot even relatively strongly oscillating wavefunctions. Itrequires,however,high-qualitycolorprint- ingforgoodreproduction.Thaller1,2hasalsogeneralizedthis approachtomulti-componentwavefunctions. 3. Quantum mechanics in phase space 3.1. The Wigner function The Wigner distrubution function8–10 was introduced by Eu- gene Paul Wigner to take into account quantum corrections to classical statistical mechanicsin 1932. Today, it finds ap- plications in current research in various branches of physics ranging from quantum optics11 and quantum chaos12 to nu- clear and solid state physics. The Wigner function allows for a mathematical description of (non-relativistic) quantum mechanics in phase space. But it is more than a sheer mathematical object, it may be reconstructed by a series of measurements13–17. TheWigner functionformalismis math- ematically equivalent to the standard language of quantum mechanics in terms of wave functions and the Schrödinger equationbutitis morecloselyrelatedto classicalmechanics because it formulates quantum mechanics in phase space as Hamiltonianmechanicsdoes. The Wigner function of a (one-dimensional) pure state wavefunctionΨ(x,t)isdefinedas 1 w(x,p,t)= Ψ (x+s/2,t)Ψ(x s/2,t)eisp/~ds, (3) 2π~Z ∗ − whereΨ (x,t)denotesthecomplexconjugateofΨ(x,t). Note ∗ thatdue to the symmetryof the integrandin (3), the Wigner FIG.1: (Coloronline)ThreedifferentwaysofvisualizingtheGaus- functionw(x,p,t)isalwaysarealfunction.Theexpression sianwavepacket(2)attimet = 0withx¯ = 1, p¯ = 3,andσ = 1/2 (dimensionless units with ~ = 1 and m = 1); a) visualization by 1 thewave-function’srealpartandimaginarypart,b)visualizationby w(x,p,t)= Ψ˜ (p+s/2,t)Ψ˜(p s/2,t)e isx/~ds (4) thewave-function’smodulusanditsphaseusingarrows(phasors),c) 2π~Z ∗ − − visualization by plotting the wave-function’s squared modulus and encodingthephaseinaperiodiccolorscheme. is equivalent to (3) if Ψ(x,t) and Ψ˜(p,t) are linked via (1). Further important mathematical properties9,11 of the Wigner functionincludethefollowingrelations. hadbeenused,forexample,byFeynman7. Itisbeneficialin situationswhereadvancedprintingmethods,colorprintingfor • IfΨ(x,t)isnormalizedtoonethenalsow(x,p,t),viz. example, arenotavailable. However,itis difficultto picture fastoscillatorywavefunctionsinthismanner. w(x,p,t)dpdx=1, (5) Another way of presenting a wave function by its modu- ZZ lus and its phase has been popularized by Thaller1,2. This method is utilized in part c of Fig. 1. It shows the squared furthermore,theequation modulusof the wave function(2) plusits phase which is en- codedbythecolorbetweenthegraphofthesquaredmodulus 1 w(x,p,t)2dpdx= (6) andthehorizontalaxis. Plottingthesquaredmodulusallows ZZ 2π~ foradirectreadoffoftheprobabilitydistributioninposition space. Note that the color scheme for the phase in part c of holdsforallpurestatesΨ(x,t). 3 • Quantum mechanical probability densities in position Afterseveralalgebraicmanipulationsthatincludeexpanding space and momentum space may be obtained from the the potentialV(x,t) into a Taylor seriesaround x=0 and in- marginalsoftheWignerfunction tegrating(13)bypartsonefinallyfindstheso-calledquantum Liouvilleequation ρ(x,t)= Ψ(x,t)2 = w(x,p,t)dp, (7a) | | Z ∂w(x,p,t) = ρ(p,t)= Ψ˜(p,t)2 = w(x,p,t)dx. (7b) ∂t | | Z ∞ (i~/2)2l ∂ ∂ ∂ ∂ 2l+1 H(x,p,t)w(x,p,t), • The state overlap of two wave functions Ψ1(x,t) and Xl=0 (2l+1)! ∂pw∂xH − ∂pH ∂xw! Ψ (x,t) in terms of their Wigner functions w (x,p,t) and (14) 2 1 w (x,p,t)reads 2 whichisapartialdifferentialequationofinfinitedegree. The Z Ψ∗1(x,t)Ψ2(x,t)dx= oerpaetroartsotrh(cid:16)a∂t∂xawc∂tp∂Hon−th∂ep∂HH∂a∂xwm(cid:17)ilitnon(1f4u)nccotinosnisHts(oxf,pd,ifft)e(rienndtiiaclatoepd- by the index H) and differential operators that act on the 2π~ w (x,p,t)w (x,p,t)dpdx. (8) 1 2 Wigner function w(x,p,t) (indicated by the index w). The ZZ functionH(x,p,t)in(14)istheclassicalHamiltonfunction • TheWignerfunctionobeysthereflectionsymmetries p2 Ψ(x,t) Ψ∗(x,t) w(x,p,t) w(x, p,t), (9) H(x,p,t)= 2m +V(x,t) (15) → ⇒ → − Ψ(x,t) Ψ( x,t) w(x,p,t) w( x, p,t). (10) → − ⇒ → − − that corresponds to the Hamilton operator Hˆ of the • TheWignerfunctionisGalilei-covariant,thatis Schrödingerequation(12). Forsystemswheremagneticfieldsareabsentasin(12),the Ψ(x,p,t) Ψ(x+y,p,t) Hamilton function H(x,p,t) can be written as a sum of a ki- → ⇒ netic energyterm K(p) = p2/(2m) that dependsonly on the w(x,p,t) w(x+y,p,t), (11) → momentumpandapotentialenergytermV(x,t)thatdepends onlyonthe position x (andpossiblythetime t). Inthiscase, but not Lorentz-covariant. However, Lorentz-covariant thequantumLiouvilleequation(14)maybewrittenasacon- generalizations of the Wigner function have been consid- eredintheliterature18–20whichmaybeappliedinrelativis- tinuityequation ticquantumoptics21. ∂ • TheWignerfunctionisnotgaugeinvariant. Thedefinition ∂w(x,p,t) = ∂x j(x,p,t), (16) ∂t − ∂ · (d3e)p,ehnodweenvteorf,tmheaygabueggeeinnertahleizperde2s2ensuccehotfhaatmitagbneceotimcfieselidn.- ∂p wherewehaveintroducedthetwo-dimensionalvectorfield The Wigner function w(x,p,t) is called quasi probability function because it is real and normalized to one but not pw(x,p,t) m sdatirmtiicoitnnlyimthnuaomtnw-un(nexgc,eaprt,itvat)ien.itsyInswtrfaiacvctetl,ypaancsokuneffi-tn,cetigheanatttiviasenadisGnteahcuaestssΨsiaa(nrxy,wtc)aovines- j(x,p,t)=−lP=∞0((i2~l+/21))2!l (cid:16)∂∂p∂∂xV − ∂∂xw(cid:17)2l ∂V∂(xx,t)w(x,p,t)(1,7) packet23. As a consequenceof (6), the Wigner function can calledtheWignerfunctionflow. not be arbitrarily highly peaked, which is a reminiscence of LetOˆ denotesomeoperatorfunctionofthequantumme- x thequantummechanicaluncertaintyrelation. chanicalpositionoperatorandO(x)thecorrespondingclassi- Theevolutionequation9,11,24,25oftheWignerfunctionmay calfunction,thenitfollowsfrom(7b)that beobtainedbycalculatingtheWigner-function’stimederiva- tive. TakingintoaccounttheSchrödingerequation O (t)= Ψ(x,t) Oˆ Ψ(x,t) = w(x,p,t)O(x)dpdx. x x ∂Ψ(x,t) ~2 ∂2Ψ(x,t) h i D (cid:12) (cid:12) E ZZ i~ = HˆΨ(x,t)= +V(x,t)Ψ(x,t) (12) (cid:12)(cid:12) (cid:12)(cid:12) (18) ∂t −2m ∂x2 Thismeansonecancalculatethequantummechanicalexpec- tation value O (t) of an operatorOˆ by averagingthe clas- forthewavefunctionmovinginthepotentialV(x,t)weget x x h i sical function O(x) over the Wigner function w(x,p,t). For ∂w(x,p,t) momentum dependent operators Oˆp and their corresponding i~ = classicalfunctionsonefindsusing(7a)asimilarstatement ∂t 1 2π~Z HˆΨ(x,t) Ψ(x,t)∗−Ψ(x,t) HˆΨ(x,t) ∗ eisp/~ds. Op (t)= Ψ(x,t) Oˆp Ψ(x,t) = w(x,p,t)O(p)dpdx. (cid:16)(cid:0) (cid:1) (cid:0) (cid:1) (cid:17) (13) h i D (cid:12) (cid:12) E ZZ (cid:12) (cid:12) (19) (cid:12) (cid:12) 4 ForgeneraloperatorsOˆ andclassicalfunctionsO(x,p)that where H(x,p,t)denotestheHamiltonfunctionthatalsogov- x,p dependonthepositionaswellasonthemomentumonecan ernsthemotionoftheensemble’ssingleparticles. Theequa- show9,24that tion (26) may be written as a continuityequation (16)by in- troducingtheprobabilityflow O (t)= Ψ(x,t) Oˆ Ψ(x,t) = x,p x,p h i D (cid:12) (cid:12) E pw(x,p,t) (cid:12)(cid:12) (cid:12)(cid:12) w(x,p,t)O(x,p)dpdx (20) j(x,p,t)= m . (27) ZZ ∂V(x,t)w(x,p,t) provided that the relation between the operator Oˆ and the − ∂x x,p The quantum Liouville equation (14) reduces in the limit functionO(x,p)isestablishedby ~ 0 to the classical Liouville equation (26). Note, how- → ever, that also if the third spatial derivative of the potential Oˆ = O˜(ξ,π)ei(ξxˆ+πpˆ)/~dξdπ, (21) x,p V(x,t)andallitshigherderivativesvanishthequantumLiou- ZZ villeequation(14)alsoreducestotheclassicalLiouvilleequa- whereO˜(ξ,π)denotestheFouriertransformofO(x,p) tion(26). Thismeansthatthequantummechanicalevolution O˜(ξ,π)= O(x,p)e i(xξ+pπ)/~dxdp (22) of the Wigner function for a particle in a homogeneouscon- ZZ − stant potential or in a harmonic oscillator (or a combination of both) follows the same dynamical law as the probability and xˆ the position operator and pˆ the canonical momentum density of an ensemble of classical particles in the same po- operator,respectively. tential. Nevertheless,non-classicalfeaturesmaybepresentin The Wigner function w (x,p) of an energy eigen-state wave functionof the HamilEtonian H(x,p) = p2/(2m)+V(x) theWignerfunction. Insummary,quantumtheoryinphasespaceintermsofthe istimeindependentandthereforeitfollowsfrom(14)that Wignerfunctionfeaturesformalparallelstotheclassicalthe- p ∂ ∞ (i~/2)2l ∂2l+1V(x) ∂2l+1 w (x,p)=0. oryforanensembleofclassicalnon-interactingparticles.The m∂x − (2l+1)! ∂x2l+1 ∂p2l+1 E stateofbothkindsofsystemsiscompletelycharacterizedby Xl=0 (23a) areal-valuedphasespacedistributionfunctionw(x,p,t). The This equation, however, is not sufficient to specify the en- evolutionofw(x,p,t)isdeterminedbytheclassicalLiouville equation(26)orthequantumLiouvilleequation(14),respec- ergy eigen-value E, which is determined by the eigen-value tively. The quantum Liouville equation equals its classical equation11 counterpartplus some additionalquantum terms. For classi- 2pm2 − 8~m2 ∂∂x22 + ∞ (i(~2/l2)!)2l∂2∂lVx2(lx)∂∂p22lwE(x,p)= cfuanlcstyisotne.mTsh,ewq(ux,anpt,ut)mmmaeycbheanaincyalnWonig-nneegrafutinvcetnioonr,mhaolwizeavbeler, Xl=0 Ew(x,p). (23b) he.ags.,totobreescpoemctptahteibulencwerittahinthtyerlealwatsioonf,aqnudanmtuamybmeencehgaantiivcse,. E Thus, proper quantum characteristics of a quantum dynami- Thetwoequations(23a)and(23b)togetherareequivalentto calprocessaregovernedtheadditionaltermsinthequantum thetimeindependentSchrödingereigen-valueequation Liouville equation or the negative parts of the Wigner func- ~2 ∂2Ψ (x,t) tion. In fact, the negativeparts of the Wigner functionare a E +V(x,t)Ψ (x,t)= EΨ (x,t). (24) − 2m ∂x2 E E commonmeasurefornon-classicality14,16,29,30. 3.2. Relations to classical mechanics 4. Visualizing quantum dynamics in phase space The motion of an ensemble of classical non-interacting particles may be characterized by a probability distribu- tion w(x,p,t) in phase space.26 The probability distribution Afterourshortreviewofthe Wigner-function’spropertiesin w(x,p,t) determineshowlikely it is that a particle in the en- the previoussection, we are now preparedto visualize quan- semble is at position x and has momentum p at time t. It tum mechanics in phase space. This may be accomplished allows to calculate expectationvalues of observables for the by picturing the Wigner function itself or quantities that are classicalensemblebyanintegraloverthephasespace derivedfromthe Wigner function, e.g., the Wignerfunction flow(17). O (t)= w(x,p,t)O(x,p)dpdx (25) x,p In contrast to the wave function, the Wigner function is h i ZZ a real-valued quantity. It assigns just a single real value to likewise for a quantum system by (20). The evolu- each pointin phase space, whichsimplifies the visualization tion of w(x,p,t) is determined by the (classical) Liouville ofWignerfunctionstosomedegreeascomparedtothevisu- equation27,28 alization of wave functions, which assign two real values to ∂w(x,p,t) ∂H(x,p,t)∂w(x,p,t) ∂H(x,p,t)∂w(x,p,t) eachpointinconfigurationspace.Thedimensionofthephase = , ∂t ∂p ∂x − ∂x ∂p space—whichistwicetheconfiguration-space’sdimension— (26) turnsouttobealimitingfactorwhenvisualizingWignerfunc- 5 FIG.2: (Coloronline)VisualizationoftheWignerfunction(28)ofaGaussianwavepacketbyfalsecolorplotsattimet = 0(leftpart)and t=1(rightpart)withx¯=1, p¯ =3,andσ=1/2(dimensionlessunitswith~=1andm=1). Thepanelsabovethefalsecolorplotsshowthe probabilitydistributioninpositionspace(7a)whilepanelsrightnexttothefalsecolorplotsshowtheprobabilitydistributioninmomentum space(7b).ValuesoftheWignerfunctionareindicatedbythecolor-barattheleft. tions. Therefore,we restrictourselvesin thiscontributionto H(x,p,t)= p2/(2m). Thus,theWignerfunctionofafreepar- systemswithatwo-dimensionalphasespace.Displayingtwo- ticlesatisfiestherelation dimensionalreal-valuedfunctionsisa standardtaskofscien- tificvisualizationandmaybeaccomplishedbyvariousmeth- w(x,p,t)=w(x pt/m,p,0). (29) − ods, e.g., by two-dimensional false color plots (sometimes Asaconsequenceof(29),wefindtheequation calledheatmaps),bycontourlinemaps,whichshowlinesof constantvaluesoftheWignerfunction,orby(pseudo)three- ρ(x,t)= w(x,p,t)dp= w(x pt/m,p,0)dp, (30) dimensionalsurfaceplots. Z Z − Systemswithtwoormorespatialdimensionshaveaphase space with at least four dimensionswhich prohibitsvisualiz- whichstatesthattheprobabilitydistributioninpositionspace ingthefullWignerfunction. Inthiscaseonemayinorderto ρ(x,t)atpositionxandtimetisgivenbyanintegraloverthe reducethedimensionality,forexample,picturelowerdimen- Wignerfunctionat time zero alongphase space strips which sional cuts of the Wigner function through the phase space are rotated against the p-axis by an angle of arctant/m. − orprojectionsoftheWignerfunctionontolowerdimensional Thus, measuring the distribution ρ(x,t) of a function of surfaces. the position x and the time t allows to reconstruct the full Wignerfunctionw(x,p,0)attimezerobymeansofaninverse Radon transformation11,31. This has also been demonstrated experimentally13–17. 4.1. A free wavepacket TheWignerfunctionoftheGaussianwavepacket(2)isgiven 4.2. Characterizing eigen-states bythestrictlypositivebivariatenormaldistribution The Wigner function eigen-state of some time independent w(x,p,t)= 1 exp (x− pt/m−x¯)2 2σ2(p−p¯)2 , potential V(x) is determined by the two equations (23a) and π~ − 2σ2 − ~ ! (23b). FortheharmonicoscillatorpotentialV(x) = mω2x2/2 (28) wefind9,11theeigen-states whichis illustratedin Fig.2 bytwo false colorplotsfortwo different points in time, for t = 0 in part a and for t = 1 in w (x,p)= n part b, respectively. At time t = 0, the Wigner function of ( 1)n p2 p2 the Gaussian wave packet is symmetric in phase space with − exp (xκ)2 L 2 +2(xκ)2 , (31a) π~ −(~κ)2 − ! n (~κ)2 ! symmetry axes parallel to the x-axis and the p-axis. During theevolutionofthewavepacket,theWignerfunctiongetsro- andeigen-energies tatedandstretchedalongthe x-axisinphasespace. Thiscor- responds to the familiar wave packet broadening in position 1 E =~ω n+ (31b) space, see also the probability distribution in position space n 2! (7a)asshownabovethefalsecolorplotsinFig.2. As we pointed out in section 3.2, the quantum Liouville with κ = √mω/~, n = 0,1,... and L (x) denoting the nth n equation (14) of a free quantum particle’s Wigner function Laguerrepolynomial. reduced to the classical Liouville equation (26) for an en- In Fig. 3 we depict the Wigner function of the harmonic sembleoffreenon-interactionparticleswiththeHamiltonian oscillator eigen-state with energy E = ~ω(3+1/2) together 6 withitsWignerfunctionflow(17). BecausethenthLaguerre theSchrödingergroundstatewavefunctionshavebeencalcu- polynomial has n positive roots, the Wigner function of the latedbyimaginarytimepropagation32,33andtheWignerfunc- harmonicoscillatoreigen-stateoscillatesandchangesntimes tionwasobtainedbycalculating(3)numericallyafterward.In its sign. Note that despite the fact that the Wigner function Fig.4theanharmonicityparameterαgrowsfromlefttoright (31a)istime-independentthereisapermanentcircularsteady startingwithα= 0(parta)andincreasingtoα=1/4(partb) Wignerfunctionflowinphasespaceasindicatedbythearrows andα=3/4(partc). OneclearlyseesinFig.4howthediver- inFig.3. gencebetweenthedirectionoftheWignerfunctionflowand In section3 we demonstratedthatforharmonicpotentials thetangentialstothelinesofconstantWignerfunctionvalues quantum dynamical effects are absent. This means, the dy- growswithincreasingα. namicsoftheWignerfunctionfollowstheclassicalLiouville equationbecauseallquantumtermsinthequantumLiouville equationvanishforharmonicpotentials.Alsoinequation(23) quantumtermsvanish,whichhasconsequencesforthegeom- etryoftheWignerfunctionflowoftheeigen-statesofthehar- 4.3. Scatteringby a potentialbarrier monicoscillator.Usingequations(17)and(23a)onecanshow that j(x,p) w(x,p) = 0 and, therefore, the Wigner func- tionflowis·al∇waystangentialtothelinesofconstantWigner Scattering of a wave packed by a potential barrier is a well functionvalues. Thisisafeaturethattheharmonicoscillator known textbook system to exemplify quantum effects. De- eigen-states share with all time-independent classical phase pending on the potential’s shape and the initial condition of space distributions. Also for classical distributions the flow thewavepacketsomepartofthewavepacketmaybereflected (27)istangentialtothelinesofconstantphasespacedistribu- whiletheotherpartistransmitted;aprocessthathasnoanal- tion. ogoninclassicalphysicsofpoint-likeparticles. If the potentialhas non-quadratictermsthen the quantum Thequantumdynamicalscatteringdynamicsiscommonly terms in (23) will affect the structure of the Wigner eigen- visualizedbythewavefunctioninpositionspace4,5andsome- functionsand the Wigner functionflow and the lines of con- timesinmomentumspace6. Figure5illustratesscatteringof stantWignerfunctionvaluesarenolongertangentialtoeach aninitialGaussianwavepacketbyapotentialbarrierinphase other. Thus, the divergence between the direction of the spaceatdifferentpointsintime. Thescatteringpotentialbar- Wigner function flow and the tangentials to the lines of con- rierislocatedaroundx=0anditsshapeisgivenby stantWignerfunctionvaluesmaybeinterpretedasameasure how strong the non-classicalterms in the quantumLiouville equation(14)affectthestructureoftheeigen-states. V(x)=V tanh x +1 tanh x +1 , (32) InFig.4weshowtheWignerfunctiongroundstatesofthe 0(cid:18) (cid:18)∆(cid:19) (cid:19)(cid:18) (cid:18)−∆(cid:19) (cid:19) anharmonicoscillatorpotentialV(x)=mω2x2/2+αx4forvar- iousvaluesoftheanharmonicityparameterα. Forthisfigure see also Fig. 5 d. For this figure the Schrödingerwave func- tionswaspropagatedbyaFouriersplitoperatormethod34and the Wigner functionwas obtained by calculating (3) numeri- callyafterward. ThesysteminFig.5startsattimet = 0(Fig.5a)withan asymptoticallyfreeGaussianwavepacket. Hereweconsider athinpotentialwithheightV = 64andcharacteristicwidth 0 ∆ = 1/8. The wave packet’s initial kinetic energy equals E = 32. Accordingly to the laws of classical physics the kin kinetic energyis too small to cross the barrier. As the wave packetmovestowardsthepotentialbarrieritstartstointeract with the barrier. Due to the non-classical terms of the quan- tumLiouvilleequationthe Wignerfunctionstartsto develop regions with negative values such that at about t = 1/2 sig- nificantinterferencepatternshave emerged, see Fig. 5 b. At aboutt = 1 the wave packethas split into two parts that are travelingintooppositedirectionsinpositionspace,areflected part and a transmitted part that has tunneled trough the po- tentialbarrier.Inphasespacethiscorrespondstotwoisolated FIG. 3: (Color online) False color plot of the Wigner function of wavepacketswithapproximatelyGaussianshapemovinginto theharmonicoscillatoreigen-functionwithenergyE = 3+1/2(di- oppositedirections,see also Fig. 5 c. However,there isalso mensionlessunitswith~ = 1,m = 1,andω = 1). Graysolidlines a region with non-zero Wigner function between these two indicatelevelsofconstantWignerfunctionvalueswhileblackarrows packetsthatexhibitsstrongoscillationsfeaturingpositiveand indicatethesteadyWignerfunctionflow(17). Thearrows’lengthis negative values reviling the quantum nature of the coherent proportionaltotheflow’smagnitude. superpositionofthetwowavepackets14,17. 7 FIG.4: (Coloronline)WignerfunctiongroundstateoftheanharmonicoscillatorpotentialV(x) = mω2x2/2+αx4 forvariousvaluesofthe anharmonicityparameterαwithα=0(parta),α=1/4(partb),α=3/4(partc)(dimensionlessunitswith~=1,m=1,andω=1/2). 5. Conclusions 10C.K.Zachos,D.B.Fairlie, andT.L.Curtright,eds.,QuantumMechan- icsinPhaseSpace: AnOverviewwithSelectedPapers(WorldScientific, 2005). Inthiscontributionwehaveexploredwaystovisualizequan- 11W.P.Schleich,Quantumopticsinphasespace(Wiley-VCH,2001). tummechanicsin phasespace bymeansof theWignerfunc- 12S.Habib,K.Shizume, andW.H.Zurek,PhysicalReviewLetters80,4361 (1998). tionandtheWignerfunctionflow. Themathematicalformal- 13D.T.Smithey,M.Beck, andM.G.R.A.Faridani,PhysicalReviewLetters ism of quantum mechanics in phase space in terms of the 70,1244(1993). Wigner function resembles classical Hamiltonian mechanics 14C.Kurtsiefer,T.Pfau, andJ.Mlynek,Nature386,150(1997). ofnon-interactingclassicalparticles.Thus,teachingquantum 15G.Breitenbach,S.Schiller, andJ.Mlynek,Nature387,471(1997). mechanics in phase space may have some advantages when 16A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S.Schiller,PhysicalReviewLetters87,050402(2001). movingfromclassicaltoquantumphysics. Non-classicalfea- 17S.Deléglise, I.Dotsenko,C.Sayrin,J.Bernu,M.Brune,J.-M.Raimond, turesarehighlightedinphasespace,forexamplebynegative andS.Haroche,Nature445,510(2008). values of the phase space distribution or the divergence be- 18I.Bialynicki-Birula, P.Górnicki, andJ.Rafelski,PhysicalReviewD44, tween the direction of the Wigner function flow and tangen- 1825(1991). tialstothelinesofconstantWignerfunctionvaluesofeigen- 19G.R.Shin, I.Bialynicki-Birula, andJ.Rafelski, PhysicalReview A46, 645(1992). states. 20S.VarróandJ.Javanainen,JournalofOpticsB:QuantumandSemiclassical Optics5,S402(2003). 21C.H.Keitel,ContemporaryPhysics42,353(2001). 22O.T.Serimaa,J.Javanainen, andS.Varró,PhysicalReviewA33,2913 Acknowledgments (1986). 23R.L.Hudson,ReportsonMathematicalPhysics6,249(1974). 24J.E.Moyal,MathematicalProceedingsoftheCambridgePhilosophicalSo- ciety45,99(1949). N.R.I.wouldliketoexpressherappreciationtotheorganiz- 25A.Peres,QuantumTheory:ConceptsandMethods(KluverAcademicPub- ersofthe XVthInternationalSummerScienceSchoolofthe lishers,1993). city of Heidelberg and to the Max-Planck-Institut für Kern- 26WedonotdistinguishinournotationbetweentheWignerfunctionandthe physikforitshospitality. classicalprobabilitydistribution.Itshouldbeclearfromthecontextwhen- everw(x,p,t)denotesaWignerfunctionoraclassicalprobabilitydistribu- tion. 1B.Thaller,VisualQuantumMechanics(Springer,2000). 27P.Gaspard,Chaos,ScatteringandStatisticalMechanics,CambridgeNon- 2B.Thaller,AdvancedVisualQuantumMechanics(Springer,2000). linearScienceSeries,Vol.9(CambridgeUniversityPress,1998). 3R.Robinett,QuantumMechanics:ClassicalResults,ModernSystems,and 28F. Schwabl, Statistical mechanics, Advanced texts in physics (Springer, VisualizedExamples,2nded.(OxfordUniversityPress,2006). 2006). 4S.BrandtandH.D.Dahmen,ThePictureBookofQuantumMechanics,3rd 29A.KenfackandK.Z˙yczkowski,JournalofOpticsB:QuantumandSemi- ed.(Springer,2001). classicalOptics6,396(2004). 5A.Goldberg,H.M.Schey, andJ.L.Schwartz,AmericanJournalofPhysics 30M.Mahmoudi, Y. I. Salamin, and C. H. Keitel, Physical Review A 72, 35,177(1967). 033402(2005). 6A.Goldberg,H.M.Schey, andJ.L.Schwartz,AmericanJournalofPhysics 31D.Leibfried,T.Pfau, andC.Monroe,PhysicsToday51,22(1998). 36,454(1968). 32A.GoldbergandJ.L.Schwartz,JournalofComputationalPhysics1,433 7R.P.Feynman,QED:TheStrangeTheoryofLightandMatter(Princeton (1967). UniversityPress,1986). 33A.GoldbergandJ.L.Schwartz,JournalofComputationalPhysics1,448 8E.Wigner,PhysicalReview40,749(1932). (1967). 9M.Hillery,R.F.O’Connell,M.O.Scully, andE.P.Wigner,PhysicsRe- 34M. D. Feit, J. A. Fleck, Jr., and A. Steiger, Journal of Computational ports106,121(1984). Physics47,412(1982). 8 FIG. 5: (Color online) Scattering of a wave packed by a potential barrier (32) in phase space. Potential parameters are V = 64 and 0 ∆ = 1/8,thewave-packet’sinitialmeanmomentumis8,allvalues indimensionlessunitswith~=1andm=1.Thethreeupperpanels showtheWignerfunction,thepositionspaceprobabilitydistribution andthemomentumspaceprobabilitydistributionatdifferenttimes; t = 0(parta),t = 1/2(partb),andt = 1(partc). Partdillustrates thescatteringpotential(32).