ebook img

Visualizing Information PDF

139 Pages·2008·3.677 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visualizing Information

Riccardo Mazza Introduction to Information Visualization 123 RiccardoMazza UniversityofLugano Switzerland ISBN:978-1-84800-218-0 e-ISBN:978-1-84800-219-7 DOI:10.1007/978-1-84800-219-7 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2008942431 (cid:2)c Springer-VerlagLondonLimited2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicencesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerScience+BusinessMedia springer.com Contents 1 IntroductiontoVisualRepresentations ........................... 1 1.1 Presentation ............................................... 4 1.2 ExplorativeAnalysis ....................................... 5 1.3 ConfirmativeAnalysis ...................................... 6 1.4 InformationVisualization.................................... 7 1.5 FromDatatoWisdom....................................... 8 1.6 MentalModels............................................. 10 1.7 ScientificVisualization...................................... 11 1.8 CriteriaforGoodVisualRepresentations....................... 12 1.8.1 GraphicalExcellence................................. 13 1.8.2 GraphicalIntegrity................................... 13 1.8.3 MaximizetheData–InkRatio.......................... 14 1.8.4 Aesthetics .......................................... 14 1.9 Conclusion................................................ 15 2 CreatingVisualRepresentations ................................ 17 2.1 AReferenceModel ........................................ 17 2.1.1 PreprocessingandDataTransformations................. 18 2.1.2 VisualMapping ..................................... 20 2.1.3 Views.............................................. 23 2.2 DesigningaVisualApplication .............................. 24 2.3 VisualRepresentationofLinearData ......................... 26 2.4 2Dvs.3D................................................. 30 2.5 Conclusion................................................ 31 3 Perception..................................................... 33 3.1 Memory .................................................. 33 3.2 PreattentiveProperties ...................................... 35 3.2.1 Color .............................................. 35 3.2.2 Form .............................................. 35 3.2.3 SpatialPosition...................................... 35 3.2.4 Movement.......................................... 38 3.3 MappingDatatoPreattentiveAttributes........................ 38 3.4 PostattentiveProcessing ..................................... 39 3.5 GestaltPrinciples........................................... 41 3.5.1 FigureandGround................................... 42 3.5.2 Proximity........................................... 42 3.5.3 Similarity........................................... 42 3.5.4 Closure ............................................ 43 3.5.5 Continuity .......................................... 43 3.5.6 OtherPrinciples ..................................... 44 3.6 Conclusion................................................ 44 4 MultivariateAnalysis .......................................... 45 4.1 TheProblemofMultivariateVisualization...................... 46 4.2 GeometricTechniques ...................................... 47 4.2.1 ParallelCoordinates.................................. 47 4.2.2 ScatterplotMatrix.................................... 50 4.2.3 TableLens .......................................... 52 4.2.4 ParallelSets......................................... 52 4.3 IconTechniques............................................ 55 4.3.1 StarPlots........................................... 55 4.3.2 ChernoffFaces ...................................... 57 4.4 Pixel-OrientedTechniques................................... 59 4.5 Conclusion................................................ 62 5 NetworksandHierarchies ...................................... 63 5.1 NetworkData.............................................. 64 5.1.1 ConceptMapsandMindMaps......................... 65 5.1.2 ComplexNetworkData............................... 66 5.1.3 GeographicRepresentations ........................... 72 5.1.4 TransportNetworks .................................. 73 5.1.5 3DGraphs.......................................... 74 5.2 HierarchicalData .......................................... 75 5.2.1 FileSystem ......................................... 77 5.2.2 RepresentingEvolutionaryDatawithTrees .............. 79 5.2.3 ConeTree .......................................... 81 5.2.4 BotanicalTree....................................... 81 5.2.5 Treemap............................................ 83 5.3 Conclusion................................................ 88 6 WorldWideWeb .............................................. 91 6.1 WebsiteMaps ............................................. 91 6.2 WebsiteLogData .......................................... 93 6.3 VisualRepresentationofSearchEngineResults ................. 98 6.3.1 Clustering ..........................................100 6.4 AnalysisofInteractionsinBlogs..............................102 6.5 Conclusion................................................103 7 Interactions ...................................................105 7.1 TheProblemofInformationOverload .........................105 7.2 TypesofInteractiveVisualRepresentations.....................106 7.3 ManipulableRepresentations.................................107 7.3.1 Scrolling ...........................................107 7.3.2 Overview+Details ..................................107 7.3.3 Focus+Context .....................................110 7.4 TransformableRepresentations ...............................116 7.4.1 FilteringInputData ..................................116 7.4.2 DataReordering .....................................117 7.4.3 DynamicQueries ....................................117 7.4.4 MagicLens .........................................119 7.4.5 AttributeExplorer ...................................121 7.5 Conclusion................................................122 8 Evaluations ...................................................125 8.1 Human–ComputerInteraction ................................125 8.2 EvaluationCriteria .........................................126 8.3 EvaluatingVisualRepresentations ............................127 8.3.1 AnalyticMethods....................................128 8.3.2 EmpiricalMethods...................................129 8.4 Conclusion................................................132 References.........................................................133 Index .............................................................137 Chapter 1 Introduction to Visual Representations Let’sstopforamomentandconsiderjusthowmuchinformationwehavetotakein everydayas partofour routineactivities. E-mailsarriveon ourcomputers,credit card statementsarrive fromthe bankeverymonth, and last-minuteholidayoffers, stockmarketindexvariations,andadvertisingleafletsfillthemailbox.Nottomen- tion work. Perhaps you work in a large department store and have to decide the discountpoliciestobeappliedtosaleitems:Whichitemsshouldweputonsalein thecomingmonths?Summerisarriving—shouldweperhapsputthebeachumbrel- las on sale? What percentagediscountshouldwe apply?How did the sales of the previousmonth’spromotionalitemsgo? Inallofthesesituations,thecommonrecurringthemeistheenormousquantity of information that we have to deal with on a daily basis. Each of the previously described situations almost always involves making a decision: Which e-mail or advertisingflyercanwethrowoutbecauseitdoesn’tinterestus?Howmuchdidwe chargetothecreditcardlastmonth?Willweperhapsneedtolimitourspendingin the future? Where can we spend the next holiday withoutit costing us a fortune? Would it be worthwhileto investour savingsin a particularstock? Whatdiscount canweputonthebeachumbrellasinthecomingmonths? Perhaps we haven’teven realized, but in the last decade, the quantity of infor- mationthatweallhavetoprocesshasincreasedenormously.Theglobalizationof economyandcommunication,butabovealltherapidadvancesintechnology(and not only communication and information technology), have brought us in, recent years,towhatsomenotedscholarsdefineasinformationpollution.Anyway,ifwe really think about it, what we are witnessing in reality is not an explosion of in- formation, but rather an explosion of data, which we are continuously pressed to observe,process,anddevelop,forourfamilyorworkactivities.Weareinformedby thedatathatwecontinuallyreceivefromnumeroussources.Theinformation,very valuable and important for our lives, is built and elaborated on starting from this continuousandconstantinfluxofdatathatwearepassivelyoractivelysubjectedto. Therefore,weneedeffectivemethodsthatallowustogothroughthisinformation and,forexample,helpusmakedecisions. R.Mazza,IntroductiontoInformationVisualization, 1 DOI:10.1007/978-1-84800-219-7 1,(cid:2)c Springer-VerlagLondonLimited2009 2 1 IntroductiontoVisualRepresentations Fig. 1.1 Road map for theLugano–Pisa route, provided ina textual version (left) and a visual version(right).Imagefromhttp://www.viamichelin.com;reproducedwiththepermissionofVia- Michelin. Therearenumeroussituationsinwhichweusevisualrepresentationstounder- stand the variousdata. Thiscould involveanythingfrom last week’sstock market trendstoatravelitineraryoreventheweatherforecastforvariousgeographicalar- eas. Thanks to our visual perception ability, a visual representation is often more effectivethanwrittentext. Let’stake,forinstance,thecaseofapersonwhohastotravelbycarfromLugano to Pisa and needs to find out which route to take. It is possible to represent this informationinatextualformbyproviding,forexample,ameticulousdescriptionof theroadstofollowandthejunctionstotake.Itis,however,alsopossibletorepresent thisinformationin avisualform,througha mapthatvisuallyhighlightsthe entire routetofollow.A routegeneratedbyaverypopularwebsiteisrepresentedinFig. 1.1. The website in Fig. 1.1 providesa very useful service. We can set a departure pointandadestination,andthewebsitewillindicatetheroutetofollow.Amongthe various configurable options, we can request an itinerary that favors the highway orthetoll-freeroads.Thewebsitecreatesthebestroutepossible,accordingtoour requirements.Theroute,aswecansee inFig.1.1,ispresentedintwoforms:One isatextualtablethatreportsthedistances,thenamesoftheroadstofollow,andthe junctionstonote,andtheotherisavisualversionintheformofaroadmap. 1 IntroductiontoVisualRepresentations 3 Thewebsiteprovidestwocomplementaryversionsthatcanbeusedfordifferent purposes.Forexample,atruckdrivertransportinggoodswillwanttoknowexactly which roads to take and their relative distances; in this case, the textual version canbeveryuseful.Thereare,however,someaspectsthatcanbeinterestingwhen weplananitineraryforarecreationaljourney,suchasthepossibilityoffindingan alternativerouteorplacesclosetotheroutethatmightbeofinteresttothetourist. Althoughuselessforthetruckdriver,theseaspectscouldindeedbeindispensablefor afamilywishingtoprogramtheroutefortheirnextholidayandcanbeeffectively revealedthroughtheuseofthevisualversionoftheroute. Thevisualversionhastheadvantageofusingsomegraphicalpropertiesthatare very quickly and efficiently processed by visual perception. The visual attributes like color,size, proximity,andmovementare immediatelytaken in andprocessed bytheperceptualabilityofvision,evenbeforethecomplexcognitiveprocessesof thehumanmindcomeintoplay. Let’s clarifythisconceptwith anexample.Figure1.2showsa sequenceof nu- merical data and a visual representation,constructedby horizontallines of length proportionaltothevaluesontheleftthattheyrepresent. 320 260 380 280 420 400 Fig.1.2 Mappingnumericalvaluestothelengthsofbars. Let’ssupposethatwehavetodeterminethemaximumandminimumnumerical values indicated on the left. If we didn’thave the lines at our disposal, we would havetoperformthefollowingprocedure:Readeachofthenumericalvalues,keep- ing in mind the extreme values (the maximum and the minimum) that we come acrosswhilereadingthem,rightthroughtotheend.Inonesensethisisacognitive exercise,sinceitisnecessarytocomparethepairsofnumericalvalueseachtimeto decideifonevalueishigherorlowerthantheother. We’llrepeatthesameexercise,thistimewiththeaidofthelinesontheright.The length of the lines shows us at a glance the maximum and minimum values. This 4 1 IntroductiontoVisualRepresentations information is processed by our visual perception, which immediately recognizes thelengthsofthelinesandarrangestheminrelationshiptothevaluesrepresented. Sincehumansperceivevisualattributesverywell,liketheextensionofthelines in the previouscase, we canrepresenta greatdealofdifferentdata by“mapping” themtodifferentvisualattributes.Forinstance,wecouldrepresentthelinesofthe previousfigurewith differentcolors,ordifferentwidths, to codifyfurtherdata.In thiscase,thevisualrepresentations,ifwellconstructed,canbeusefulnotonlyfor perceivinginformationmorequicklybutalsoforprocessingseveralitemsofinfor- mationatthesametime.Let’snotforgetthatthehumanbrainisa“machine”that constantlyprocessesahugeamountofdataandinformationsimultaneously.Inthis waywecaneasilysingleout,inoneormorecollectionsofdata,themaximumand minimumvalues,theexistenceofrelationshipsbetweenthedata,grouping,trends, gaps,orinterestingvalues.Asaresult,thevisualrepresentationsallowustounder- standcomplexsystems,makedecisions,andfindinformationthatotherwisemight remainhiddeninthedata. 1.1 Presentation Whenwewanttocommunicateanidea,wesometimesuseapicture.Itcouldbea sketchonpaper,adrawingonablackboard,orimagesprojectedonaslideortrans- parency.Thevisualrepresentationshelpustoillustrate conceptsthat,if expressed verbally,wewouldfinddifficulttoexplainclearlytoalistener.Justimaginetrying to explainto someoneoverthe telephonehow to fix a bathroomfaucet. When we havedatawithwhichweneedtoillustrateconcepts,ideas,andpropertiesintrinsicto thatdata,theuseofvisualrepresentationoffersusavalidcommunicationtool.The difficultpartisindefiningtherepresentationsthateffectivelyachievetheirgoal.Ed- wardTufte,oneofthemajorcontemporaryscholarsofthisdisciplineandProfessor EmeritusofPoliticalScience,Statistics, andComputerScienceatYaleUniversity, maintainsthat“excellenceinstatisticalgraphicsconsistsofcomplexideascommu- nicatedwithclarity,precision,andefficiency”[58].Itis necessaryfora pictureto give the reader as much data as can be processed quickly, using as little space as possible. Let’slookatthevisualrepresentationillustratedinFig.1.3.Itdealswithamap createdbyCharlesJosephMinard,a Frenchengineer,in 1869.The mapwascon- ceived to illustrate the number of losses suffered by Napoleon’s army during the disastrousmarchtowardMoscowin1812.Thethickbandshowstheroutetakenby thetroupes,fromthePolishbordertoMoscow,andthewidthofthistrackrepresents the numberof soldiers presentat each pointof the journey.The numberof losses suffered by the army is evident at a glance. Of the 422,000 soldiers who set off fromthePolishborder,only100,000arrivedinMoscow.Napoleon’sretreatduring the freezing Russian winter is representedby the dark line, linked to a graph that reportsthe harsh temperaturesthat further decimated the already-exhaustedarmy. Somerivers,inwhichnumeroussoldierslosttheirlivesattemptingtocross,arealso 1.2 ExplorativeAnalysis 5 Fig.1.3 VisualrepresentationofthemarchofNapoleon’sarmyintheRussiancampaignof1812, producedbyCharlesJ.Minard. indicated.Thisvisualisasuperbexampleoftheconceptofexcellenceexpressedby Tufte,who,notwithoutgoodreason,defineditas“thebeststatisticalgraphicever drawn”[58]. 1.2 ExplorativeAnalysis The explorative analysis of data is one of the applications that benefits the most fromvisualrepresentationsandtheabilityofanalysisbyvisualperceptionandthe humancognitivesystem. This has been used for yearsto identify properties,rela- tionships, regularities, or patterns. Jacques Bertin (a French cartographer who, as earlyas1967,wroteaworkdefiningthebasicelementsofeveryvisualrepresenta- tion)definesitas“thevisualmeansofresolvinglogicalproblems”[5]. We’ll illustrate the conceptwith an example. Figure 1.4 displays some statisti- caldata oncancer-relatedmortalityamongmenin the United States in the period from1970to 1994.In the picture,the countiesare represented(3,055in total) by a colorscale rangingfromblueto red,accordingto thepercentageofcasesfound ineachcounty.Thankstothecolor,wecansingleoutthegeographicalareaswith an average (white), below-average(blue shades), and above-average(red shades), numberofcases.Itisnoticeablehowaboveaverage-casesarepredominantlyfound inthecountiesalongtheEastCoastandinthesoutheastoftheUnitedStates.The AmericanNationalCancerInstituteproducedthisandmanyotherimageswiththe aimofidentifyingpossiblecausesfortheonsetoftumors.Infact, itis bynowal- mostcertainthatmostcasesofcancerareassociatedinsomewaywithlifestylesthat

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.