ebook img

Visual tracking of articulated and flexible objects PDF

145 Pages·2017·19.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visual tracking of articulated and flexible objects

Visual tracking of articulated and flexible objects Daniel Wesierski To cite this version: Daniel Wesierski. Visual tracking of articulated and flexible objects. Other [cs.OH]. Institut National des Télécommunications, 2013. English. ￿NNT: 2013TELE0007￿. ￿tel-00939073￿ HAL Id: tel-00939073 https://theses.hal.science/tel-00939073 Submitted on 30 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DOCTORANT EN CO-ACCREDITATION TELECOM SUDPARIS ET L’UNIVERSITE EVRY VAL D’ESSONNE Sp´ecialit´e: Informatique E´cole doctorale : Sciences et Ing´enierie Pr´esent´ee par Daniel Wesierski Pour obtenir le grade de DOCTEUR DE TELECOM SUDPARIS Visual tracking of articulated and flexible objects Soutenue le 25 mars 2013 devant le jury compos´e de: Fr´ed´eric Jurie Professeur `a l’Universit´e de Caen Rapporteur R´emi Ronfard Charg´e de Recherche de 1`ere classe HDR `a l’INRIA et au LJK Rapporteur Catherine Achard Maˆıtre de Conf´erences HDR `a l’UPMC Examinatrice Malik Mallem Professeur `a l’Universit´e d’E´vry-Val-d’Essonne Examinateur Bernadette Dorizzi Professeur `a T´el´ecom SudParis Directrice de th`ese Patrick Horain Ing´enieur d’E´tude `a T´el´ecom SudParis, Docteur ing´enieur Encadrant Th`ese 2013TELE0007 ii Contents Abstract vii Acknowledgments ix 1 Introduction 1 1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Tracking objects of various shapes and motions . . . . . . . . 7 1.3.2 Efficient convolution routine for Haar-like features . . . . . . 8 1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 State of the art 11 2.1 Image Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Feature primitives . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Feature transforms . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Tracking in low dimensions . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Basic idea behind tracking . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Gradient-based tracking methods . . . . . . . . . . . . . . . . 18 2.2.3 Fast motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Appearance change . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4.1 Stability vs plasticity dilemma . . . . . . . . . . . . 23 2.2.4.2 On-line learning . . . . . . . . . . . . . . . . . . . . 24 iii iv Contents 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Tracking in higher dimensions . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Models of objects . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1.1 Shape and appearance . . . . . . . . . . . . . . . . . 28 2.3.1.2 Complex Motion . . . . . . . . . . . . . . . . . . . . 30 2.3.2 Model matching algorithms . . . . . . . . . . . . . . . . . . . 31 2.3.2.1 Local methods . . . . . . . . . . . . . . . . . . . . . 32 2.3.2.2 Semi-global methods . . . . . . . . . . . . . . . . . . 33 2.3.2.3 Global methods . . . . . . . . . . . . . . . . . . . . 34 2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Tracking objects with global spatio-temporal constraints 37 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Chain-graph models . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Appearance term . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 Spatial term . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.3 Temporal term . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Model-based object categories . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Tracking algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . 53 3.5.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.3 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.6 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 60 4 Model configurations for tracking various objects 63 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Tracking straight objects . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Tracking planar objects . . . . . . . . . . . . . . . . . . . . . . . . . 74 Contents v 4.4 Tracking heavily deformable objects . . . . . . . . . . . . . . . . . . 78 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Efficient Convolution of Haar-like Features 87 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Parsing Haar-like features . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Proposed parsing algorithm . . . . . . . . . . . . . . . . . . . 97 5.2.3.1 Decomposing features into smaller kernels . . . . . . 99 5.2.3.2 Ensembles of trees . . . . . . . . . . . . . . . . . . . 100 5.2.3.3 Choosing the best ensemble . . . . . . . . . . . . . . 102 5.2.3.4 Implementation: B-channel buffer . . . . . . . . . . 103 5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 107 6 Conclusions 109 6.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 Potential of the tracking approach . . . . . . . . . . . . . . . . . . . 110 6.3 Limitations of the approach . . . . . . . . . . . . . . . . . . . . . . . 111 6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 List of figures 115 List of tables 119 Bibliography 121 Abstract Humans can visually track objects mostly effortlessly. However, it is hard for a computer to track a fast moving object under varying illumination and occlusions, inclutter, andwithvaryingappearanceincameraprojectivespaceduetoitsrelaxed rigidity or change in viewpoint. Since a generic, precise, robust, and fast tracker could trigger many applications, object tracking has been a fundamental problem of practical importance since the beginnings of computer vision. The first contribution of the thesis is a computationally efficient approach to tracking objects of various shapes and motions. It describes a unifying tracking system that can be configured to track the pose of a deformable object in a low or high-dimensional state-space. The object is decomposed into a chained assem- bly of segments of multiple parts that are arranged under a hierarchy of tailored spatio-temporalconstraints. Therobustnessandgeneralityoftheapproachiswidely demonstrated on tracking various flexible and articulated objects. Haar-like features are widely used in tracking. The second contribution of the thesis is a parser of ensembles of Haar-like features to compute them efficiently. The features are decomposed into simpler kernels, possibly shared by subsets of features, thus forming multi-pass convolutions. Discovering and aligning these kernels within andbetweenpassesallowsformingrecursivetreesofkernelsthatrequirefewermem- ory operations than the classic computation, thereby producing the same result but more efficiently. The approach is validated experimentally on popular examples of Haar-like features. vii Acknowledgments Foremost,Iwouldliketothankmysupervisor,PatrickHorain,whohasbeenguiding me from the very first day of the thesis. He has always had time for me and my thinking benefited much from discussions with him on computer vision. Our interaction have progressed my skills considerably. My sincere thanks go to my thesis director, Berndatte Dorizzi, and to J´erˆome Boudy coordinating my work along the ambitious roadmap of the EU-funded Com- panionAble project. Their cheerfulness and readiness to help in all matters have been very impressing to me. Moreover, it was a big fun to interact with the Com- panionAble “crew” during our project meetings across whole Europe. In particular, I would like to thank the Technical University of Ilmenau for inviting me for a short stay at their robotics lab - it was a great, interesting experience. Nice atmosphere at the department have also embraced me thanks to Badr- Eddine Benkelfat and his kind leadership as well as to Patricia Fixot and her smile, openness, and patience of the Super Souris power, who always helped me with administrative work. My friends at the lab, Maher, David, Manoj, Daria, Sesh, J´erˆome, Paulo, Toufik, andMohammed, meritmyspecialthanks, too. Ihaveshared interesting work and great time and jokes with them. At all times, my fianc´ee, Aneczka, has been beside me with love, support, and encouragement. Her unmatchable positive attitude to life has been brightening my path throughout this intensive period of the thesis. Finally, I wish to thank my parents, for everything, and dedicate this thesis to them. ix

Description:
Tracking methods often use feature transforms, which map raw pixels into other feature . running the gradient-based search procedure from lowest to highest level of image pyramid. (d) Alternatively, Kalman Lucas-Kanade trackers: Gradient-based tracking dates back to the seminal work of [Lucas
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.