ebook img

Visual Tracking and Data Fusion for Automatic Video Surveillance PDF

133 Pages·2009·30.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visual Tracking and Data Fusion for Automatic Video Surveillance

SAPIENZA Universita` di Roma Dottorato di Ricerca in Ingegneria Informatica XXII Ciclo Visual Tracking and Data Fusion for Automatic Video Surveillance Domenico Daniele Bloisi Dipartimento di Informatica e Sistemistica Sapienza Universit`a di Roma September 2009 SAPIENZA Universita` di Roma Dottorato di Ricerca in Ingegneria Informatica XXII Ciclo Visual Tracking and Data Fusion for Automatic Video Surveillance Domenico Daniele Bloisi Thesis Commitee Reviewers Prof. Luca Iocchi (Advisor) Prof. Rita Cucchiara Prof. Andrea Vitaletti Prof. Erik Granum Copyright (cid:13)c 2009 by Domenico Daniele Bloisi AUTHOR’S ADDRESS: Domenico Daniele Bloisi Dipartimento di Informatica e Sistemistica “Antonio Ruberti” Sapienza Universit`a di Roma Via Ariosto 25, 00185 Roma, Italy. E-MAIL: [email protected] WWW: http://www.dis.uniroma1.it/∼bloisi Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 I Automatic Video Surveillance 5 2 Video Surveillance Systems 7 2.1 General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Tracking Object of Interest . . . . . . . . . . . . . . . . . 10 2.1.3 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Event Understanding. . . . . . . . . . . . . . . . . . . . . 12 2.2 System Classification . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Background Nature . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Number of Objects to Track. . . . . . . . . . . . . . . . . 14 2.2.3 Size of the Monitored Area . . . . . . . . . . . . . . . . . 14 2.2.4 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Ideal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Examples of Real Systems . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 ARGOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 PBKU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 SAMURAI . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Systems Overview 21 3.1 People Tracking Systems . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Single Camera . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.3 Multiple Cameras . . . . . . . . . . . . . . . . . . . . . . 22 3.1.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Traffic Monitoring Systems . . . . . . . . . . . . . . . . . . . . . 23 3.3 Video-surveillance Systems on Water . . . . . . . . . . . . . . . . 24 3.4 Analysis of the Literature . . . . . . . . . . . . . . . . . . . . . . 26 i II Methods Overview 27 4 Background Modelling 29 4.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Buffered Based Methods . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2 Minimum Maximum Filter . . . . . . . . . . . . . . . . . 31 4.2.3 Mediod Filter . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.4 Eigenbackgrounds . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Non-Parametric Methods . . . . . . . . . . . . . . . . . . . . . . 32 4.3.1 Kernel Density Estimation . . . . . . . . . . . . . . . . . 32 4.3.2 CONDENSATION . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Predictive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4.1 Kalman Filter. . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4.2 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4.3 Hidden Markov Models . . . . . . . . . . . . . . . . . . . 34 4.5 Recursive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5.1 Approximated Median Filter . . . . . . . . . . . . . . . . 35 4.5.2 Single Gaussian (Running Gaussian Average) . . . . . . . 35 4.5.3 Mixture of Gaussians. . . . . . . . . . . . . . . . . . . . . 35 4.5.4 Adaptive Mixture of Gaussians . . . . . . . . . . . . . . . 36 4.6 Speed and Memory Requirements . . . . . . . . . . . . . . . . . . 37 5 Tracking 39 5.1 Bayesian Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3.1 HJS Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 Data Fusion 47 6.1 Multiple Camera Data Fusion . . . . . . . . . . . . . . . . . . . . 47 6.2 Camera Installation . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3 Camera Rectification . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.4 Overlapping Views . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.5 Non-overlapping Views . . . . . . . . . . . . . . . . . . . . . . . . 49 6.6 Fusion Techniques for Combining Soft and Hard Data . . . . . . 50 III Visual Tracking and Data Fusion 53 7 Independent Multimodal Background Subtraction 55 7.1 Background Modelling Issues . . . . . . . . . . . . . . . . . . . . 56 7.2 A Fast and Robust Approach to Background Modelling . . . . . 56 7.3 Shadow Suppression . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.4 Noise Removal and Blob Processing . . . . . . . . . . . . . . . . 61 ii 8 Image Segmentation 63 8.1 Image Segmentation for Water Scenario . . . . . . . . . . . . . . 63 8.1.1 Optical flow analysis . . . . . . . . . . . . . . . . . . . . . 64 8.1.2 Clustering through Rek-means . . . . . . . . . . . . . . . 66 8.2 Image Segmentation for Crowded Environments . . . . . . . . . . 69 8.2.1 The Height Image Algorithm . . . . . . . . . . . . . . . . 71 8.3 Image Segmentation for Calibrated Cameras. . . . . . . . . . . . 72 8.3.1 Number of People Estimation . . . . . . . . . . . . . . . . 75 9 Tracking 78 9.1 Multi-hypothesis Kalman Filter Tracking . . . . . . . . . . . . . 78 9.1.1 Data Association . . . . . . . . . . . . . . . . . . . . . . . 79 9.1.2 Track management . . . . . . . . . . . . . . . . . . . . . . 79 10 Fusion Strategies 82 10.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 82 10.2 Information from User . . . . . . . . . . . . . . . . . . . . . . . . 83 10.3 Data Fusion Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10.4 Implementation and Example . . . . . . . . . . . . . . . . . . . . 88 IV Experimental Evaluation 92 11 Experimental Results 94 11.1 ARGOS: Application and User Interface . . . . . . . . . . . . . . 94 11.1.1 Track selection for the end user . . . . . . . . . . . . . . . 95 11.1.2 Statistics and Event Detection . . . . . . . . . . . . . . . 96 11.2 ARGOS: Experimental Evaluation . . . . . . . . . . . . . . . . . 97 11.3 Rek-means: Experimental Evaluation. . . . . . . . . . . . . . . . 101 11.4 IMBM: Experimental Evaluation . . . . . . . . . . . . . . . . . . 103 11.5 PBKU: Experimental Evaluation . . . . . . . . . . . . . . . . . . 105 11.6 NPE: Experimental Evaluation . . . . . . . . . . . . . . . . . . . 106 11.6.1 Segmentation Results . . . . . . . . . . . . . . . . . . . . 106 12 Conclusions 108 12.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 iii Acknowledgements Iwishtothankthemanypeoplewhohavecollaboratedwithmeandcontributed to various parts of this research. Special thanks go to my advisor Prof. Luca Iocchiforhishelpandconstantsupportthroughoutthisthreeyears. Hegaveme the chance to face a challenging research topic and to apply my research to real and pioneer systems. I appreciate his vast knowledge and skill in many areas. I would like to thank Dr. Paolo Remagnino for his support and suggestions during my visiting scholarship in London. I would also like to thank Riccardo Leone, Archimedes Logica, and the City Council of Venice for their support of this research. I would like to express my gratitude to my family for supporting andencouragingmeduringthisexcitingadventure. ManythankstoAndreafor hissincerefriendship. ThebiggestthankgoestoErika,forbeingtheluckofmy life. v

Description:
Leone, Archimedes Logica, and the City Council of Venice for their support of .. ATON [4], WALLFLOWER [92], and CAVIAR [21] for computing quan- .. and build a probabilistic representation (pdf ) of the observations at a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.