ebook img

Visual SLAM and Surface Reconstruction for Abdominal Minimally Invasive Surgery PDF

134 Pages·2015·8.86 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visual SLAM and Surface Reconstruction for Abdominal Minimally Invasive Surgery

UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa DDiiggiittaall CCoommmmoonnss @@ UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 1-1-2015 VViissuuaall SSLLAAMM aanndd SSuurrffaaccee RReeccoonnssttrruuccttiioonn ffoorr AAbbddoommiinnaall MMiinniimmaallllyy IInnvvaassiivvee SSuurrggeerryy Bingxiong Lin University of South Florida, [email protected] Follow this and additional works at: https://digitalcommons.usf.edu/etd Part of the Robotics Commons SScchhoollaarr CCoommmmoonnss CCiittaattiioonn Lin, Bingxiong, "Visual SLAM and Surface Reconstruction for Abdominal Minimally Invasive Surgery" (2015). USF Tampa Graduate Theses and Dissertations. https://digitalcommons.usf.edu/etd/5849 This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact [email protected]. VisualSLAMandSurfaceReconstructionforAbdominalMinimallyInvasiveSurgery by BingxiongLin Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy DepartmentofComputerScienceandEngineering CollegeofEngineering UniversityofSouthFlorida MajorProfessor:YuSun,Ph.D. XiaoningQian,Ph.D. DmitryGoldgof,Ph.D. RichardGitlin,Sc.D. YunchengYou,Ph.D. DateofApproval: March20,2015 Keywords:3Dreconstruction,Laparoscopelocalization,Featuredetection,Vesselfeature,Tissue deformation Copyright(cid:13)c 2015,BingxiongLin DEDICATION Tomyparents. ACKNOWLEDGMENTS First and foremost, I would like to thank my advisor, Yu Sun. Over the past five years, he has taught mehowtochooseresearchtopics,howtomeasuretheresearchprogress,howtoaddressresearchproblems. He led me to the fascinating 3D Computer Vision when I started my study here, and has helped me grow and explore in this area since then. His trust in my ability has built up my confidence in my research. He has shown a great support on my job hunting and his suggestions are invaluable to me. He has also been a goodfriendinlifeandthe“coffeetime”onFridayafternoonhasbroughtmealotoffun. I would also like to thank Xiaoning Qian, who has always been a great teacher and friend to me. His patienceandkindnesssometimesmakemefeelthatheismypeerfriend. Hisdoorisalwaysopenwhenever I have a question. He has given me massive suggestions and comments on how to approach a research problemandhowtowriteatechnicalpaper,andhasalwaysbeenpatientwithmystupidgrammarerrors. It ismygreathonorthathetookaflighttoTampaandattendedmydissertationdefenseinperson. Of course, I am also very grateful to other committee members and professors who have helped me in my research. Dr. Dmitry Goldgof has provided many insightful suggestions on my research, especially duringtheComputerVisionseminars. Dr. RichardGitlinandDr. YunchengYouhavealsoprovidedmany useful comments. Dr. Jaime Sanchez has brought me to the surgery room, explained to me the surgical procedures,andhelpedmecollectdatathatiscriticalinthisdissertation. Iownmythankstomylabmatesandfriends,whohavehelpedmeduringmyresearchandmademylife heremorecolorful. TheyareAdrianJohnson,YunLin,FillipeSouza,RajmadhanEkambaram,Yongqiang Huang,JieZhang,JunyiTu,HaifangWu,ShaogangRen,MengLv,YingyingZhang,MuZhou,XiangZuo, Huixing Zhai, David Paulius, Roger Milton, Baishali Chaudhury, Hao Li, Ran Rui, Tao Wang, Wen Zhao, LukaiGuo,RuiGuo,WeiYuan,GangLiu,DongpingDu,andZunjunChen. IwouldnothavepursuedaPhDwithoutthesupportsfrommyfamily. Mymom,DaibiYang,hastaught medeterminationandhardwork,whichledmethroughmyPhD.Mydad,MinlianLin,hasencouragedme tofollowmyheart. Mybrothers,BingqiangLinandBingcaiLin,havesupportedmyideasanddecisions. TABLEOFCONTENTS LISTOFTABLES iv LISTOFFIGURES v ABSTRACT viii CHAPTER1 MOTIVATIONANDCHALLENGES 1 1.1 BackgroundandMotivation 1 1.2 Challenges 2 1.3 Summary 3 CHAPTER2 LITERATUREREVIEW 4 2.1 NotetoReader 4 2.2 MotivationandMISDatasets 4 2.3 FeatureDetectionandFeatureTracking 6 2.3.1 FeatureDetection 7 2.3.2 FeatureTracking 8 2.3.3 Discussion 10 2.4 ReconstructionwithoutCameraMotion 11 2.4.1 StereoCue 11 2.4.2 ActiveMethods 12 2.4.3 ShadingandShadowCue 13 2.4.4 Discussion 14 2.5 RigidMIS-VSLAM 14 2.5.1 MonocularCamera 16 2.5.2 StereoCameras 19 2.5.3 Discussion 20 2.6 DynamicMIS-VSLAM 20 2.6.1 State-of-the-artDSSFM 21 2.6.1.1 DSSFMwithMonocularCameras 21 2.6.1.2 DSSFMwithStereoCameras 23 2.6.2 DSSFMinMISEnvironment 24 2.6.3 MovingInstrumentTracking 26 2.6.4 Discussion 27 i CHAPTER3 VESSEL-BASEDIMAGEFEATUREDETECTION 28 3.1 NotetoReader 28 3.2 VesselFeatureIntroduction 28 3.3 VesselFeatureDetection 29 3.3.1 MethodOverview 29 3.3.2 DetectingCandidateBranchingPoints 30 3.3.3 BloodVesselEnhancement: Vesselness 32 3.3.4 BloodVesselEnhancement: Ridgeness 33 3.3.5 BranchingPointDetection(RBCT) 35 3.3.6 ConnectedComponentLabelingandNon-maximalSuppression 37 3.3.7 BranchingSegmentDetection(RBSD) 38 3.3.8 ComputationalAnalysisandRunTimeResults 40 3.4 ExperimentsandResults 41 3.4.1 InVivoDatasetsandGroundTruths 42 3.4.2 RepeatabilityandNumberofPoints 45 3.4.3 PatchMatchingCorrectness 47 CHAPTER4 VESSEL-FEATURE-BASED3DRECONSTRUCTION 50 4.1 TraditionalStereoMatching 50 4.2 VesselFeatureStereoMatching 51 4.2.1 BranchingPointMatching 52 4.2.2 BranchingSegmentMatching 54 4.3 Large-areaDense3DReconstruction 57 4.4 ExperimentsandResults 58 4.4.1 InVivoDatasets 59 4.4.2 VesselFeatureStereoMatchingAccuracy 59 4.4.3 Large-area3DReconstructionResults 60 CHAPTER5 SHADOW-CASTING-BASED3DRECONSTRUCTION 62 5.1 NotetoReader 62 5.2 Introduction 62 5.3 Shadow-Scanning-Based3DReconstruction 63 5.3.1 SystemOverview 63 5.3.2 ExtractingShadowCurves 64 5.3.3 IntersectingShadowCurveswithEpipolarLines 67 5.3.4 FieldSurfaceInterpolation 68 5.3.5 3DReconstruction 71 5.4 ExperimentsandResults 71 5.4.1 PhantomandexvivoImages 72 5.4.2 DisparityMaps 74 5.4.3 3DReconstructionResults 75 5.4.4 NumericalComparison 77 5.4.5 RobustnessAnalysis 80 ii CHAPTER6 VISUALSLAMINADEFORMINGENVIRONMENT 83 6.1 NotetoReader 83 6.2 Introduction 83 6.2.1 PTAM 84 6.3 StereoscopePTAM 84 6.3.1 DeformingPointDetection 85 6.3.2 Non-linearStereoPoseRefinement 87 6.3.3 MapInitialization 88 6.3.4 StereoBundleAdjustment 88 6.4 ExperimentalandResults 88 6.4.1 TrackingAccuracy 88 6.4.2 EvaluationwithInVivoData 91 CHAPTER7 PERIPHERYAUGMENTATIONSYSTEMANDEVALUATION 94 7.1 PeripheryAugmentationSystemDesign 94 7.2 InVivoEvaluation 95 7.2.1 InterfaceandPointEstimationProcedure 96 7.2.2 EnvironmentAwarenessMeasures 98 7.2.3 ResultsandAnalysis 98 CHAPTER8 CONCLUSIONANDFUTUREDIRECTIONS 101 8.1 SummaryofContributions 101 8.2 FutureResearchDirections 102 REFERENCES 104 APPENDICES 118 AppendixA PermissiontoReproduceMaterial 119 iii LISTOFTABLES Table2.1 SummaryofpubliclyavailableMISdatasets. 6 Table2.2 SummaryofdifferentapproachesinDSSFM. 22 Table2.3 DynamicvisualSLAMinMIS. 24 Table2.4 Summaryofthestate-of-the-artmethodsinMIS-VSLAM. 25 Table3.1 Eigenvaluesanalysistowardsvesselandbranchingpoints(0 < λ1 < λ2). 31 Table3.2 RuntimeofdifferentstepsinRBSD. 41 Table3.3 Parametersofstate-of-the-artfeaturedetectorsusedinthischapter. 42 Table3.4 Summaryoftheadopteddatasets. 43 Table3.5 ThetotalnumberofpointsinallbranchingsegmentsdetectedbyRBSD. 46 Table4.1 Summaryofdatasetsusedhere. 59 Table4.2 Thedisparityerrorsand3Dpositionerrorsoftheproposevesselfeature matchingmethodacrossthesixscenes. 60 Table5.1 Disparityerrorofthefourmethodsoverthefiveexperiments. 80 Table5.2 3Dpositionerrorofthefourmethodsoverthefiveexperiments. 80 Table5.3 Thepercentageofpixelsinimagewithvaliddisparityvalue. 81 Table6.1 Meanerrorandvarianceofthetrackingresults. 89 Table7.1 Theoverallmeanandstandarddeviationof theangleerrorsanditsStu- dent’st-testresults. 99 Table7.2 The overall mean and standard deviation of the pixel errors and its Stu- dent’st-testresults. 99 iv LISTOFFIGURES Figure1.1 ThediagramofatypicalabdominalMISsetup. 2 Figure2.1 ThedichotomyofMIS-VSLAMmethodsbasedoncameramotionsand scenetypes. 5 Figure2.2 IllustrationofMIS-VSLAMmethodsinrigidandstaticscenes. 15 Figure2.3 IllustrationofMIS-VSLAMmethodsindynamicordeformingscenes. 21 Figure3.1 Illustration of vessel features: branching point (detected by RBCT) and branchingsegment(detectedbyRBSD). 30 Figure3.2 Overviewofthebranchingpointandbranchingsegmentdetection. 30 Figure3.3 IllustrationofeigenvaluesofHessianmatrix(0 < λ1 < λ2). 32 Figure3.4 ExampleofvesselenhancementusingFrangivesselness. 33 Figure3.5 Comparisonofa)binaryridgeimageandb)ourridgenessimage. 35 Figure3.6 Typicalexampleofacircletestatabranchingpointona)rawimage,b) vesselnessimage,c)binaryridgeimage,andd)ridgenessimage. 36 Figure3.7 Ridgenessvalueofpixelsalongthecirclearoundabranchingpoint. 37 Figure3.8 Candidatebranchingpointsa)beforeandb)afterRBCT. 37 Figure3.9 Illustrationofthetwo-passtestvesseltracingprocess. 39 Figure3.10 Illustrationofbranchingsegmentdetection. 40 Figure3.11 Sampleimagesoftheseveninvivovideoclips. 43 Figure3.12 Illustrationofselectedgroundtruthpointcorrespondences(green)across differentviewsinscene3. 44 Figure3.13 Repeatabilityscoresofdifferentmethodsinthesevenscenes. 46 Figure3.14 Thenumberoffeaturepointsdetectedbydifferentfeaturepointdetectors inthesevenscenes. 47 v Figure3.15 Patchmatchingcorrectnessofdifferentmethodsinthesevenscenes. 49 Figure3.16 Oneexampleofcorrelation-basedpatchmatchingusing“fixedrangeim- agesearch”withfeaturedetectorRBCT. 49 Figure4.1 Oneexampleofstereoimagesbefore(top)andafterrectification(down). 51 Figure4.2 Thedetectedbranchingpointsareshownascyandots. 53 Figure4.3 Diagramofvesselvectors 53 Figure4.4 Illustrationoflocaladjustingforcandidatebranchingpoints. 54 Figure4.5 Illustrationofbranchingpointmatchingresults. 54 Figure4.6 Illustrationofvesselpixelsearchrange(epipolarband)intherightimage. 56 Figure4.7 Oneexampleofthevessel-pixelmatchingresults. 56 Figure4.8 Illustrationofthevesselpixelmatchingwithonemis-matchedpoint(red solidrectangle). 57 Figure4.9 Illustrationofvesselpixelmatchingresultsontheridgemask. 57 Figure4.10 Oneexampleofrecovered3Dvesselsfromapairofstereoimages. 58 Figure4.11 Exemplarimages(leftchannel)ofthefivedatasets. 59 Figure4.12 Therecovered3Dvesselnetworkbyintegrating3Dvesselsfromdiffer- entviews. 60 Figure4.13 The untextured and textured 3D models that are recovered based on the obtained3Dvesselnetwork. 61 Figure5.1 Outlineoftheproposedmethodwithfourmajorsteps. 64 Figure5.2 One example of a) the difference image and b) the shadow-mask image withshadowareashownaswhite. 66 Figure5.3 Illustrationofaccumulated-shadow-maskimage. 67 Figure5.4 ShadowcurvesbeforeandafterLWR. 68 Figure5.5 Illustrationofintersectionofshadowcurveandepipolarlines. 69 Figure5.6 Mappingdefinedbyapairofcurvesandepipolarlines. 70 Figure5.7 Mappingdefinedbytwopairsofcurvesandepipolarlines. 71 Figure5.8 Imagesoftheexprimentsetup. 73 vi

Description:
to write a technical paper, and has always been patient with my stupid grammar errors. It . Illustration of MIS-VSLAM methods in rigid and static scenes on the abdominal Minimally Invasive Surgeries (MIS) and presents This section focuses on the introduction of the two essential tasks in dy-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.