ebook img

Visual Analytics of Network Routing Through Traceroute Data PDF

175 Pages·2016·8.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visual Analytics of Network Routing Through Traceroute Data

(cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page i — #1 (cid:105) (cid:105) ROMA TRE UNIVERSITÀ DEGLI STUDI Roma Tre University Doctoral School in Computer Science and Automation Ciclo XXVIII Doctoral dissertation: Visual Analytics of Network Routing Through Traceroute Data: Models and Techniques Author: Marco Di Bartolomeo Advisors: Prof. Giuseppe Di Battista Prof. Maurizio Patrignani Spring 2016 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page ii — #2 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page iii — #3 (cid:105) (cid:105) VisualAnalyticsofNetworkRoutingThroughTracerouteData: ModelsandTechniques Athesispresentedby MarcoDiBartolomeo inpartialfulfillmentoftherequirementsforthedegreeof DoctorofPhilosophy inComputerScienceandEngineering RomaTreUniversity DepartmentofEngineering Spring2016 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page iv — #4 (cid:105) (cid:105) COMMITTEE: Prof. GiuseppeDiBattista,Dept. ofEngineering,RomaTreUniversity Prof. MaurizioPatrignani,Dept. ofEngineering,RomaTreUniversity REVIEWERS: Prof. StephenG.Kobourov,Dept. ofComputerScience,UniversityofArizona EmdenR.Gansner,GoogleInc. (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page v — #5 (cid:105) (cid:105) “Agooddecision isbasedonknowledge andnotonnumbers.” (Plato. Laches. 4thcenturyB.C.) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page vi — #6 (cid:105) (cid:105) Contents Contents vi 1 Introduction 1 2 PreliminaryConceptsandDefinitions 7 2.1 ComputerNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 GraphDrawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 I VisualizingRoutingfromDetailtoOverview 13 3 VisualAnalysisofRoutingDynamicsandTopology 15 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 ReferenceScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 AnalysisofData . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 UserInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.8 UserStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.9 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . 51 4 VisualizationofNetworkMetricsasStackedCharts 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 FindingaBaselineviaWiggleOptimization . . . . . . . . . . . . . . 57 4.4 LayerOrdering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 LabelingofLayers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 vi (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page vii — #7 (cid:105) (cid:105) CONTENTS vii 4.6 TimeComplexityoftheAlgorithms . . . . . . . . . . . . . . . . . . 66 4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.9 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . 74 II AbstractRepresentationofRouting 75 5 AutomaticDiscoveryofHigh-ImpactRoutingEvents 77 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 TheEmpathyRelationship . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 SeekingEvents: MethodologyandAlgorithm . . . . . . . . . . . . . 82 5.5 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.6 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . 91 6 VisualAnalysisofRoutingEvents 93 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 ReferenceScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.4 RoutingWatch: AVisualEventAnalysisTool . . . . . . . . . . . . . 96 6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.6 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . 108 IIIInterplayBetweenRoutingandGeography 111 7 PlanarityofGeoreferencedGraphs 113 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 ProblemDefinitionandInstancesClassification . . . . . . . . . . . . 115 7.3 Polynomial-TimeAlgorithm . . . . . . . . . . . . . . . . . . . . . . 117 7.4 HardnessResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.5 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . 129 8 HeuristicsforVisualizingGeoreferencedGraphs 131 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.2 VisualizingNetworkedandGeographicData . . . . . . . . . . . . . 133 8.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.4 TheRetinaLayoutAlgorithm . . . . . . . . . . . . . . . . . . . . . 139 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page viii — #8 (cid:105) (cid:105) viii CONTENTS 8.5 ExperimentalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . 140 8.6 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . 145 Appendices 149 ListofPublications 151 Bibliography 153 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page 1 — #9 (cid:105) (cid:105) Chapter 1 Introduction The Internet has become a fundamental part of our life. Born as a network for sci- entific purposes, it has grown in size and services to the point to become the back- boneofmanyhumandailyactivities. Studying,shopping,andbanking,areexamples of activities in which the use of the Internet is nowadays well established. The ex- traordinary diffusion of mobile devices (estimated in 2 billion of connected units in 2016[Int16])isgreatlycontributinginmakingpeopleuseonlineservices. Multime- dia services have an increasing importance in this framework, and, in fact, there is atrendinthelastyearstooffermultimediaproductsovertheInternettothegeneral public. Telephone,music,andmoviestreamingareexamplesofthistrend,inwhich nameslikee.g. Skype, Netflix, Youtube, andSpotifyprovedtobeprominentplayers. This phenomenon is advantageous for several stakeholders. Content providers can exploit a robust and world-wide distributed network for distributing their contents, easilyreachingoldandnewcustomersatafractionofthecostsnecessaryforbuild- ing and maintaining traditional, dedicated infrastructures. This has a direct impact on customers, who receive more complete services at lower prices. Also, these ser- vices are often more interactive than traditional ones, thanks to the digital nature of the Internet, which enables a personalized user experience. Finally, Internet Service Providers(ISPs)aretheintermediaryinthiscontext. Theseorganizations,tradition- ally,havedevelopedandhostedthephysicalnetworksthatruntheInternet,andtoday theyseenewmarketopportunitiesindevelopinghigh-performanceinfrastructuresfor multimediaInternetservices. Internet Service Providers are faced with the challenging task of developing and maintaining networks that increase in size at a dramatic pace but, at the same time, must support multimedia Internet services by providing acceptable performance. In 1 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “thesis” — 2016/5/5 — 11:59 — page 2 — #10 (cid:105) (cid:105) 2 CHAPTER1. INTRODUCTION thisscenario,metricsareafundamentaltool.Measuringtheperformanceofanetwork allowsforacontinuousmonitoring,supportingthediscoveryoffaultsandthetuning ofparameters.ISPshavealwaysusedsomekindoflocalmonitoringintheirnetworks, forexampleembeddedinrouters,whichareintermediatedevices.However,giventhe sizeofmodernnetworks,alocalalertraisedbyarouterdoesnotnecessarilyrepresent theexperienceofauser,whosepacketstraverselongpathsinthenetwork. Hecould have a much worse perception of a fault, because of multiplicative effects along the path. Or,itcouldnotnoticethefaultatall,becauseheisfarfromitandtheeffecton hisconnectionisonlynegligible. Probesystemsarearecentattempttodealwiththis problem, and are gathering a growing interest. Such a system distributes small de- vicescalledprobesacrosstheInternet,whicharealwaysconnectedandcontinuously perform standard network measurements towards selected targets. Some common measurementsthatareperformedareping,traceroute,HTTPqueries,etc. Theresults ofthemeasurementsarecollectedinlargerepositories,whichareavailableforfurther analysis. Thekeyfeatureofprobesisthattheyareinstalledneartorealusers, often intheirhouses,hencesimulatingtheactualuserexperiencethroughthemetricsthey collect. Among the measurements available in a probe system, traceroute is a standard networkingtoolthatrecordsthepathfollowedbydatainthenetwork,fromthesource to the target. It also records the round-trip time between the source and each inter- mediate node. Like other standard measurements, it is supported by default by any IP-basednetwork,liketheInternet. Differentlyfromothermeasurements,traceroute datacontainintrinsictopologicalinformation, sinceatraceroutebasicallyrepresents a path in the network. This means that they can reveal details on the structure of the network, in addition to its performance. At any instant, a protocol decides the routingofthenetwork,whichisasetofrulesthatestablishwhatpathisfollowedby packets to go from a given source to a given destination. In this sense, traceroute is a simple yet effective tool for sampling the status of the routing at a given instant. If several traceroute paths are merged, the result is the traceroute graph, or routing graph,whichrepresentsanapproximationofthenetworktopologyandoftherouting onthatnetworkatagiveninstant. However, the information richness of traceroutes makes them difficult to handle and understand. In fact, most existing tools make only a partial use of traceroutes, showingsinglepathsandtherelativeround-triptimes,withoutanyattempttoprocess andemphasizethetopologicalinformation. Thisunderusecanbeexplainedbysome challenges,listedinthefollowing,thatareencounteredwhenprocessingtraceroutes producedbyaprobesystem. DataSize Alargeprobesystemensuresafine-grainedsamplingoftheInternet,but (cid:105) (cid:105) (cid:105) (cid:105)

Description:
“thesis” — 2016/5/5 — 11:59 — page iii — #3 Finally, Zenmap [Lyo] gives a radial view of the graph, with Nevil Brownlee. On searching for .. [WDSC07] Jo Wood, Jason Dykes, Aidan Slingsby, and Keith Clarke. Interactive.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.