ebook img

Vision With Direction: A Systematic Introduction to Image Processing And Computer Vision PDF

395 Pages·2006·6.998 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vision With Direction: A Systematic Introduction to Image Processing And Computer Vision

JosefBigun VisionwithDirection Josef Bigun Vision with Direction ASystematicIntroduction toImageProcessingandComputerVision With146Figures,including130inColor 123 JosefBigun IDE-Sektionen Box823 SE-30118,Halmstad Sweden [email protected] www.hh.se/staff/josef LibraryofCongressControlNumber:2005934891 ACMComputingClassification(1998):I.4,I.5,I.3,I.2.10 ISBN-10 3-540-27322-0 SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-27322-6 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationof thispublicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLaw ofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com ©Springer-VerlagBerlinHeidelberg2006 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantpro- tectivelawsandregulationsandthereforefreeforgeneraluse. TypesetbytheauthorusingaSpringerTEXmacropackage Production:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Coverdesign:KünkelLopkaWerbeagentur,Heidelberg Printedonacid-freepaper 45/3142/YL-543210 Tomyparents,H.andS.Bigun Preface Imageanalysisisacomputationalfeatwhichhumansshowexcellencein,incompar- isonwithcomputers.Yetthelistofapplicationsthatrelyonautomaticprocessingof imageshasbeengrowingatafastpace.Biometricauthenticationbyface,fingerprint, andiris,onlinecharacterrecognitionincellphonesaswellasdrugdesigntoolsare butafewofitsbenefactorsappearingontheheadlines. This is, of course, facilitated by the valuable output of the resarch community inthepast30years.Thepatternrecognitionandcomputervisioncommunitiesthat study image analysis have large conferences, which regularly draw 1000 partici- pants.Inawaythisisnotsurprising,becausemuchofthehuman-specificactivities critically rely on intelligent use of vision. If routine parts of these activities can be automated, much is to be gained in comfort and sustainable development. The re- searchfieldcouldequallybecalled visualintelligencebecauseitconcernsnearlyall activities of awake humans. Humans use or rely on pictures or pictorial languages torepresent,analyze,anddevelopabstractmetaphorsrelatedtonearlyeveryaspect ofthinkingandbehaving,beitscience,mathematics,philosopy,religion,music,or emotions. Thepresentvolumeisanintroductorytextbookonsignalanalysisofvisualcom- putationforsenior-levelundergraduatesorforgraduatestudentsinscienceanden- gineering. My modest goal has been to present the frequently used techniques to analyzeimagesinacommonframework–directionalimageprocessing.Inthat,Iam certainlyinfluencedbythemassiveevidenceofintricatedirectionalsignalprocess- ingbeingaccumulatedonhumanvision.Myhopeisthatthecontentsofthepresent text will be useful to a broad category of knowledge workers, not only those who are technically oriented. To understand and reveal the secrets of, in my view, the mostadvancedsignalanalysis“system”oftheknownuniverse,primatevision,isa greatchallenge.Itwillpredictablyrequirecross-fieldfertilizationsofmanysortsin science,nottheleastamongcomputervision,neurobiology,andpsychology. Thebookhasfiveparts,whichcanbestudiedfairlyindependently.Thesestud- ies are most comfortable if the reader has the equivalent mathematical knowledge acquired during the first years of engineering studies. Otherwise, the lemmas and theorems can be read to acquire a quick overview, even with a weaker theoretical VIII Preface background. Part I presents briefly a current account of the human vision system with short notes to its parallels in computer vision. Part II treats the theory of lin- ear systems, including the various versions of Fourier transform, with illustrations from image signals. Part III treats single direction in images, including the ten- sor theory for direction representation and estimation. Generalized beyond Carte- sian coordinates, an abstraction of the direction concept to other coordinates is of- fered.Here,thereadermeetsanimportanttoolofcomputervision,theHoughtrans- form and its generalized version, in a novel presentation. Part IV presents the con- cept of group direction, which models increased shape complexities. Finally, Part V presents the grouping tools that can be used in conjunction with directional pro- cessing.Theseincludeclustering,featuredimensionreduction,boundaryestimation, andelementarymorphologicaloperations.Informationondownloadablelaboratory exercises(inMatlab)basedonthisbookisavailableatthehomepageoftheauthor (http://www.hh.se/staff/josef). Iamindebtedtoseveralpeoplefortheirwisdomandthehelpthattheygaveme whileIwaswritingthisbook,andbefore.Icameincontactwithimageanalysisby readingthepublicationsofProf.Go¨staH.Granlund ashisPhDstudentandduring thebeautifuldiscussionsinhisresearchgroupatLinko¨pingUniversity,nottheleast withProf.HansKnutsson,inthemid-1980s.Thisheritageisunmistakenlyrecogniz- ableinmytext.Inthe1990s,duringmyemploymentattheSwissFederalInstitute of Technology in Lausanne, I greatly enjoyed working with Prof. Hans du Buf on textures.Thetracesofthiscollaborationaredistinctlyvisibleinthevolume,too. I have abundantly learned from my former and present PhD students, some of theirworkanddevotionisnotonlyaliveinmymemoryanddailywork,butalsoin thegraphicsandcontentsofthisvolume.Iwishtomention,alphabetically,Yaregal Assabie,SergeAyer,BenoitDuc,MaycelFaraj,StefanFischer,HartwigFronthaler, OleHansen,KlausKollreider,KennethNilsson,MartinPersson,LalithPremaratne, PhilippeSchroeter,andFabrizioSmeraldi.Asteachersintwoimageanalysiscourses using drafts of this volume, Kenneth, Martin, and Fabrizio provided, additionally, importantfeedbackfromstudents. I was privileged to have other coworkers and students who have helped me out alongthe“voyage”thatwritingabookis.Iwishtonamethosewhosecontributions have been most apparent, alphabetically, Markus Bc¨kman, Kwok-wai Choy, Stefan Karlsson, Nadeem Khan, Iivari Kunttu, Robert Lamprecht, Leena Lepisto¨, Madis Listak,HenrikOlsson,WernerPomwenger,BerndResch,PeterRomirer-Maierhofer, RadakrishnanPoomari,ReneSchirninger,DerkWesemann,HeikeWalter,andNiklas Zeiner. Atthefinalportofthisvoyage,Iwishtomentionnottheleastmyfamily,who notonlyputupwithmewritingabook,ofteninvadingtheprivatesphere,butwho also filled the breach and encouraged me with appreciated “kicks” that have taken meoutoflocalminima. I thank you all for having enjoyed the writing of this book and I hope that the readerwillenjoyittoo. August2005 J.Bigun Contents PartI HumanandComputerVision 1 NeuronalPathwaysofVision .................................... 3 1.1 OpticsandVisualFieldsoftheEye .......................... 3 1.2 PhotoreceptorsoftheRetina ................................ 5 1.3 GanglionCellsoftheRetinaandReceptiveFields .............. 7 1.4 TheOpticChiasm......................................... 9 1.5 LateralGeniculateNucleus(LGN) ........................... 10 1.6 ThePrimaryVisualCortex.................................. 11 1.7 SpatialDirection,Velocity,andFrequencyPreference........... 13 1.8 FaceRecognitioninHumans................................ 17 1.9 FurtherReading........................................... 19 2 Color ......................................................... 21 2.1 LensandColor ........................................... 21 2.2 RetinaandColor .......................................... 22 2.3 NeuronalOperationsandColor.............................. 24 2.4 The1931CIEChromaticityDiagramandColorimetry .......... 26 2.5 RGB:Red,Green,BlueColorSpace ......................... 30 2.6 HSB:Hue,Saturation,BrightnessColorSpace................. 31 PartII LinearToolsofVision 3 DiscreteImagesandHilbertSpaces .............................. 35 3.1 VectorSpaces ............................................ 35 3.2 DiscreteImageTypes,Examples............................. 37 3.3 NormsofVectorsandDistancesBetweenPoints ............... 40 3.4 ScalarProducts ........................................... 44 3.5 OrthogonalExpansion ..................................... 46 3.6 TensorsasHilbertSpaces................................... 48 3.7 SchwartzInequality,AnglesandSimilarityofImages ........... 53 X Contents 4 ContinuousFunctionsandHilbertSpaces......................... 57 4.1 FunctionsasaVectorSpace................................. 57 4.2 AdditionandScalinginVectorSpacesofFunctions............. 58 4.3 AScalarProductforVectorSpacesofFunctions ............... 59 4.4 Orthogonality............................................. 59 4.5 SchwartzInequalityforFunctions,Angles .................... 60 5 FiniteExtensionorPeriodicFunctions—FourierCoefficients ....... 61 5.1 TheFiniteExtensionFunctionsVersusPeriodicFunctions ....... 61 5.2 FourierCoefficients(FC) ................................... 62 5.3 (Parseval–Plancherel)ConservationoftheScalarProduct........ 65 5.4 HermitianSymmetryoftheFourierCoefficients................ 67 6 FourierTransform—InfiniteExtensionFunctions.................. 69 6.1 TheFourierTransform(FT)................................. 69 6.2 SampledFunctionsandtheFourierTransform ................. 72 6.3 DiscreteFourierTransform(DFT) ........................... 79 6.4 CircularTopologyofDFT .................................. 82 7 PropertiesoftheFourierTransform.............................. 85 7.1 TheDiracDistribution ..................................... 85 7.2 ConservationoftheScalarProduct........................... 88 7.3 Convolution,FT,andtheδ.................................. 90 7.4 ConvolutionwithSeparableFilters........................... 94 7.5 PoissonSummationFormula,theComb ...................... 95 7.6 HermitianSymmetryoftheFT .............................. 98 7.7 CorrespondencesBetweenFC,DFT,andFT................... 99 8 ReconstructionandApproximation .............................. 103 8.1 CharacteristicandInterpolationFunctionsinN Dimensions ..... 103 8.2 SamplingBand-PreservingLinearOperators................... 109 8.3 SamplingBand-EnlargingOperators ......................... 114 9 ScalesandFrequencyChannels.................................. 119 9.1 SpectralEffectsofDown-andUp-Sampling................... 119 9.2 TheGaussianasInterpolator ................................ 125 9.3 OptimizingtheGaussianInterpolator......................... 127 9.4 ExtendingGaussianstoHigherDimensions ................... 130 9.5 GaussianandLaplacianPyramids............................ 134 9.6 DiscreteLocalSpectrum,GaborFilters ....................... 136 9.7 DesignofGaborFiltersonNonregularGrids .................. 142 9.8 FaceRecognitionbyGaborFilters,anApplication.............. 146 Contents XI PartIII VisionofSingleDirection 10 Directionin2D ................................................ 153 10.1 LinearlySymmetricImages................................. 153 10.2 RealandComplexMomentsin2D........................... 163 10.3 TheStructureTensorin2D ................................. 164 10.4 TheComplexRepresentationoftheStructureTensor............ 168 10.5 LinearSymmetryTensor:DirectionalDominance .............. 171 10.6 BalancedDirectionTensor:DirectionalEquilibrium ............ 171 10.7 DecomposingtheComplexStructureTensor................... 173 10.8 DecomposingtheReal-ValuedStructureTensor ................ 175 10.9 ConventionalCornersandBalancedDirections................. 176 10.10 TheTotalLeastSquaresDirectionandTensors................. 177 10.11 DiscreteStructureTensorbyDirectTensorSampling ........... 180 10.12 ApplicationExamples...................................... 186 10.13 DiscreteStructureTensorbySpectrumSampling(Gabor)........ 187 10.14 RelationshipoftheTwoDiscreteStructureTensors ............. 196 10.15 HoughTransformofLines.................................. 199 10.16 TheStructureTensorandtheHoughTransform ................ 202 10.17 Appendix ................................................ 205 11 DirectioninCurvilinearCoordinates............................. 209 11.1 CurvilinearCoordinatesbyHarmonicFunctions ............... 209 11.2 LieOperatorsandCoordinateTransformations................. 213 11.3 TheGeneralizedStructureTensor(GST)...................... 215 11.4 DiscreteApproximationofGST ............................. 221 11.5 TheGeneralizedHoughTransform(GHT) .................... 224 11.6 VotinginGSTandGHT.................................... 226 11.7 HarmonicMonomials...................................... 228 11.8 “Steerability”ofHarmonicMonomials ....................... 230 11.9 SymmetryDerivativesandGaussians......................... 231 11.10 DiscreteGSTforHarmonicMonomials....................... 233 11.11 ExamplesofGSTApplications.............................. 236 11.12 FurtherReading........................................... 238 11.13 Appendix ................................................ 240 12 DirectioninND,MotionasDirection ............................ 245 12.1 TheDirectionofHyperplanesandtheInertiaTensor ............ 245 12.2 TheDirectionofLinesandtheStructureTensor................ 249 12.3 TheDecompositionoftheStructureTensor.................... 252 12.4 BasicConceptsofImageMotion ............................ 255 12.5 TranslatingLines.......................................... 258 12.6 TranslatingPoints ......................................... 259 12.7 DiscreteStructureTensorbyTensorSamplinginND ........... 263 XII Contents 12.8 AffineMotionbytheStructureTensorin7D................... 267 12.9 MotionEstimationbyDifferentialsinTwoFrames ............. 270 12.10 MotionEstimationbySpatialCorrelation ..................... 272 12.11 FurtherReading........................................... 274 12.12 Appendix ................................................ 275 13 WorldGeometrybyDirectioninN Dimensions ................... 277 13.1 CameraCoordinatesandIntrinsicParameters .................. 277 13.2 WorldCoordinates ........................................ 283 13.3 IntrinsicandExtrinsicMatricesbyCorrespondence............. 287 13.4 Reconstructing3DbyStereo,Triangulation ................... 293 13.5 SearchingforCorrespondingPointsinStereo.................. 300 13.6 TheFundamentalMatrixbyCorrespondence .................. 305 13.7 FurtherReading........................................... 307 13.8 Appendix ................................................ 308 PartIV VisionofMultipleDirections 14 GroupDirectionandN-FoldedSymmetry........................ 311 14.1 GroupDirectionofRepeatingLinePatterns ................... 311 14.2 TestImagesbyLogarithmicSpirals .......................... 314 14.3 GroupDirectionTensorbyComplexMoments................. 315 14.4 GroupDirectionandthePowerSpectrum ..................... 318 14.5 DiscreteGroupDirectionTensorbyTensorSampling ........... 320 14.6 GroupDirectionTensorsasTextureFeatures .................. 324 14.7 FurtherReading........................................... 326 PartV Grouping,Segmentation,andRegionDescription 15 ReducingtheDimensionofFeatures.............................. 329 15.1 PrincipalComponentAnalysis(PCA) ........................ 329 15.2 PCAforRareObservationsinLargeDimensions............... 335 15.3 SingularValueDecomposition(SVD) ........................ 338 16 GroupingandUnsupervisedRegionSegregation................... 341 16.1 TheUncertaintyPrincipleandSegmentation................... 341 16.2 PyramidBuilding ......................................... 344 16.3 ClusteringImageFeatures—PerceptualGrouping .............. 345 16.4 FuzzyC-MeansClusteringAlgorithm ........................ 347 16.5 EstablishingtheSpatialContinuity........................... 348 16.6 BoundaryRefinementbyOrientedButterflyFilters ............. 351 16.7 TextureGroupingandBoundaryEstimationIntegration ......... 354 16.8 FurtherReading........................................... 356

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.