ebook img

Vision-Based Guidance for Air-to-Air Tracking and Rendezvous of Unmanned Aircraft Systems PDF

146 Pages·2017·7.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vision-Based Guidance for Air-to-Air Tracking and Rendezvous of Unmanned Aircraft Systems

BBrriigghhaamm YYoouunngg UUnniivveerrssiittyy BBYYUU SScchhoollaarrssAArrcchhiivvee Theses and Dissertations 2013-08-13 VViissiioonn--BBaasseedd GGuuiiddaannccee ffoorr AAiirr--ttoo--AAiirr TTrraacckkiinngg aanndd RReennddeezzvvoouuss ooff UUnnmmaannnneedd AAiirrccrraafftt SSyysstteemmss Joseph Walter Nichols Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Mechanical Engineering Commons BBYYUU SScchhoollaarrssAArrcchhiivvee CCiittaattiioonn Nichols, Joseph Walter, "Vision-Based Guidance for Air-to-Air Tracking and Rendezvous of Unmanned Aircraft Systems" (2013). Theses and Dissertations. 3764. https://scholarsarchive.byu.edu/etd/3764 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Vision-BasedGuidanceforAir-to-AirTrackingandRendezvous ofUnmannedAircraftSystems JosephW.Nichols Adissertationsubmittedtothefacultyof BrighamYoungUniversity inpartialfulfillmentoftherequirementsforthedegreeof DoctorofPhilosophy TimothyW.McLain,Chair RandalW.Beard MarkB.Colton ChristopherA.Mattson BryanS.Morse DepartmentofMechanicalEngineering BrighamYoungUniversity August2013 Copyright©2013JosephW.Nichols AllRightsReserved ABSTRACT Vision-BasedGuidanceforAir-to-AirTrackingandRendezvous ofUnmannedAircraftSystems JosephW.Nichols DepartmentofMechanicalEngineering,BYU DoctorofPhilosophy This dissertation develops the visual pursuit method for air-to-air tracking and rendezvous of unmanned aircraft systems. It also shows the development of vector-field and proportional- integral methods for controlling UAS flight in formation with other aircraft. The visual pursuit method is a nonlinear guidance method that uses vision-based line of sight angles as inputs to the algorithm that produces pitch rate, bank angle and airspeed commands for the autopilot to use in aircraftcontrol. Themethodisshowntobeconvergentaboutthecenterofthecameraimageframe andtobestableinthesenseofLyapunov. Inthelateraldirection,theguidancemethodisoptimized to balance the pursuit heading with respect to the prevailing wind and the location of the target on the image plane to improve tracking performance in high winds and reduce bank angle effort. In both simulation and flight experimentation, visual pursuit is shown to be effective in providing flightguidanceinstrongwinds. Visual pursuit is also shown to be effective in guiding the seeker while performing aerial docking with a towed aerial drogue. Flight trials demonstrated the ability to guide to within a few meters of the drogue. Further research developed a method to improve docking performance by artificially increasing the length of the line of sight vector at close range to the target to prevent flight control saturation. This improvement to visual pursuit was shown to be an effective method forprovidingguidanceduringaerialdockingsimulations. Ananalysisofthevisualpursuitmethodisprovidedusingthemethodofadjointstoevalu- ate the effects of airspeed, closing velocity, system time constant, sensor delay and target motion ondockingperformance. Amethodforpredictingdockingaccuracyisdevelopedandshowntobe usefulforpredictingdockingperformanceforsmallandlargeunmannedaircraftsystems. Keywords: aerial docking, aerial recovery, aerial rendezvous, air-to-air tracking, autonomous for- mationflight,Lyapunovstability,nonlinearcontrol,unmannedaircraftsystem,UAS,UAV,vector- fieldguidance,vision-basedguidance ACKNOWLEDGMENTS I am extremely blessed to have had the opportunity to once again study at Brigham Young University. I have loved being on campus and associating with the professors and students that makethisuniversitytrulyuniqueamongthegreatinstitutionsoflearning. IappreciateDr. TimMcLainfortakingmeonasoneofhisgraduatestudentsandproviding the mentoring and guidance that were essential to completing this work. Dr. Randy Beard has been a source of ideas and encouragement to solve the technical challenges associated with this research. I want to acknowledge the help of Dr. Mark Colton for his collaboration on vector-field methods. Dr. Bryan Morse provided consultations on computer vision and statistical processes at keypointsinmyresearch,andIthankDr. ChrisMattsonforhistimelyadviceandencouragement. IappreciatethefriendshipandconcernshownbyMiriamBusch,thedepartmentgraduateadvisor, throughoutmytimeatBYU. IamgratefulformyfriendsintheMAGICCLabfortheirassistanceandcompanionship. In particularIwanttoacknowledgetheotherstudentsontheaerialrecoveryproject: DanielCarlson, MarkOwen,JeffFerrin,DallinBriggs,andLiangSun;andthankthemfortheirhelpasweworked through the many hardware challenges associated with flying two unmanned aircraft and a towed drogue in formation. I also want to thank my lab colleagues, Rob Leishman, Peter Neidfeldt, and Robert Klaus for being willing to drop whatever they were doing to consult and help me in numerousways. Most importantly, I would like to thank my wife, Diane, for her encouragement and pa- tience as I have pursued this educational opportunity at this late date in my working career. I also thank my children and father for their interest and continuous displays of support throughout my studies. IappreciatetheDepartmentofMechanicalEngineeringforprovidingaresearchfellowship and the Department of Veterans Affairs for their financial support through the GI Bill. Research funding for part of this work was provided by the Air Force Office of Scientific Research through theSmallBusinessTechnologyTransferProgram,contractnumberFA9550-10-C-0041,andinco- operationwithLockheedMartinProcerusTechnologies. Thissupportisgratefullyacknowledged. In addition, I want to thank Mr. Neil Johnson from Lockheed Martin Procerus Technologies for his assistance in coding the methods developed in the paper for implementation on the Vision ProcessingUnit,andforassistingintheflighttrials. TABLEOFCONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 VectorFieldFollowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2 GuidanceforAir-to-AirTracking . . . . . . . . . . . . . . . . . . . . . . 5 1.4.3 AerialRendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.1 EnhancedVectorFieldTracking . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.2 VisualPursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.3 AerialDocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter2 SimulationToolsandExperimentalHardware . . . . . . . . . . . . . . . 11 2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Seeker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Mothership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Drogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 GroundStation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter3 Air-to-AirRendezvoususingVectorFieldMethods . . . . . . . . . . . . . 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 OrbitTrackingUsingVectorFields . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Vision-basedEnhancementstoOrbitTrackingUsingVectorFields . . . . . . . . . 25 3.3.1 InteriorOrbitFollowingforImprovedVehicleTracking . . . . . . . . . . 25 3.3.2 AltitudeBiasCorrectionUsingVision . . . . . . . . . . . . . . . . . . . . 27 3.4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter4 VisualPursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 ModelDevelopment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.1 CoordinateFrames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.2 CameraGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 v 4.2.3 SystemDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 GuidanceMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.1 Proportional-IntegralPursuit . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 VisualPursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 GuidanceLawsfromDecoupledDynamics . . . . . . . . . . . . . . . . . . . . . 55 4.5 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.6 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.6.1 TrackingAlgorithmPerformance . . . . . . . . . . . . . . . . . . . . . . 60 4.6.2 VisionSensorPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.7 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Chapter5 AerialDockingUsingaPassiveTowedCableSystem . . . . . . . . . . . . 66 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 SeekerGuidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4 ModifiedVisualPursuitforNear-targetManeuvering . . . . . . . . . . . . . . . . 71 5.4.1 Minimum-distanceContactFactor . . . . . . . . . . . . . . . . . . . . . . 73 5.4.2 Fixed-lengthContactFactor . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4.3 ComparisonofMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter6 AdjointAnalysisofAerialDockingSystem . . . . . . . . . . . . . . . . . 79 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 LinearizationandModelSimplification . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.1 LinearLongitudinalGuidanceModel . . . . . . . . . . . . . . . . . . . . 81 6.2.2 LinearLateralGuidanceModel . . . . . . . . . . . . . . . . . . . . . . . 83 6.2.3 ModelStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3 MethodofAdjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.4 TargetMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.5 SeekerManeuverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.6 VelocityEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.7 SensorEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.8 ComparisonofLargeandSmallUASPerformanceUsingVisualPursuit . . . . . . 107 6.9 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Chapter7 ConclusionsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.1 SummaryofMainResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 AppendixA GuidanceLawsfromDecoupledDynamics . . . . . . . . . . . . . . . . . 118 A.1 LongitudinalDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 vi A.2 LateralDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 A.3 VisualPursuitinTwoDimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.4 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 vii LISTOFTABLES 4.1 SimulationLOSanglecomparison . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 FlighttrialLOSanglecomparison . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1 Comparisonofminimum-distanceandfixed-lengthcontactfactorperformance . . 76 6.1 Nominalsystemvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 Nominalsystemvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3 Nominalsystemvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.4 SmallandlargeUASsystemcharacteristics . . . . . . . . . . . . . . . . . . . . . 108 6.5 Dockingsimulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A.1 Comparisonofcoupledanddecoupledguidancelawsduringdocking . . . . . . . 129 A.2 Comparisonofcoupledanddecoupledguidancelawsduringtracking . . . . . . . 131 viii LISTOFFIGURES 1.1 Aerialrecoveryconcept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.1 Systemarchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Internalcommunicationblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Seekeraircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Mothershippreparingfortakeoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Droguesystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Droguelaunchprocedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Groundstationdisplay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Flightpathdefinedbyintersectingsurfaces. . . . . . . . . . . . . . . . . . . . . . 20 3.2 SeekerorbitmodificationforimprovedLOS . . . . . . . . . . . . . . . . . . . . . 26 3.3 Cameraimageframe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Vectorfieldfollowingdistancetestresults. . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Videoframefromseekercamera . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6 Enhancedvectorfieldfollowingtestresults. . . . . . . . . . . . . . . . . . . . . . 32 4.1 Proportionalnavigationandpursuitguidancemethods . . . . . . . . . . . . . . . . 35 4.2 Seekerandtargetinformationflight . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Seekercameraframe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 Longitudinaldynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5 Lateraldynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.6 Controlsystemblockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.7 Comparisonofguidancecommandsanddynamicresponse . . . . . . . . . . . . . 51 4.8 Hiddendynamicresponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.9 Flightcontrolsaturationlimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.10 Wagglemaneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.11 ComparisonofPIandvisualpursuittracking . . . . . . . . . . . . . . . . . . . . 58 4.12 ComparisonofPIandvisualpursuittrackingincrosswind . . . . . . . . . . . . . 60 4.13 Guidancemethodresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.14 Seekervideoframewithtrackenabled . . . . . . . . . . . . . . . . . . . . . . . . 63 4.15 Vision-basedresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.1 Droguealtitudedeviationinthepresenceofwind . . . . . . . . . . . . . . . . . . 66 5.2 Drogueinseekerimage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Flighttestresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Lateraldynamicsforfixedcontactfactor. . . . . . . . . . . . . . . . . . . . . . . 72 5.5 Fixed-lengthandminimum-distancecontactfactorcomparison . . . . . . . . . . . 75 5.6 ContactfactorLOSdistanceerrorcomparison. . . . . . . . . . . . . . . . . . . . 77 5.7 Dockingperformancecomparisonusingthecontactfactor . . . . . . . . . . . . . 78 6.1 Comparisonoflinearandnonlinearguidancemodels . . . . . . . . . . . . . . . . 81 6.2 Linearizedlongitudinalguidancesystem . . . . . . . . . . . . . . . . . . . . . . . 82 6.3 Linearizedlateralguidancesystem . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ix

Description:
and to be stable in the sense of Lyapunov. In the lateral mation flight, Lyapunov stability, nonlinear control, unmanned aircraft system, UAS, UAV, vector- These elements are described in this chapter. Autopilot. Modem. VPU. Camera. Video Transmitter. Seeker. Mothership. Virtual. Cockpit. Matlab.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.