ebook img

Visible spectra of (474640) 2004 VN112-2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visible spectra of (474640) 2004 VN112-2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects

MNRAS000,1–6(2017) Preprint11January2017 CompiledusingMNRASLATEXstylefilev3.0 Visible spectra of (474640) 2004 VN –2013 RF with OSIRIS at 112 98 the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects⋆ J. de León,1,2† C. de la Fuente Marcos3 and R. de la Fuente Marcos3 1InstitutodeAstrofísicadeCanarias,C/VíaLácteas/n,E-38205LaLaguna,Tenerife,Spain 7 2DepartamentodeAstrofísica,UniversidaddeLaLaguna,E-38206LaLaguna,Tenerife,Spain 1 3UniversidadComplutensedeMadrid,CiudadUniversitaria,E-28040Madrid,Spain 0 2 n Accepted2017January4.Received2016December23;inoriginalform2016October20 a J 0 ABSTRACT 1 The existence of significant anisotropies in the distributions of the directions of perihe- lia and orbital poles of the known extreme trans-Neptunian objects (ETNOs) has been ] P used to claim that trans-Plutonian planets may exist. Among the known ETNOs, the pair (474640)2004 VN –2013 RF stands out. Their orbital poles and the directions of their E 112 98 periheliaandtheirvelocitiesatperihelion/aphelionareseparatedbyafewdegrees,butorbital . h similaritydoesnotnecessarilyimplycommonphysicalorigin.Inanattempttounraveltheir p physicalnature,visiblespectroscopyofbothtargetswasobtainedusingtheOSIRIScamera- - spectrographatthe10.4mGranTelescopioCanarias(GTC).Fromthespectralanalysis,we o r findthat474640–2013RF98 havesimilarspectralslopes(12vs.15%/0.1µm),verydifferent t fromSedna’sbutcompatiblewiththoseof(148209)2000CR and2012VP .Thesefive s 105 113 a ETNOsbelongtothegroupofsevenlinkedtothePlanetNinehypothesis.Adynamicalpath- [ wayconsistentwiththesefindingsisdissociationofabinaryasteroidduringacloseencounter withaplanetandweconfirmitsplausibilityusingN-bodysimulations.Wethusconcludethat 1 v boththedynamicalandspectroscopicpropertiesof474640–2013RF98 favourageneticlink 4 andtheircurrentorbitssuggestthatthepairwaskickedbyaperturbernearaphelion. 3 Key words: techniques: spectroscopic – techniques: photometric – astrometry – celestial 5 mechanics–minorplanets,asteroids:individual:(474640)2004VN –minorplanets,as- 2 112 0 teroids:individual:2013RF98. . 1 0 7 1 1 INTRODUCTION the Sun at hundreds of au. This interpretation was further sup- : portedbydelaFuenteMarcos&delaFuenteMarcos(2014)with v The dynamical and physical properties of the extreme trans- i aMonte Carlo-based study confirming that theobserved patterns X NeptunianobjectsorETNOs(semimajoraxis,a,greaterthan150 inETNOorbitalparameter spacecannot resultfromselectionef- au,andperiheliondistance,q,greaterthan30au,Trujillo&Shep- r fectsandsuggestingthatoneormoretrans-Plutonianplanetsmay a pard2014)areintriguinginmanyways.Theirstudycanhelpprobe exist. A plausible multi-planet dynamical scenario was explored theorbitaldistributionofputativeplanetsgoingaroundtheSunbe- by de la Fuente Marcos, de la Fuente Marcos & Aarseth (2015). tweentheorbitofPlutoandtheOortCloudaswellasunderstand Based on observational data, and analytical and numerical work, the formation and evolution of the Solar system as a whole. The Batygin & Brown (2016) presented their Planet Nine hypothesis firstETNOwasfoundin2000,(148209)2000CR ,anditsdis- 105 thatwasfurtherdevelopedbyBrown&Batygin(2016),butques- coverywassoonrecognisedasaturningpointinthestudyofthe tionedbyShankmanetal.(2016).TheorbitsofsevenETNOs— outerSolarsystem(e.g.Gladmanetal.2002;Morbidelli&Levison Sedna, 148209, (474640) 2004 VN , 2007 TG , 2010 GB , 2004).Thecurrenttallystandsat21ETNOs. 112 422 174 2012 VP and 2013 RF — were used by Brown & Batygin Trujillo & Sheppard (2014) were first in suggesting that the 113 98 (2016) topredict theexistenceoftheso-calledPlanetNine,most dynamical properties of the ETNOs could be better explained if probablyatrans-Plutoniansuper-Earthinthesub-Neptunianmass a yet to be discovered planet of several Earth masses is orbiting range.Outofthe21knownETNOs,onlySednahasbeenobserved spectroscopically(seeFornasieretal.2009). ⋆ BasedonobservationsmadewiththeGTCtelescope,intheSpanishOb- Among the known ETNOs, the pair 474640–2013 RF servatoriodelRoquedelosMuchachosoftheInstitutodeAstrofísicadeCa- 98 narias,underDirector’sDiscretionaryTime(programIDGTC2016-055). clearly stands out (de la Fuente Marcos & de la Fuente Marcos † E-mail:[email protected] 2016). The directions of their perihelia (those of the vector from (cid:13)c 2017TheAuthors 2 J. deLeón, C. delaFuenteMarcos andR. delaFuenteMarcos the Sun to the respective perihelion point) are very close (angu- to0′.′12.2Nootherdata,besidesthese38observations,itsHvalue, larseparationof9◦.8),theirorbitalpolesareevencloser(4◦.1),and anditsorbitalsolutions,areknownaboutthisETNO. consistentlythedirectionsoftheirvelocitiesatperihelion/aphelion Asteroid 474640 has been classified asan extreme detached arealsoveryneareachother(9◦.5),althoughimprovedvaluesare objectbySheppard &Trujillo(2016) andtheir integrationsshow given in Section 3.3; in addition, they have similar aphelion dis- thatitisastableETNOwithinthestandardeight-planets-onlySo- tances, Q (589 au vs. 577 au). Assuming that the angular orbital lar system paradigm; this result is consistent with that in Brown elementsoftheETNOsfollowuniformdistributions(i.e.theyare & Batygin (2016). In Sheppard & Trujillo (2016), 2013 RF is 98 unperturbedasteroidsmovinginKeplerianorbitsaroundtheSun), classifiedasanextremescatteredobjectandfoundtobeunstable theprobabilityoffindingbychancetwoobjectswithsuchasmall withinthestandardparadigmover10Myrtime-scalesduetoNep- angularseparationbetweentheirdirectionsofperiheliaand,whatis tuneperturbations.BothETNOsareratherunstablewithinsomein- moreimportant,alsobetweentheirorbitalpolesislessthan0.0001, carnationsofthePlanetNinehypothesis(delaFuenteMarcos,de whichsuggestsacommondynamicalorigin.However,aprobable laFuenteMarcos &Aarseth2016). Theheliocentric orbitsavail- commondynamicalorigindoesnotimplyacommonphysicalori- able in 2016 August1,2 have been used to compute the values of gin. In an attempt to unravel their physical nature, visible spec- theangularseparationsquotedintheprevioussection.Inspiteof troscopyofthetwotargetswasobtainedon2016Septemberusing thelimitationsoftheorbitalsolutionof2013RF ,theuncertain- 98 the OSIRIS camera-spectrograph at the 10.4 m Gran Telescopio tiesmainlyaffectorbital elementsother thaninclination,i,longi- Canarias (GTC) telescope, located in La Palma (Canary Islands, tudeoftheascendingnode,Ω,andargumentoftheperihelion,ω. Spain).Here,wepresentanddiscusstheresultsoftheseobserva- These three orbital parameters are the only ones involved in the tions. This Letter is organized as follows. Section 2 reviews the calculationofthedirectionsofperihelia,locationoforbitalpoles, state of the art for this pair of ETNOs. The new observations — and directionsof velocitiesat perihelion (de laFuenteMarcos & includingspectroscopy,photometryandastrometry—andtheirre- de la Fuente Marcos 2016). In sharp contrast, the value of Q of sultsarepresentedinSection3.Thepossibleoriginofthispairis 2013RF isaffectedbyasignificantuncertainty(12percent). 98 exploredinSection4,makinguseofthenewobservationalresults andN-bodysimulations.ConclusionsaresummarizedinSection5. 3 OBSERVATIONS 3.1 Spectroscopy 2 THEPAIR474640–2013RF :STATEOFTHEART 98 Visible spectra of the two targets were obtained using OSIRIS Asteroid (474640) 2004 VN112 was discovered on 2004 Novem- (Cepaetal.2000)at10.4mGTC.Theapparentvisualmagnitude, ber6bytheESSENCEsupernovasurveyobservingwiththe4m V, at the time of observation was 23.3 for (474640) 2004 VN 112 Blanco Telescope from Cerro Tololo International Observatory (heliocentric distance of 47.7 au and phase of 1◦.1) and 24.4 for (CTIO)at an apparent magnitude R of 22.7 (Becker et al.2007). 2013RF (36.6au,1◦.3).Foreachtarget,acquisitionimagesinthe 98 Its absolute magnitude, H = 6.4 (assuming a slope parameter, G Sloan r′ filter were obtained in separate nights in order to iden- = 0.15), suggests a diameter in therange 130–300 km for an as- tifyreliably theobject inthefieldof view. Thisprocedure ended sumed albedo in the range 0.25–0.05. The orbital solution (2016 upbeingthemostefficienttodetect thesedim,slow-moving(ap- August)forthisobjectisbasedon31observationsspanningadata- parentpropermotion<2′′/h)targets.Visiblespectrawereacquired arcof5113dor14yr,from2000September26to2014September usingthelow-resolutionR300Rgrism(resolutionof348measured 26,itsresidualrmsamountsto0′.′19.1 Suchanobjectwouldhave atacentralwavelengthof6635Åfora0′.′6slitwidth),thatcovers been visible to ESSENCE for only about 2 per cent of its orbit, thewavelengthrangefrom0.49to0.92µm,anda2′′slitwidth.Two suggesting that the size of the population of minor bodies mov- widelyacceptedsolaranaloguestarsfromLandolt(1992)—SA93- ing in orbits similar to that of 474640 could be very significant 101andSA115-271—wereobservedusingthesamespectralcon- (Beckeretal.2008).Sheppard(2010)givesanormalisedspectral figurationatanairmassidenticaltothatofthetargetstoobtainthe gradient of 11±4 %/0.1 µm for this object based on Sloan g′, r′, reflectancespectraoftheETNOs.ForagivenETNO,thespectrum i′opticalphotometryacquiredin2008.Someadditionalphotome- wasthendividedbythecorrespondingspectrumofthesolarana- trywasobtainedwiththeHubbleWideFieldCamera3(Fraser& log.AdditionaldatareductiondetailsaredescribedbydeLeónet Brown2012).Itsopticalcoloursarerelativelyneutralandthiswas al.(2016) andMorateet al.(2016). For474640 weacquired two interpretedbyBrown(2012) asasignthatitisnot dominatedby spectraof1800seach,whilefor2013RF weacquiredfourin- 98 methaneirradiationproducts. dividual spectra of 1800 s each. Observational details are shown Asteroid2013RF98wasdiscoveredon2013September12by inTable1.Theresultingindividualreflectancespectra,normalised theDarkEnergyCamera(DECam,Flaugheretal.2015)observing to unity at 0.55 µm and offset vertically for clarity, are shown in fromCTIOfortheDarkEnergySurvey(DES,Abbottetal.2005) Fig.1. atanapparentmagnitudezof23.5(Abbottetal.2016).Itsabsolute InTable1,thespectralslope(inunitsof%/0.1µm)hasbeen magnitude, H =8.7,suggestsadiameterintherange50–120km. computed from a linear fittingto the spectrum in the wavelength Theorbitalsolution(2016August)forthisETNOisratherpooras range0.5–0.9µm.Weusedaniterativeprocess—removingatotal itisbasedon38observationsspanningadata-arcofjust56d,from of50pointsrandomlydistributedinthespectrumandperforminga 2013September12to2013November7,itsresidualrmsamounts linearfitting—andobtainedavalueoftheslopeforeachiteration. The resulting slope value is the mean of a total of 100 iterations 1 OrbitavailablefromJPL’sSmall-BodyDatabaseandHorizonsOn-Line EphemerisSystem:a =318±1au,e = 0.8513±0.0005,i = 25◦.5748± 2 Orbit available from Horizons:a = 307±37au,e = 0.882±0.015, 0◦.0004,Ω=65◦.9990±0◦.0007andω=327◦.121±0◦.010,referredtothe i = 29◦.62±0◦.08,Ω = 67◦.51±0◦.13andω = 316◦±6◦,referredtothe epoch2457600.5JDTDB. epoch2457600.5JDTDB. MNRAS000,1–6(2017) Visiblespectraof(474640)2004 VN –2013RF 3 112 98 3.5 3.0 (474640) 2004 VN 112 (474640) 2004 VN e 3.0 e 2.5 112 c c n n ecta 2.5 Spec#1 ecta 2.0 efl 2.0 efl R R ve 1.5 ve 1.5 2013 RF elati 1.0 elati 1.0 98 R Spec#2 R 0.5 0.5 0.0 0.0 8 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2013 RF98 Wavelength (µm) e c an 6 Spec#1 ct Figure2.FinalvisiblespectraofthepairofETNOs(seethetextfordetails). e Refl 4 Spec#2 e v elati 2 Spec#3 2 (474640) 2020041 3V RNF19182 R 1.8 Spec#4 nce 0 0.4 0.5 W0.a6velen0g.t7h (µm0).8 0.9 1.0 Relative Reflecta 111 ...1246 Figure1.Individual visible spectra of(474640) 2004VN112 (toppanel) 0.8 and2013RF98 (bottompanel)normalisedtounityat0.55µmandoffset 0.6 verticallyforclarity.Redlinescorrespondtothelinearfittingintherange 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 Wavelength (µm) 0.5–0.9µmtocomputethespectralslope. Figure3.Comparison between thespectra of(474640)2004VN112 and 2013RF98smoothedbyaSavitzky-Golayfilter(seethetext)andscaledto Table1.Observationaldetailsofthevisiblespectra(1800seach)obtained matchat0.60µm.Themostprominentabsorptionbandofpuremethaneice for(474640)2004VN112and2013RF98(seethetextforfurtherdetails). at0.73µmisnotseenoneitherspectra. Target Spec# Date UTStart Airmass Slope(%/0.1µm) 1 09-03-16 04:37 1.085 10.2±0.6 ativereflectanceisbothslowly varying andcorrupted by random noise,weappliedaSavitzky-Golayfilter(Savitzky&Golay1964) 474640 2 09-03-16 05:07 1.072 13.3±0.6 tobothdatasets.Suchfiltersprovidesmoothingwithoutlossofres- Mean 12±2 olution,approximatingtheunderlyingfunctionbyapolynomialas 1 09-08-16 03:07 1.234 14.9±0.8 described by e.g. Press et al. (1992). Fig. 3 shows the smoothed 2 09-08-16 03:37 1.181 12.3±0.8 spectra after applying a65 point Savitzky-Golay filter of order 6 2013RF98 3 09-08-16 04:07 1.151 17.1±0.8 to the data in Fig. 2. The smoothed spectra, in particular that of 4 09-08-16 04:38 1.142 16.1±0.8 474640(blue),showsomeweakfeaturesthatmightbetentatively Mean 15±2 identifiedaspuremethaneiceabsorptionbands(Grundy,Schmitt & Quirico 2002). However, the most prominent methane band at 0.73µmisobservedneitherinthespectrumof474640norinthat andtheassociatederroristhestandarddeviationofthismean.The of2013RF (red).TheS/Nisinsufficienttoidentifyreliablyany 98 process of dividing by the spectra of the solar analogue stars in- absorptionband, butthespectralslopesinthevisibleof bothob- troduces an error of 0.3 %/0.1 µm. The error value shown in the jectsprovidesomecompositionalinformation.Objectswithvisible lastcolumnofTable1issumofthesetwocontributions.Foreach spectralslopesintherange0–10%/0.1µmcanhavepureiceson target, we averaged individual spectra to obtain the average visi- their surfaces (like Eris, Pluto, Makemake and Haumea), as well blespectrafor 474640 and 2013 RF showninFig.2; themean as highly processed carbon. Slightlyred slopes (5–15 %/0.1 µm) 98 spectral slopes inTable1arethe meansof theindividual spectra indicatethepossiblepresenceofamorphoussilicatesasinthecase and their errors, the associated standard deviations. The value of ofTrojans(Emery&Brown2004)orThereus(Licandro&Pinilla- thespectralslopeof474640isconsistentwiththeoneobtainedby Alonso2005).Inanycase,theobjectswillnothaveasurfacedomi- Sheppard(2010).ThevaluesinTable1aresimilartothoseofscat- natedbycomplexorganics(tholins).Differencesbetweenthespec- tereddiscTNOs,Plutinos,high-inclinationclassicalTNOsaswell traof474640and2013RF mightbetheresultoftheirpresent-day 98 astheDamocloidsandcomets(seee.g.table5inSheppard2010). heliocentricdistance.Mechanismsthataremoreefficientinalter- The spectra in Fig. 2 show an obvious resemblance, but the ingtheicysurfacesoftheseobjectsatsmallerperiheliondistances low S/N makes the identification of absorption features difficult. includesublimationofvolatilesandmicrometeoroidbombardment In order to make a better comparison and assuming that the rel- (Santos-Sanzetal.2009). MNRAS000,1–6(2017) 4 J. deLeón, C. delaFuenteMarcos andR. delaFuenteMarcos 3.2 Photometry 4.5 4 W(47e4o6b4t0a)in2e0d04a VtoNtal ofan3da2n0d1311RFacq,uriseistpioenctiivmelayg.eIsmtaogeidsewnteifrye on () 3.5 112 98 o 3 mtvaakaluegnensiutuscdionemgspatuhntededSthlefooiarrnutnrh′ceefirclttaoeirrnretaisnepsdoancrdaeilnisbhgroawnteingdhiuntss.TinaTgbhlteehAere1zse.urlotinpgoinr′t ular separati 12 ..255 g n 1 A 0.5 3.3 Astrometry 0 -10 -8 -6 -4 -2 0 Time (Myr) Weusedtheacquisitionimagestocomputethecelestialcoordinates ofeachtargetandimproveitsorbit.Thiswasparticularlyrelevant Figure4.Evolutionoftheangularseparationbetweentheorbitalpolesof for2013RF98thatpriortoourobservationshadaratheruncertain thepair(474640)2004VN112–2013RF98forthreerepresentativetestcal- orbitaldetermination.2Wefound(474640)2004VN within1′′of culationswithdifferentperturbers.Red:a=549au,e=0.21,i=47◦,m= the predicted ephemerides, but 2013 RF was fou1n12d nearly 1.′2 16M⊕.Blue:a=448au,e=0.16,i=33◦,m=12M⊕.Green:a=421au, away. BothETNOswerein Cetus. Astro9m8etriccalibration of the e=0.10,i=33◦,m=12M⊕. CCD frames was performed using the algorithms of the Astrom- etry.net system (Lang et al. 2010). The quality of high-precision astrometrywithOSIRISatGTCmatchesthatofdataacquiredwith brokeuprelativelyrecentlyatperihelionandthesetwoETNOsare FORS2/VLT (Sahlmann et al. 2016). The collected astrometry is fragments,or(2)bothETNOswerekickedbyanunseenperturber showninTablesA2andA3.Theneworbitalsolutionfor2013RF98 ataphelion.Sekanina(2001)hasshownthatminorbodiesresulting availablefromHorizons(asof2016December1818:51:59UT)is fromafragmentationepisodeatperihelionmusthaveverydiffer- basedon51observationsspanningadata-arcof1092d,itsresid- enttimesofperihelionpassage.Thefragmentationepisodeatper- ual rms amounts to 0′.′12: a = 349±11 au, e = 0.897±0.003, ihelion can thus be readily discarded as the difference in time of i = 29◦.572±0◦.003, Ω = 67◦.596±0◦.005 and ω = 311◦.8±0◦.6, perihelionpassageforthispairislessthanayear. referred to the epoch 2457800.5 JD TDB; the time of perihelion The second scenario pointed out above impliesthe presence passageis2455125±95JED(2009October20.7289UT).Thetime ofanunseenmassiveperturber,i.e.atrans-Plutonianplanet.Close ofperihelionpassagefor474640is2009August25.8290UT.Us- encountersbetweenminorbodiesandplanetscaninducefragmen- ing the new orbit, the directions of the perihelia of this pair are tationdirectlyviatidalforces(e.g.Sharma,Jenkins&Burns2006) separatedby14◦.2±0◦.6,theirorbitalpolesby4◦.056±0◦.003,andthe or indirectlyby excitingrapidrotation (e.g.Scheeres et al.2000; directionsoftheirvelocitiesatperihelion/aphelionby14◦.1±0◦.6. Ortizetal.2012).Alternatively,widebinaryasteroidscanbeeas- ilydisrupted during close encounters with planets. The existence of wide binaries among the populations of minor bodies orbiting beyondNeptuneiswelldocumented(e.g.Parkeretal.2011).Wide 4 ORIGINOFTHEPAIR474640–2013RF : 98 binary asteroids have very low binding energies and can be eas- FRAGMENTATIONVS.BINARYDISSOCIATION ilydissociatedduringcloseencounterswithplanets(e.g.Agnor& Fromthespectralanalysisdiscussedabove,wehavefoundthatthe Hamilton2006;Parker&Kavelaars2010).Binaryasteroiddisso- membersofthepair(474640)2004VN –2013RF showsimilar ciationmaybeabletoexplainthepropertiesofthispairofETNOs, 112 98 spectralslopes,verydifferentfromthatofSednawhichhasultra- butonlyifthereisamassiveunseenperturberorbitingtheSunwell red surface material (spectral gradient of about 26 %/0.1 µm ac- beyondPluto. cordingtoSheppard2010,and42%/0.1µmaccordingtoFornasier Inorder totest theviabilityofthishypothesis, wehaveper- et al. 2009) but compatible with those of (148209) 2000 CR formedthousandsofnumericalexperimentsfollowingtheprescrip- 105 (spectral gradient of about 14 %/0.1 µm, Sheppard 2010) and tionsdiscussedbydelaFuenteMarcosetal.(2016)andaimedat 2012 VN (spectral gradient of about 13 %/0.1 µm, Trujillo & findingthemostprobableorbitalpropertiesofaputativeperturber 113 Sheppard2014).Thesefiveobjectshavebeenincludedinthegroup abletotilttheorbitalplaneofthepair474640–2013RF froman 98 of seven singled out as relevant to the Planet Nine hypothesis initial angular separation close to zero at dissociation to the cur- (Brown & Batygin 2016). Such spectral differences suggest that rentvalueofnearly4◦.ThesesimulationsinvolveN-bodyintegra- the region of origin of the pair 474640–2013 RF may coincide tionsbackwardsintimeundertheinfluenceofanunseenperturber 98 withthatof148209and2012VN butnotwithSedna’s,whichis withvaryingorbitalandphysicalparameters(pernumericalexper- 113 thoughttocomefromtheinnerOortCloud(Sheppard2010).Other iment).Ourpreliminaryresultsindicatethataplanetwithmass,m, ETNOswithvalues of their spectral gradient inSheppard (2010) in the range 10–20 M moving in an eccentric (0.1–0.4) and in- ⊕ are2002GB (∼17%/0.1µm)and2003HB (∼13%/0.1µm). clined(20–50◦)orbitwithsemimajoraxisof300–600au,maybe 32 57 Objects with both similar directions of the orbital poles and abletoinducetheobservedtiltonatime-scaleof5–10Myr.Per- periheliacouldbepartofagroupofcommonphysicalorigin(Öpik turberswithm < 10 M ora > 600auareunabletoproducethe ⊕ 1971).ThisparticularpairofETNOsisveryunusualandamodel desired effect. Fig. 4 illustrates the typical outcome of these cal- analogoustotheoneusedbydelaFuenteMarcos&delaFuente culations.Adetailedaccountofthesenumericalexperimentswill Marcos(2014)tostudytheoverallvisibilityoftheETNOpopula- bepresented inanaccompanying paper (delaFuenteMarcos, de tionpredictsthattheprobabilityoffindingsuchapairbychance la Fuente Marcos & Aarseth, in preparation). The orbital param- islessthan0.0002.Thismodelusestheneworbitalsolutionsand etersofthisputativeplanetaresomewhatconsistentwiththoseof assumesanunperturbedasteroidpopulationmovinginheliocentric theobjectdiscussedbyHolman&Payne(2016).Super-Earthsmay orbits. FollowingÖpik (1971), thereare twoindependent scenar- format125–750aufromtheSun(Kenyon&Bromley2015,2016). iosthat couldexplainthislevelof coincidence: (1)alargeobject Ouranalysisfavoursascenarioinwhich474640–2013 RF were 98 MNRAS000,1–6(2017) Visiblespectraof(474640)2004 VN –2013RF 5 112 98 onceabinaryasteroidthatbecameunboundafterarelativelyrecent REFERENCES gravitationalencounterwithatrans-Plutonianplanetathundredsof Abbott T. et al., 2005, The Dark Energy Survey, eprint arXiv:astro- aufromtheSun.Analternativeexplanationinvolvinganasteroid ph/0510346 break-upnearaphelion,alsoafteracloseencounterwithaplanet,is AbbottT.etal.,2016,MNRAS,460,1270 possiblebutlessprobablebecauseitrequiresanapproachatcloser AgnorC.B.,HamiltonD.P.,2006,Nature,441,192 range,20planetaryradiiversus0.8auforbinarydissociation. BatyginK.,BrownM.E.,2016,AJ,151,22 BeckerA.C.,ArrakiK.S.,RestA.,Wood-VaseyW.M.,MarsdenB.G., 2007,MPECCirc.,MPEC2007-S29 BeckerA.C.etal.,2008,ApJ,682,L53 BrownM.E.,2012,Annu.Rev.EarthPlanet.Sci.,40,467 BrownM.E.,BatyginK.,2016,ApJ,824,L23 5 CONCLUSIONS CepaJ.etal.,2000,inIyeM.,MoorwoodA.F.M.,eds,OpticalandIR In this Letter, we provide for the first time direct indication of TelescopeInstrumentationandDetectors.Proc.SPIE,4008,p.623 thesurfacecomposition oftheETNOs(474640) 2004 VN and delaFuenteMarcosC.,delaFuenteMarcosR.,2014,MNRAS,443,L59 112 delaFuenteMarcosC.,delaFuenteMarcosR.,2016,MNRAS,462,1972 2013 RF . Both objects are too faint for infrared spectroscopy, 98 delaFuenteMarcosC.,delaFuenteMarcosR.,AarsethS.J.,2015,MN- but our results show that they are viable targets for visible spec- RAS,446,1867 troscopy. The analysis of our results gives further support to the delaFuenteMarcosC.,delaFuenteMarcosR.,AarsethS.J.,2016,MN- trans-Plutonianplanetsparadigmthatpredictsthepresenceofone RAS,460,L123 ormoreplanetarybodieswellbeyondPluto.Summarizing: deLeónJ.etal.,2016,Icarus,266,57 deLeónJ.,delaFuenteMarcosC.,delaFuenteMarcosR.,2016,MPEC (i) Our estimate of the spectral slope for 474640 is Circ.,MPEC2016-U18 12±2%/0.1µmandfor2013RF98is15±2%/0.1µm.These EmeryJ.P.,BrownR.H.,2004,Icarus,170,131 valuessuggestthatthesurfacesoftheseETNOscanhavepure FlaugherB.etal.,2015,AJ,150,150 methane ices (like Pluto) and highly processed carbons, in- FornasierS.etal.,2009,A&A,508,457 cludingsomeamorphoussilicates. FraserW.C.,BrownM.E.,2012,ApJ,749,33 (ii) Althoughthespectraofthepair474640–2013RF arenot GladmanB.,HolmanM.,GravT.,KavelaarsJ.,NicholsonP.,AksnesK., 98 PetitJ.-M.,2002,Icarus,157,269 perfectmatches,theresemblanceissignificantandthedispar- GrundyW.,SchmittB.,QuiricoE.,2002,Icarus,144,486 itiesobservedmightbetheresultoftheirdifferentpresent-day HolmanM.J.,PayneM.J.,2016,AJ,152,80 heliocentricdistance. KenyonS.J.,BromleyB.C.,2015,ApJ,806,42 (iii) Byimprovingtheorbitalsolutionof2013RF ,weconfirm 98 KenyonS.J.,BromleyB.C.,2016,ApJ,825,33 thatthepair474640–2013RF98hasunusualrelativedynam- LandoltA.U.,1992,AJ,104,340 icalproperties.Thedirectionsoftheirperiheliaareseparated LangD.,HoggD.W.,MierleK.,BlantonM.,RoweisS.,2010,AJ,139, by14◦.2andtheirorbitalpolesare4◦.1apart. 1782 (iv) Ournumericalanalysisfavoursascenarioinwhich474640– LicandroJ.,Pinilla-AlonsoN.,2005,ApJ,630,L93 2013RF wereonceabinaryasteroidthatbecameunbound MorateD.,deLeónJ.,DePráM.,LicandroJ.,Cabrera-LaversA.,Campins 98 afteranencounterwithatrans-Plutonianplanetatverylarge H.,Pinilla-AlonsoN.,Alí-LagoaV.,2016,A&A,586,A129 MorbidelliA.,LevisonH.F.,2004,AJ,128,2564 heliocentricdistance. ÖpikE.J.,1971,IrishAstronomicalJournal,10,35 OrtizJ.L.etal.,2012,MNRAS,419,2315 ParkerA.H.,KavelaarsJ.J.,2010,ApJ,722,L204 ParkerA.H.,KavelaarsJ.J.,PetitJ.-M.,JonesL.,GladmanB.,ParkerJ., 2011,ApJ,743,1 ACKNOWLEDGEMENTS PressW.H.,TeukolskyS.A.,VetterlingW.T.,FlanneryB.P.,1992,Nu- mericalRecipesinFORTRAN.CambridgeUniv.Press,Cambridge,p. We thank the anonymous referee for a constructive and detailed 644 report, and S. J. Aarseth for providing one of the codes used in SahlmannJ.,LazorenkoP.F.,BouyH.,MartínE.L.,QuelozD.,Ségransan thisresearchandforhishelpfulcommentsonbinarydissociation. D.,ZapateroOsorioM.R.,2016,MNRAS,455,357 Based on observations made with the Gran Telescopio Canarias; Santos-SanzP.,OrtizJ.L.,Barrera L.,Boehnhardt H.,2009,A&A,494, wearegratefultoallthetechnicalstaffandtelescopeoperatorsfor 693 theirassistancewiththeobservations.Thisworkwaspartiallysup- SavitzkyA.,GolayM.J.E.,1964,AnalyticalChemistry,36,1627 ScheeresD.J.,OstroS.J.,WernerR.A.,AsphaugE.,HudsonR.S.,2000, portedbytheSpanish‘MinisteriodeEconomíayCompetitividad’ Icarus,147,106 (MINECO)under grantESP2014-54243-R.JdLacknowledges fi- Sekanina Z., 2001, Publications of the Astronomical Institute of the nancialsupportfromMINECOunderthe2015SeveroOchoaPro- AcademyofSciencesoftheCzechRepublic,89,78 gram MINECO SEV-2015-0548. CdlFM and RdlFM thank A. I. ShankmanC.,KavelaarsJ.J.,LawlerS.M.,GladmanB.J.,BannisterM. GómezdeCastro,I.LizasoainandL.HernándezYáñezoftheUni- T.,2016,AJ,submitted(eprintarXiv:1610.04251) versidad Complutense de Madrid (UCM) for providing access to SharmaI.,JenkinsJ.T.,BurnsJ.A.,2006,Icarus,183,312 computingfacilities.Partofthecalculationsandthedataanalysis SheppardS.S.,2010,AJ,139,1394 werecompletedontheEOLOclusteroftheUCM,andCdlFMand SheppardS.S.,TrujilloC.A.,2016,AJ,152,221 RdlFMthankS.CanoAlsúaforhishelpduringthisstage.EOLO, TrujilloC.A.,SheppardS.S.,2014,Nature,507,471 theHPCofClimateChangeoftheInternationalCampusofExcel- lenceofMoncloa,isfundedbytheMECDandMICINN.Thisisa contributiontotheCEIMoncloa.InpreparationofthisLetter,we madeuseoftheNASAAstrophysicsDataSystem,theASTRO-PH e-printserverandtheMPCdataserver. MNRAS000,1–6(2017) 6 J. deLeón, C. delaFuenteMarcos andR. delaFuenteMarcos TableA1.Observationaldetailsoftheacquisitionimagesobtainedtoiden- ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbytheauthor. tifythetargets. Image# Date UTStart Airmass Exp.Time Zeropoint r′ (s) (mag) (mag) (474640) 2004VN112 1 09-02-16 02:16 1.580 120 29.240 23.63±0.10 2 09-03-16 04:21 1.120 120 29.277 23.58±0.05 3 09-03-16 04:32 1.100 60 29.277 23.51±0.05 2013RF98 1 09-05-16 02:43 1.380 180 29.281 24.57±0.10 2 09-06-16 02:55 1.320 120 29.287 24.39±0.20 3 09-06-16 03:05 1.290 120 29.287 24.42±0.15 4 09-06-16 03:23 1.240 120 29.287 24.51±0.20 5 09-06-16 03:32 1.220 120 29.287 24.45±0.05 6 09-06-16 03:37 1.210 120 29.287 24.53±0.20 7 09-07-16 03:40 1.210 180 29.287 24.53±0.05 8 09-08-16 02:46 1.330 120 29.287 24.56±0.07 9 09-08-16 02:51 1.310 180 29.287 24.55±0.10 10 09-08-16 02:56 1.290 120 29.287 24.53±0.05 11 09-08-16 03:00 1.280 120 29.287 24.49±0.10 TableA2.Observationsof(474640)2004VN112.Alltheobservations in ther′filter. Date RA(J2000) Dec(J2000) (UT) (h:m:s) (◦:′:′′) 20160902.09514 03:07:52.51 +07:38:28.1 20160903.18233 03:07:51.41 +07:38:17.7 20160903.18923 03:07:51.40 +07:38:17.5 TableA3.Observationsof2013RF98.Alltheobservationsinther′filter. Date RA(J2000) Dec(J2000) (UT) (h:m:s) (◦:′:′′) 20160905.114385 02:49:09.83 −00:10:52.0 20160906.122606 02:49:07.83 −00:11:14.2 20160906.129458 02:49:07.81 −00:11:14.5 20160906.142113 02:49:07.79 −00:11:14.7 20160906.148191 02:49:07.78 −00:11:14.7 20160906.151823 02:49:07.77 −00:11:14.8 20160907.154454 02:49:05.70 −00:11:37.3 20160908.116547 02:49:03.61 −00:11:59.1 20160908.120114 02:49:03.60 −00:11:59.1 20160908.123483 02:49:03.60 −00:11:59.3 20160908.126326 02:49:03.59 −00:11:59.4 APPENDIXA: PHOTOMETRYANDASTROMETRY DATATABLES Ther′magnitudesfromtheacquisitionimagesandtheiruncertain- tiesareshowninTableA1.TheastrometrysubmittedtotheMinor PlanetCenter(MPC)isshowninTablesA2andA3(deLeón,dela FuenteMarcos&delaFuenteMarcos2016). MNRAS000,1–6(2017)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.