ebook img

Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation

Viscosityandviscosityanomaliesofmodel silicatesandmagmas: anumerical investigation M. Bauchy, B. Guillot, M. Micoulaut∗, N. Sator Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05, France (Dated:September17,2012) We present results for transport properties (diffusion and viscosity) using computer simulations. Focus is madeonadensifiedbinarysodiumdisilicate2SiO -Na O(NS2)liquidandonmulticomponentmagmaticliq- 2 2 uids (MORB, basalt). In the NS2 liquid, results show that a certain number of anomalies appear when the 2 systemisdensified:theusualdiffusivitymaxima/minimaisfoundforthenetwork-formingions(Si,O)whereas 1 thesodium atomdisplaysthreedistinctrégimesfor diffusion. Someofthesefeaturescanbecorrelated with 0 theobtained viscosity anomaly under pressure, thelatter being befairlywell reproduced from thesimulated 2 diffusionconstant. Inmodelmagmas(MORBliquid),wefindaplateaufollowedbyacontinuousincreaseof theviscositywithpressure. Finally,havingcomputedbothdiffusionandviscosityindependently, wecandis- n cussthevalidityoftheEyringequationforviscositywhichrelatesdiffusionandviscosity. Itisshownthatit a canbeconsideredasvalidinmeltswithahighviscosity. Ontheoverall,theseresultshighlightthedifficultyof J establishingafirmrelationshipbetweendynamics,structureandthermodynamicsincomplexliquids. 1 3 PACSnumbers: Keywords: ] i c s I. INTRODUCTION andBehrens,2009).Atconstanttemperature,theevolutionof - l viscosity with pressure is complexand dependson the com- r t positionofthesilicatemelt,inparticularonitsdegreeofde- m Viscosityisoneofthekeypropertiesinfluencingtheoverall polymerization. With highly polymerized melts (e.g. albite . behaviorofmagmaticliquids. Itisafundamentalpropertyin and dacite) the viscosity decreases continuously with pres- t a EarthSciencesandhasthereforeledafternearlyfivedecades sure, though its behavior above the maximal pressure of in- m ofintensiveresearchtoahugebodyofexperimentalandthe- vestigation (≃7 GPa for albite and dacite) cannot be clearly oreticalstudies and data base (Giordanoet al., 2008; Mysen - anticipated. However, it is observedthat the decrease of the d and Richet, 2005). Systematic investigations with compo- viscositywithpressurebecomesmoregradualwhenthetem- n sition and temperature in simple or complex silicates have peratureisraisedandcanleadtoaplateauvalueathighpres- o been performed, and some generic trends have been iden- c sure (e.g. jadeite). When the melt is less polymerized (e.g. tified that have become quite popular. For instance, it has [ albite-diopsidesystem),afteraninitialdecrease,andaccord- been found that numerous systems were displaying an Ar- ing to the temperature, the viscosity exhibits a plateau value 1 rhenius behavior (Micoulaut, 2010) with temperature of the v formh =h exp[E /k T]whereE representstheactivation or a weakly pronounced minimum with the pressure. With 8 0 A B A depolymerizedmelts(e.g. diopsideandperidotite)adifferent energyforviscousflow. Whenproperelyrescaledwitharef- 1 situationoccurs.Theviscosityfirstincreaseswithrisingpres- 5 erence temperature,Tg, at which the viscosity is 1012 Poise, sureandreachesamaximumvaluepriortodecreaseathigher 6 twocategoriesofliquidshavebeenidentified(Angell,1995) pressure, but higher the degree of depolymerization of the . : those which remainArrhenius-likein the super-cooledliq- 1 meltmorepronouncedistheviscositymaximum. Moreover, uid over the entire range of temperatures implying that E 0 A inamoregeneralway,thepressureevolutionoftheviscosity 2 does not depend on T, and those which display a curvature hasbeenfoundtobe(anti-)correlatedwiththatoftheoxygen 1 in the Arrhenius representation (a semi-log plot as a func- andsilicondiffusioncoefficients(ShimizuandKushiro,1991; : tion of inverse temperature) indicating that one has a tem- v Poeetal.,1997;Reidetal.,2001;Tinkeretal.,2003),afind- i peraturedependenceintheactivationenergyforviscousflow ingwhichhasbeeninterpretedasthesignatureofapressure- X (Wang et al., 2006). Usually, such liquids are fitted quite inducedstructuralrearrangement. r successfullywithaTamman-Vogel-Fulcher(TVF)law(Path- a Theunderstandingofchangesintheviscousflowwithap- manathanandJohari,1990;GiordanoandDingwell,2003a,b) plied pressure can be suitably investigated by molecular dy- : h =h exp(A/(T−T ),AandT beingconstants. 0 0 0 namics(MD)simulations.Thereareseveralwaystocompute There has been a continuing effort to measure viscosity viscosity. ReadersshouldrefertoAllenandTildesley(1987) as function of pressure (Scarfe, 1973; Kushiro, 1976, 1978; foradetaileddiscussionandpresentation.Atequilibrium,the 1986; Kushiro et al., 1976; Scarfe et al., 1979; Brearley et computation of viscosity from MD simulations can be per- al., 1986; Dunn and Scarfe, 1986; Moriet al., 2000; Suzuki formed by using the Green-Kubo (GK) formalism which is et al., 2002, 2005, 2011; Reid et al., 2001; 2003; Tinker et based on the calculation of the stress auto-correlation func- al.,2004;Liebskeetal.,2005;Ardiaetal.,2008;DelGaudio tion(BoonandYip,1980)givenby: F(t)=hPab (t)Pab (0)i (1) ∗Correspondingauthor:[email protected] wherePab (t)istheba component(a ,b )=(x,y,z)ofthemolec- 2 ularstresstensordefinedby: a sodium disilicate (NS2) and a mid-ocean ridge basalt (MORB). The molecular dynamics (MD) simulations were Pab =(cid:229)N mivai vbi +(cid:229)N (cid:229)N Fiajribj a 6=b , (2) p1e9r9f6o)rmineNdPwTithEnthseemDbLl_e.POThLeYe2q.u0actioodnes(oSfmmitohtiaonndsfFoorrraetostmers, i=1 i=1j>i weresolvedwitha time step of1-2fs(10−15 s) bytheleap- whereFa isthecomponenta oftheforcebetweentheionsi frogalgorithm. ij LiquidNa O-2SiO hasbeensimulatedbyplacing666sil- and j, rb and vb being the b componentof the distance be- 2 2 ij i icon, 666 sodium, and 1668 oxygen atoms in a cubic box tween two atomsi and j, and the velocityof atom i, respec- withperiodicboundaryconditions. Astheatomsarebearing tively. Alternative forms for Pab exist (Allen and Tildesley, charges(ions),thelongrangecoulombicforcesareevaluated 1987)butthesearefoundtoleadtospuriouseffectswhenperi- by a Ewald sum. The atoms interact via a two-body poten- odicboundaryconditionsareconsidered(Lee,2007)orwhen tial(Born-Majertype)parametrizedby Teter(2003, see also the Ewald sum is notperformedin a neat way (Alejandreet Cormacketal.,2003),whichwrites al.,1995;Allenetal.,1994).Inthiscase,F(t)isfoundtonot decayto zeroin thelong-timelimit, asexpected(Lee,2007; V (r)=A .exp(−r/r )−C /r6+zz /r, (4) ij ij ij ij i j Green, 1957; Kubo, 1957). One other possibility is to com- pute the viscosity within the frameworkof Non-Equilibrium whereristhedistancebetweenatomsiand j,zi istheeffec- Molecular Dynamics (Lees and Edwards, 1972). Here, the tive charge associated with the ion i, and where Aij, r ij and ratioofshearstressto astrain rateiscomputedandextrapo- Cij are parametersdescribingrepulsiveanddispersiveforces lated to the limit of zerodrivingforce (Borodinetal., 2009; betweentheionsiand j. Inthepresentreport,wedonotfocus Fernandezetal. 2004;CherneandDeymier,1998). onstructureandthermodynamicpropertiesofliquidNS2sim- Coming back to the GK formalism commonly used with ulatedwiththispotentialandforadetailedanalysisandcom- MDsimulations,theviscosityiscalculatedfromthetimein- parisonwithexperimentaldatawereferthereadertoDuand tegralofthestressauto-correlationfunctionF(t)(seeeqs. (1) Cormack(2004,2005).Noticethatatzeropressureand300K and(2)), thedensityofthesimulatedNS2glassisequalto2.45g/cm3, i.e. quiteclosetotheexperimentalvalue(Vaillsetal.,2001) h = 1 ¥ F(t)dt. (3) 2.37g/cm3. k TV Z The mid-ocean ridge basalt (MORB), a nine component B 0 system (0.13 wt% K O, 2.94 wt% Na O, 11.87 wt% CaO, 2 2 Theviscosityofafewsilicatemeltshasbeenevaluatedby 7.77wt%MgO,8.39wt%FeO,1.15wt%Fe O ,15.11wt% 2 3 MD simulation in followingthis route. Ogawaet al. (1990) Al O , 1.52wt% TiO and 50.59wt% SiO ), hasbeen sim- 2 3 2 2 were the first to evaluate the viscosity of a silicate melt (a ulatedwithatwo-bodypotentialofthesameformaseq. (4). sodiumdisilicate)byMDsimulationbuttheirresultsareun- ThechemicalcompositionoftheMORBmeltandthepoten- certain due to a poor statistics. For silica, Horbachand Kob tial parametersare those given by Guillot and Sator (2007a) (1999)determinedthetemperaturebehaviorandBarratetal. in their simulationstudy of naturalsilicate melts (see Tables (1997)studiedthe pressuredependenceathightemperatures 1and2therein). ThesimulatedsampleofMORBwas com- butwithoutpointingoutexplicitlythattheirresultsshoweda posedof3,000atoms(555Si,12Ti,195Al,9Fe3+,60Fe2+, viscosityminimumatabout20GPa. MorerecentlyLackset 126 Mg, 141 Ca, 63 Na, 3 K, and 1,836 O) contained in a al.(2007)ininvestigatingbyMDthepropertiesofsilicateliq- cubicboxwithperiodicboundaryconditions.Thecontrolpa- uidsalongtheMgO-SiO joinfoundaviscosityminimumat 2 rameters(timestep,Ensemble,etc.) ofthesimulationarethe about20GPainpuresilica,aviscosityminimumwhichdisap- same as for liquid NS2. The density of MORB at liquidus pearsprogressivelywithincreasingMgOcontent.Sincethen, temperatureanditsequationofstate(i.e. densityversuspres- these resultshave been confirmedby the MD studies of Ad- sure) are well reproduced by the MD calculation (for a de- jaoudetal. (2008,2011)onMg SiO melts,thoseofSperaet 2 4 tailed description of the properties of the MORB melt, see al. (2011)onmoltenenstatiteandalsobyfirst-principlesMD GuillotandSator2007a,b). Noticethatlongsimulationruns calculationsof Karki and Stixrude (2010a,b)on liquid silica (≃10 ns or 107 time steps) were performed to reach a good andonliquidenstatite. Wefinallymentiontherecentstudies statisticswhenevaluatingtheviscositybytheGreen-Kuboin- ofKarkietal. (2011)andGoshandKarki(2011)onanorthite tegrand. liquidandMg SiO liquid,respectively. 2 4 Beforepresentingresults,itisworthwhiletokeepinmind somekeydatawhenoneisabouttocalculatetheviscosityofa supercooledmelt. Inusingahighperformancecomputer,the II. MODELINGSILICATES longestMDrunthatcanbeperformed(inareasonabletime) forasystemcomposedof≃3,000atomsisabout1µs(or109 A. Simulationdetails MDsteps).Toobserveonthistimescalethediffusionofatoms inthesimulationbox,the meansquaredisplacementofeach To complement the above MD studies and to bring some atomafter1µshastobe(onaverage)oftheorderof≃10Å2 new information, we have investigated in the present study (themeandistancebetweentwonearestneighborsisroughly two silicate melts exhibiting comparable NBO/T ratio (≃ 3 Å in a melt, so the diffusive regime is reached when each 0.8 and 1) but with very different chemical compositions; atom has interchanged its position with a nearest neighbor). 3 Therefore,thesmallestdiffusioncoefficientthatcanbeeval- 100 uatedovera1µsMDrunisequalto≃2×10−14m2/s(from Na : Negodaev et al. Einstein relation Dmin=hrm2ini/6tmax where hrm2ini=10 Å2 and 10 Na NNaa :: GJouhpntsao ann edt Kali.ng t =10−6 s). InapplyingtheEyringtheorytoviscousflow O Si, O : Truhlarova et al. max s 1 MD : Horbach et al. ,theviscosityh canbededucedfromthediffusioncoefficient 2/ Na MD : Present work m Dofnetworkformingionsthroughtheequation, c 5 0.1 -0 O 1 h = kBT (5) D. 0.01 Si l D 0.001 Si whereT isthetemperatureandl a jumpdistanceinthe vis- A cous flow. Experimentally it has been shown (Shimizu and 0.0001 0 2 4 6 8 10 12 14 16 Kushiro,1984)thatthisequationworkswellwithviscousliq- 4 10 /T uids(e.g. silicateswithhighsilicacontents)providedthatthe 100 D value is assigned to that of O or Si atoms and l ≃2.8Å, Si, O : Lesher et al. the oxygen-oxygen mean distance in silicate melts. Using 10 Na : Henderson et al. equ. (5), a value of D equal to 2×10−14 m2/s leads to a MD : Present work O Na corresponding viscosity af about 3000 Pa.s at 1473 K. We 2/s 1 m can use the Maxwell relation for which the relaxation time for viscous flow is related to the viscosity throughthe equa- -5 0c 0.1 Si tion,t relax =h /G¥ ,whereG¥ ≃1010 Pa.sistheshearmod- D.1 0.01 O ulusatinfinitefrequency(DingwellandWebb, 1989). So to fullyrelaxaviscousmeltofviscosityh ≃104Pa.soneneeds 0.001 toperformaMDrunlongerthant =1µs,afindingcon- B relax 0.0001 sistent with the evaluation based on the diffusion. Although 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 qualitative, these estimates are usefulbecause they pointout 104/T that only the low viscosity regime (i.e. h ≪ 104 Pa.s) can beinvestigatedbyMDsimulation,thehighlyviscousregime Figure1: (Coloronline)A)ComputeddiffusionconstantsDNa,DSi (104 -1012 Pa.s)beingunreachablewith usualnumericalre- andDO intheNS2liquidasafunctionofinversetemperature(blue sources. In the present study our MD runs did not exceed curvesandsymbols),comparedtoexperimentaldataforDNa(Gupta andKing,1967;Negodaevetal.1972;Johnsonetal.,1951)andD , ≃10ns,whichmeansthatonlyaviscosityvaluesmallerthan Si D (Truhlarova et al., 1970), and to the simulated values of D , ≃10Pa.s(100Poise) couldbe investigated(noticethatmost O Na D andD usinganalternativepotential(redcurvesandsymbols, oftheMDstudiespublishedintheliteratureoftendonotex- Si O Horbach et al., 2001). B) Computed diffusion constants D , D Na Si ceed1nsrunintervals). and D in the MORB liquid as a function of inverse temperature O (bluecurvesandsymbols), comparedtoexperimentaldataforD Na (Hendersonetal.)andD ,D (Lesheretal.1996). Si O B. Diffusioncoefficients Wefirstcomputethemean-squaredisplacementofatagged of Truhlarova et al. (1970) who determined the (Si,O) dif- atomoftypea inthemelt,givenby fusionfroma SiO dissolvationreactionin a NS2 liquid. In 2 thisrespect,theTeterpotentialappearstobeveryaccuratefor hr2(t)i= 1 (cid:229)Na h|r(t)−r(0)|2i , (6) reproducingthediffusionofelementsintheNS2melt. Were- Na i i markthatthediffusioncoefficientsdisplayanArrhenius-like i=1 dependencewhen 104/T>4with activationenergiesequalto and extract from the dependence of hr2(t)i the long time 1.18eV,1.17eVand0.43eVforSi,OandNarespectively. behavior where the dynamics becomes diffusive. Using the To be complete, one should stress that alternative poten- Einsteinrelationlimt→¥ hr2(t)i/6t =D,onecanindeedhave tials (Kramer et al., 1991) lead to diffusion coefficients for access to the diffusion constants D (i=Si, O, Na) from the (Na,Si,O)thatare found(Horbachetal., 2001)to beatleast i mean square displacement. These quantities are plotted for one order of magnitude lower than the experimental values NS2 and MORB in Fig. 1 as a function of inverse temper- (for 104/T>5), and our own results on the MORB liquid as ature. Because of the slowing down of the dynamicsat low well(seebelow), whereasthecorrespondingactivationener- temperature, the computationof D is here restricted to T > gies also differ by a factor of ≃2 (Fig. 1). These findings i 1500KwithNS2andT>1173KwithMORB.ForNS2,the illustrate how difficult the numerical reproduction of diffu- diffusionofsodiumatomsisfoundtoberemarkablycloseto sion coefficients in silicate melts can be. This well-known theexperimentaldataobtainedbyGuptaandKing(1967)and featurehasbeenhighlightedforthecaseofsilicabyHemmati Negodaev et al. (1972), with a very good agreement some- andAngell(1997)whoshowedthatdiffusionishighlymodel where around 104/T ≃6. For network forming ions (Si,O) dependentwith differencesbetween modelsincreasing up to an excellent agreement is found with the experimental data at least three orders of magnitude when the liquid is cooled 4 on 1 reasonableagreementwithBockrisdata(≃1.65eV)measured cti (Bockrisetal.,1954)inthetemperaturerange(1723-1373K n n fu0.8 or 5.8<104/T<7.3). Furthermore, in the temperature range atio NS2 where calculated and experimental values can be compared correl0.6 swmitahlleearcbhyoatfhaecrto(ir.eo.f≃5.28<th1an04t/hTe<e6x.p7e)ricmalecnutlaaltdedatavaolfuBesocakre- o ut ris et al. (1955). This deviation is surpring given the good A0.4 ss MORB agreementobtainedfor the diffusioncoefficients(see Figure Stre0.2 1),andgiventhefactthath andDcanbesimplyrelated(equ. d 5). e z ali In the case of MORB the temperature dependence of the m 0 or calculated viscosity is found to be non Arrhenian and can N 0,001 0.01 0.1 1 10 100 1000 be fitted accurately over a large temperature range by the Time (ps) TVF equation with h ¥ =6.5× 10−3 Poise, A = 0.42 eV, and T = 670 K. Experimentally, the viscosity of basaltic melts 0 Figure 2: (Color online) Stress auto-correlation function F(t) of a is known to be non Arrhenian, so the simulation reproduces 2000KliquidNS2asafunctionoftimeforr =2.5g/cm3,anda2273 this feature, but the simulated MORB is much less viscous KMORBliquidatthesamedensity. than the real one (a factor of 50 at 1673 K, see Fig. 3), this is why A and T values are slightly differentfrom those rec- 0 ommendedforbasaltsbytheregressionformulaofGiordano down. So, the very good agreement between experimental andDingwell(2003a,b),and Giordanoet al. (2008). In fact andsimulatedionicdiffusivitiesintheNS2 melt, allowsone the MORB melt simulated at 1273 K corresponds, as far as tobereasonablyconfidentintheabilityoftheTeterpotential the viscosity is concerned, to the real melt at about 1673K, to describe accurately other transport properties as the melt thistemperaturedeviationdiminishingathighertemperatures viscosity. As for the MORB melt, the temperature depen- wheretheviscosityofanysilicatemelt(whateverisitscom- dence of the O, Si and Na diffusion coefficientsis shown in position)tendstobeverylow(lessthan0.1Poiseabove3000 panelBofFig.1(amongallthenetworkmodifyingcationsin K).Moregenerally,theagreementbetweenexperimentaland MORB,onlythediffusioncoefficientofNaisshownbecause calculatedviscositiesfor silicate melts is actuallydifficultto it is the most mobile ion and because it is commonwith the obtainbecausetheviscosityseemstobeevenmoresensitive NS2melt).NaisfoundtodiffusemoreslowlyinMORBthan to the details of the potential than the diffusion coefficients inNS2whereasSiandOatomsarediffusingfaster. However, themselves (for a related discussion see Vuilleumier et al., the agreementbetweensimulated andexperimentalvaluesis 2009). Moreover, direct comparisons between experimental poorerwithMORBthanwithNS2(seeFig. 1foracompar- andsimulatedvaluesofthe viscosityarescarce inthe litera- ison). Actually, Na, Si and O atoms diffuse too rapidly in ture(e.g. Lacksetal.,2007;Adjaoudetal.,2008;Karkiand thesimulatedMORB (byafactorof≃5forNa and≃50for Stixrude, 2010b, Spera et al., 2011) and are usually done at Si and O ). So one may anticipate some deviation between veryhightemperature(>2500K)where the viscosity is very calculatedandexperimentalviscositiesforthebasalticliquid, lowanditsexperimentalvaluebadlyknownorobtainedfrom andabetteragreementforliquidNS2. uncontrolledhigh-temperatureextrapolations. In the TVF equation, h ¥ represents the high temperature limittosilicatemeltviscosity.Byanalyzingmeasuredviscos- C. Viscosity ity curves for a great number of silicate liquids, it has been shown that all silicate melts convergeto a commonvalue of In Figure 2, we represent the stress auto-correlationfunc- viscosity at very high-T, about 10−2-10−3 Poise (Russell et tion F(t) of NS2 and MORB at around zero pressure, com- al., 2003; Giordano et al., 2008, Zheng et al., 2011). But it puted following equs. (1) and (2). As mentioned above, isdifficulttotestthisconjecturebecauseofa lackofviscos- the stress auto-correlationfunction is indeed found to decay itydataforsilicateliquidsatsuper-liquidustemperatures(i.e. to zero. Typical oscillations which are found at the subpi- for T ≥ 2000 K). In contrast, the simulation can shed some cosecondtimescaleareassociatedwithfrequenciesintheTer- light on this topic because the high-T range is easily acces- ahertz range and above [10-300 THz] corresponding to the sible in a numerical experiment. However it is worthwhile main band found in the vibrational density of states. This toclarifywhatmeanstheconceptofahigh-temperaturelimit band is attributed to stretching motions of Si-O and Na-O forasilicateliquid.Whenasilicatemeltisheatedisobarically bonds(and other cation-oxygenbondsin MORB). Note that (e.g. underatmosphericpressure) it vaporizesincongruently theseoscillationsaredampedasthepressureisincreased(not in forming a gaseous phase which is a complex mixture of shown). Followingeq. (3), the time integrationof the stress atomsandmolecules(e.g. themajorvaporspeciesaboveliq- auto-correlationfunctionleadsto theviscosity(Fig. 3). The uid silica are SiO, SiO , O and O, and about thirty species 2 2 viscosity of NS2 exhibits an Arrhenius-like behavior over a compose the vapor phase above a basaltic lava, for a review broad temperature range (2<104/T<6). The calculated acti- see Schaefer and Fegley, 2004). Nevertheless this is not a vationenergyforviscousflowisabout≃1.33eVwhichisina real problemas long as the resulting vaporpressure remains 5 low,i.e. thetemperatureisnottoohigh(e.g. thevaporpres- 1000 sure above basaltic lavas is 10−5-10−4 bar at 1900 K). This MORB (Villeneuve et al., exp.) situationchangesdrasticallyathighertemperaturewherethe 100 vaporpressurebecomeshigh(e.g.≃10−2barat2500Kabove NS2 (Bockris, exp.) for a tholeiitic liquid). Thenthe vaporizedfraction becomes rapidlynon-negligible(10%ormore)andthecompositionof ) 10 e theresidualmeltdeviatessignificantlyfromtheoriginalone. s oi To avoid this problem, one only has to prevent vapor for- P mation in applying on the liquid an isostatic pressure larger ( 1 NS2 (MD) h than the saturating vapor pressure. A convenientthermody- namic path consists to follow (or to be as close as possible) MORB (MD) 0.1 theliquidbranchofthe liquid-vaporcoexistencecurveupto the critical point. The critical point parameters for silicates haveneverbeenmeasuredbecauseoftheveryhightempera- 0.01 turesinvolved(muchbeyond5000K,estimationsforSiO are 2 3 4 5 6 7 8 2 giveninGuissaniandGuillot(1994)andMelosh(2007)).By 104/T (K-1) imposingthepressure,wehavebeenabletoevaluatethevis- cosityofoursimulatedMORBalong(orcloseby)theliquid Figure3:(Coloronline)SimulatedviscosityoftheNS2liquidatzero branch of the liquid-vapor coexistence curve. However due pressure(filledredsquares),comparedtoexperimentaldata(redcir- tothedensityfluctuationsgeneratedbytheMDcalculationit cles) fromBockris et al. (1955), together withsimulatedviscosity becomesmoreandmoredifficulttopreservethecohesionof of the MORB liquid at zero pressure (filled black squares), com- the liquid phase in rising the temperature because the liquid paredtoexperimentaldata(brokenblackcurve)fromVilleneuveet thentendstotransformspontaneouslyintothecorresponding al.(2008).ThedottedlineisahightemperatureArrheniusfitforthe vapor phase. So the highest temperaturereached in keeping MORBdatawhereasthesolidlineisaTVFfit(seetextforparame- ters). the cohesion of the liquid phase around 1 bar was 4673K, a temperature at which the density is equal to 1.47 g/cm3 and the viscosity is evaluated to 10−2.8 Poise. This latter value Pressure (GPa) matches rather well the estimated range for h ¥ (10−2-10−3 0 5 10 20 30 35 Poise,seeabove). Itiscertainlypossibletopursuethecalcu- lationathighertemperatureuptothecriticalpoint,butitisa 1 1.2e-08 tedioustasktolocateaccuratelythecriticalpointofourmodel -1a) adnudrewweitlhealviqeutihdaNttSo2awfuethuarevewroerakc.hIendu4s5i0n0gKth,eastaemmepeprraotucere- 2/s) 0.1 8e-09 (PT ahcto¥ swifthoyirc1hM0t−hO2e.R5lBiPqouaiinsdedd.NeWnSse2itayantitsitchaiespalcotrewittihacsaatl1tp.h6oe6incgto/cmcmomu3lodannbdveaitlasubevoiousf-t -5D (10 cm 0.01 04e-09 kpressibility 10−3 Poise or slightly less. Notice that in approaching the m -4e-09 o criticalpoint,thestructureofasilicateliquidisquitedifferent 0.001 C ofthestructurefromthemeltneartheliquidus.Thenearcrit- -8e-09 icalliquidisindeedfullydepolymerizedandiscomposedof 1.5 2 2.5 3 3.5 4 4.5 molecularclustersinvolvingvariousspecies(oxides). Soitis r (gm/cm3) expectedthat all silicate liquidswill exhibitsimilar flow be- haviorinthecriticalregion,thatofaregularmolecularliquid. Figure4: (Coloronline)Silicon(red),Oxygen(green),andsodium We now follow both viscosity and diffusionwith pressure (black)diffusionconstantsofaNS2liquidatT=2000Kasafunction inourtwomelts(NS2andMORB).InFig. 4and5,weplot ofsystemdensity(bottomaxis)andpressure(topaxis). Rightaxis: thebehaviorofthediffusionconstantswithdensityandpres- Isothermalcompressibilityoftheliquidcomputedfromtheequation sure. Themostmobileatom,Na,isfoundtodisplaythesame ofstateat2000K. behaviorin the two melts: its diffusioncoefficientis contin- uously decreasing with the pressure. In the case of MORB theothernetworkmodifyingcations(Ca,K,Mg,...) showthe 2002),germania(DreyfusandMicoulaut,2012),somesodo- samebehaviorwiththepressureasNadoes(Fig. 5). aluminosilicates(Poeetal.,1997)andinwater(Erringtonand The behavior of network forming ions (Si,O) is quite dif- Debenedetti,2001). ferent as their diffusion coefficients go through a maximum Issuchananomalyalsovisibleintheevolutionofviscosity value with the pressure. Furthermore this maximum is lo- withpressure? Actually,forNS2wedofindthath displaysa cated at about 15 GPa in NS2 and about 50 GPa in MORB minimumofviscositybutinapressurerange4-10GPawhich andit ismuchmorepronouncedin the NS2 meltthanin the does not coincide with the diffusivity maximum for Si and basaltic composition. Notice that a diffusivitymaximumfor O (P =15GPa). ForMORB, the viscosityshowsnomini- max networkformingionsisalsoobservedwithsilica(Shelletal. mum,itisnearlyconstantupto5GPaandincreasesprogres- 6 10 of these data along the sequence of composition albite→ jadeite→rhyolite→andesite→basalts→albite -diopside x 1−x →jadeite -diopside →diopside→peridotite,whichcov- x 1−x Na ers a large NBO/T range (from 0 to 2.8), leads to a con- ) s 2/ O trasted picture. In the initial pressure range (0-2 GPa), the m slope (dh /dP) is negative for composition with NBO/T ≤ c T 5 1 1.2 and is positive for higher NBO/T value. Although the -0 Si 1 NBO/T ratio is a good indicator of melt polymerization, its ( D useforpredictingthepressureevolutionofviscosityrequires somecaution(e.g. ToplisandDingwell,2004). Forinstance, albiteandjadeitemeltsarebothconsideredasfullypolymer- ized (NBO/T=0) but the pressure behavior of their viscosity 0.1 isdifferent(aviscositycurvepresentingaweakminimumlo- 0 5 10 15 20 catedabout2-3GPaforjadeiteascomparedwithacontinuous Pressure (GPa) decreaseoftheviscosityoverseveraldecadesupto7GPafor albite,seeSuzukietal. 2002,2011). Inkeepinginmindthis Figure5: (Coloronline)Silicon(red),Oxygen(green),andsodium information,andaccordingtotheabovedataanalysis,thevis- (black)diffusionconstantsofaMORBliquidatT=2273Kasafunc- cosity of NS2 and MORB composition (NBO/T=1 and 0.8) tionofpressure. should exhibit a negative slope. For instance, Scarfe et al. (1987) notice that the viscosity of the NS2 melt is decreas- ing between 0 and 2 GPa. In the same way, the viscosity of 10 oceanic basalts (Kushiro et al., 1976; Kushiro, 1986; Ando, 2003)maintainedatfixedtemperaturedecreasesslightlywith increasingpressureupto3GPawhereitreachesaminimum valuepriorincreaseuponfurthercompression. Butasan in- ) crease of the temperature tends to decrease the viscosity of e s NS2 a meltmaintainedat a fixed pressure, the weak minimumof oi P viscosityinbasaltsisexpectedtodisappearinincreasingthe ( 1 temperature. Thisiswhya viscosityminimumisbarelyvis- h ible with ourMORB melt simulated at 2273K,especially as thelatteronedescribestheviscousflowofarealMORBata highertemperature,maybeashighas2600-2700K(seeFig. MORB 3).IncontrasttheviscosityofthesimulatedNS2meltat2000 Kpresentsaclearminimumasafunctionofpressure(notice 0.1 that the temperature dependenceof the viscosity of the NS2 0 10 20 30 meltismuchbetterreproducedbythesimulationthanin the P (GPa) MORBcase,seeFig. 3). Sincethefirstreportofananomalouspressuredependence Figure 6: (Color online) Simulated viscosity of a NS2 liquid at oftheviscosity((dh /dP) <0)byKushiro(1976)andKushiro T T=2000 K (filled circles) and a MORB liquid at T=2273 K (open et al. (1976), differentauthors have tried to explain the ori- circles)asafunctionofpressure. gin of this phenomenon. Using the Adam-Gibbstheory and a pressure dependence for the degree of melt polymeriza- tion,BottingaandRichet(1995)haveshownthatthedecrease sivelyatahigherpressure.Thesesimplefindingssuggestthat of the specific volume with alkali content was leading to an thediffusivitiesofnetworkformingionsarenottheonlyones increased sensitivity of the viscosity with pressure change. responsible of the viscous flow, network modifying cations Gupta (1987) has proposed that a system having a thermal playalsoarole. expansion coefficient in a glass larger than that of a liquid coulddisplaysuchanomalies.However,thisdoesnotseemto beverifiedexperimentally(Knocheetal., 1994). A relation- III. DISCUSSION shipwithstructuralchangesunderpressurealsohasbeenpro- posed,inparticularapressure-inducedcoordinationchangeof As briefly recalled in the introduction, the pressure de- SiandAlorSi-OandAl-Obondweakeningduetopressure- pendence of the viscosity has been reported experimentally induceddistortionoftheliquidstructure(Waff,1975;Mysen for a number of silicates (Scarfe, 1973; Kushiro, 1976, etal.,1980).However,astudy(Sharmaetal.,1979)ondense 1978; 1986; Kushiro et al., 1976; Brearley et al., 1986; liquidGeO wherebothcoordinationchange(Micoulautetal. 2 Dunn and Scarfe, 1986; Mori et al., 2000; Suzuki et al., 2006)anda pressureinducedviscosity anomalyoccurcould 2002, 2005, 2011; Reid et al., 2003; Tinker et al., 2004; notestablish the correlation. This doesnot rule outthe pos- Liebske et al., 2005; Ardia et al., 2008). The analysis sibility of a structural origin for the anomaly. For instance, 7 Suzukietal. (2002)dofindacorrelationbetweenthegradual decreaseof the viscosity of albite with pressure upto 7 GPa T=2000K, change in P 20 P=0 GPa, change in T andtheincreasingconcentrationof5-coordinatedAl. Thevariationofh alonganisothermalsosuggeststhatthe corresponding activation energy for viscous flow EA(P,T) is minimum.Here,forselectedpressuresintheNS2system,we 15 have computed h with temperature and find that the activa- ) Å tionforviscousflow shouldminimizeindeedin thepressure ( window, i.e. we obtain EA=1.33, 1.09 and 1.34 eV for P=0, l 10 6, and 22 GPa, respectively. The link between E minima A and the presence of a stress-free state in correspondinglow- temparature glassy networks has been established recently (Micoulaut, 2010), indicative of a flexible to rigid transition 5 (MicoulautandPhillips,2003). Sinceitisknownthatatam- bientpressuretheNS2isflexible(Vaillsetal.,2005),onemay 0.1 1 10 100 obtain a pressure-inducedflexibleto rigid transitionwith in- h (Poise) creasingP(Trachenkoetal. 2004),theminimuminE (and A h )beingoneoftheexpectedsalientfeatures. Figure 7: (Color online) Typical lengthscale l associated with the Insummary,allthesestudiespointoutthesubtleinterplay Eyringrelation(5)asafunctionofthemeltviscosityofaNS2liq- betweenstructure,dynamicsandthermodynamicsofthesili- uid, computed either from thepressure variation(at 2000 K,black catemeltthatleadstoanomalousbehaviorintransportprop- symbols)orfromthetemperaturevariation(atP=0,bluesymbols). erties. T=2000Kfor NS2 (with varyingpressure). For convenience A. Viscosityversusdiffusion this length is represented in Fig. 7 as function of the calcu- latedmeltviscosity. Alongeachpath(isobarorisotherm)the arrowindicatesthedirectionoftheincreasingthermodynamic Theconnectionbetweendiffusionandviscositycanbere- parameter(TorP).Noticethatintherepresentationl (h )(Fig. alizedinasimplewayviatheEyringrelationshipgivenbyeq. 7), both curvesexhibita maximumvalue (22Å) for both the (5)involvingl whichisatypicaljumpdistanceforthediffus- isothermandtheisobarwhichexpressesanon-trivialbehavior ingatom. AccordingtoEyring,therelationship(5)holds(i.e. of h with diffusivity. Clearly, for the two meltcompositions l is constant and equal to the average interatomic distance) andwhateverthethermodynamicpath,l decreaseswhenthe iftheactivatedprocessfordiffusioncanbeassumedidentical meltviscosityincreases. Asimpleextrapolationsuggeststhat with that of viscous flow. So for silicate melts the network theEyringrelationshouldbeverifiedonlywhentheviscosity formingions(SiandO)aregoodcandidatestofulfillthispre- issufficientlyhigh(forh > 100Poise),i.e. whenl becomes requisite.InfacttheEyringrelationshiphasbeentestedovera of the orderof ≃ 5Å.. This conclusionis in agreementwith largerangeofmeltcomposition,fromsimplebinaryoxidesto theviscositydatadiscussedabove. On theotherhand,when naturalmagmacompositions(Oishietal., 1975;Yinnonand the viscosity is becoming very low and the diffusion coeffi- Cooper,1980;Dunn,1982;ShimizuandKushiro,1984;Dunn cientsofnetworkformingionshigh(>10−9m2/s),thelength andScarfe,1986;Lesheretal., 1996;Reidetal., 2003;Tin- l matchesbetter the valuespredicted by the Stokes-Einstein keretal.,2004). Inpolymerizedmeltsofhighviscosity(e.g. equation, l = 2p d, where d is the diameter of the diffusing jadeite),itisobservedthatthediffusivityofoxygenionsand molecule(≃ 3Åforoxygen).AstheStokes-Einsteinrelation themeltviscosityarerelatedtoeachotherthroughtheEyring workswellwithmolecularliquids(LiandChang,1955)itis relation in introducing for the jump distance, l , the average not too surprising that it also leads to reasonable values for oxygen-oxygendistanceinthemelt(≃2.8Å).Indepolymer- silicateliquidsatveryhightemperature(e.g. inapproaching izedmeltswheretheviscosityisgenerallylower(e.g. basalts thecriticalpoint)wherethemeltisessentiallydepolymerized anddiopside),theEyringrelationisfulfilledwithl largerthan andsharessomestructuralsimilaritieswithregularliquids.In 2-3timesthemeanoxygen-oxygendistance.Howeverevenin summary,theEyringrelationisnotadaptedtothedescription polymerizedmelts,theEyringrelationfailstofullyreproduce of the transport properties of silicate melts at superliquidus thecorrelatedevolutionofviscosityandoxygenself-diffusion temperatures. Alternative modelshave been proposedin the coefficient. Asamatteroffactithasbeenreportedthatoxy- literature(seeMungall,2002)butaquantitativetheoryisstill gen self-diffusion coefficient in albite (Poe et al., 1997) and lacking. indacitemelts(TinkerandLesher,2001)reachesamaximum valueatabout5GPawhereastheviscosityofthecorrespond- ing liquids is continuously decreasing with the pressure and shows no viscosity minimum at 5 GPa (Suzuki et al., 2002; B. Structuralcorrelations Tinker et al., 2004). In this context, we have evaluated the length, l = k T/h D along two thermodynamic paths : Asmentionedbefore,therehavebeenmanyattemptstocor- B O,Si the isobar P=0 (with varying temperature) and the isotherm relate structuralfeatureswith the viscosity anomaliesin sili- 8 cateliquids(Waff,1975;WoodcockandAngell,1976;Mysen 100 a et al., 1980, Suzukiet al., 2002). From the liquid structures IV Si obtainedforthetwomeltcompositions(NS2andMORB),we 80 %) h6oa-nfveoelsdceoecmsootphruadtteindtahtteheedm.feraRltcetssitournultcsotfuarsreieliedcvoisonplvlaaetyosemfdrsoitmnhaFrtoiagur.egh48l-ay,.51-H0a0en%rde bility ( 60 SiV SiVI 4-coordinatedSiIV to a growing proportionof SiV and SiVI, oba 40 SiV increasingsubstantiallyforPlargerthan10GPaandgo- Pr 20 ing througha maximumfoundatabout25 GPa in NS2 (and abovethispressureforMORB)whereasSiVI isbecomingsig- 0 nificantonlyabove15GPa. 0 10 20 30 40 50 From the probability distribution {p} of Sii species -1.1 i b (i=IV,V,VI), one can compute a configurational entropy ac- -1.2 cordingto: 10 S =−(cid:229) p lnp, (7) e) -1.3 c i i i Pois (k)2B which maximizeswhen the populationof SV is maximum ( -1.4s h (≃30GPa).ThisconfigurationalentropyisrepresentedinFig. -1.5 1 8reblaatsioenxfpo[1r/vSics]c.oIsnityfaocft,thifeofnoermas:shum=ehstheaxtpt[hAe/TASda]mis-Gvaiblibds, exp[1/Sc] 0 c -1.6 one may expectfrom a simple inspection of the relationship 0 10 20 30 40 50 thata minimumin h iscorrelatedwith a maximumin S , as 22 c 150 also suggestedby Bottingaand Richet(1995). However, for NS2 a quick look at figure 8b clearly shows that h (P) and 145 20 Sexcpd[o1e/Sscn]oatrceoninocticdoerrweiltahtetdheasptrheessluorceartiaonngoefwthheermeaaxviimscuomsitiyn deg) 140 18eg) minimumisobserved. InthecaseofMORB,thegradualin- ( 135 (d creaseoftheviscositywithpressurecouldbecorrelatedwith q>< 130 16sq that of S . So it is hard to firmly conclude that a structural c reorganizationthroughcoordinationchangesofSiisdirectly 125 c 14 responsible of the pressure evolution of the viscosity. To be 120 complete,noticethatGoeletal. (2011)haverecentlyshown 0 10 20 30 40 50 P (GPa) byMDsimulationsthatthediffusioncoefficientofSiatomsin silicate melts alongthe MgO-SiO join, correlateswell with 2 the excess entropywhen the latter one is evaluated from the Figure8:(Coloronline)a)Fractionof4-,5-and6-foldsiliconatoms asafunctionofpressureintheNS2(blackcurves)andMORBliquid knowledgeofthepairdistributionfunctions. Butitisunclear (redcurves). b)SimulatedviscosityoftheNS2liquidatT=2000K ifthiscorrelationalsoholdswiththeviscosityastherelation- (filledblackcircles, sameasFig. 3), compared toanAdam-Gibbs shiplinkingdiffusivityandviscosityisfartobeobvious(see viscositycomputedfromastructure-relatedconfigurationalentropy theabovediscussion). Sc. Rightaxis: Entropys2(brokenline)computedfromequ. (8). c) We have therefore calculated an excess entropy s2 in us- Meananglearoundthebridgingoxygen(BO)atomandcorrespond- ingtheexpressionofthetwo-bodyterm(BaranyaiandEvans, ingsecondmoment(standarddeviation)ofthebondangledistribu- 1989),whichwrites: tion(rightaxis). kBr (cid:229) (cid:229) s =− xx g lng −(g −1) dr (8) 2 2 i jZ (cid:20) ij ij ij (cid:21) i j afurtherscrutiny.Analternativewaytounderstandthetrends r beingthedensity,andx theconcentrationofspeciesi. Re- of the viscosity with pressure may arise from the evolution i sults ofthis calculationare shownin Fig. 8b (rightaxis). s of the T-O-T intertetrahedral bond angle distribution (BAD) 2 is foundto decrease continuouslywith pressureand a corre- asitiswellknownthatbondanglesaremuchmorepressure spondingAdam-Gibbsh doesnotshowaviscosityminimum. sensitive than bonds themselves (Micoulaut, 2004). Figure ThisbehaviorisatvariancewiththatobtainedbyGoeletal. 8c shows the evolution of the average value of the BAD be- (2011)intheirMDsimulationstudyofMgO-2SiO (asystem tweenabridgingoxygen(BO)anditstwoSiO tetrahedra, 2 4/2 related to NS2) where S is exhibitingan entropymaximum togetherwith the secondmoment(standarddeviation)of the 2 around 10 GPa, very well correlated with a diffusivity max- BAD.Thelatteronequantifiestheangularexcursionarounda imum, as also found by Jabes et al. (2010) for liquid SiO , meanvalueanditisexpectedtobepressuresensitive,ashigh- 2 GeO ,BeFe andH O.Sooursearchforaneventualrelation- lighted in the case of densified GeSe (Bauchyet al., 2011). 2 2 2 2 shipbetweenviscosityandconfigurationalentropyatthesin- WhentheaveragevalueoftheBADdecreasessteadilyinNS2 gletemperature2000Kisinconclusiveandcertainlydeserves meltfrom150oto140obetweenP=0and20GPa,itvariesbe- 9 tween140oand128oinMORBoverthesamepressurerange. shouldholdonlyfordeeplysupercooledliquidsasitfailsfor In the same way the angular excursion increases (with pres- liquidustemperatures. sure) equally well in the NS2 and in MORB melt as shown Finally,wehaveattemptedtorelatetheobtainedanomalies bythestandarddeviations q evolutionwithpressure.So,here inviscositywithstructuralchangesofthemelt. Withgrowing again, it is not clear that viscosity and diffusion anomalies pressure, the population of higher coordinated silicon (SiV, (e.g.inNS2)inducedbythepressurecanbeunivoquelyasso- SiVI) increases in a similar fashion in the NS2 and MORB ciatedwithaparticularstructuralrearrangementevenifthere liquid which rules out the possibility of a direct relationship isnodoubtthatstructuralchangesaretakingplaceinthesili- between e.g. coordination increase and viscosity minimum. catemeltunderinvestigation. Moreover, in the NS2 liquid configurational entropies have beencalculatedandtheirbehaviorwithpressuredoesnotfol- low at all the trend obtained for the viscosity. More subtle IV. SUMMARYANDCONCLUSION structuralandthermodynamicchangesareclearlyatplayand onedoesnotrecoverforNS2thereportedcorrelationbetween configurationalentropyanddiffusivitymaximafoundbyGoel In summary, we have used Molecular Dynamics simula- etal. (2011)intheMgO-SiO system. tionsto studythe dynamicsof two systemsof importancein 2 Our attempts to find out a quantitative link between materials science and geology : the sodium disilicate (NS2) pressure-induced structural rearrangement and viscosity and a basaltic (MORB) liquid. Results show that the diffu- anomaliesisratherdeceptive.Althoughsomecorrelationsbe- sion constant computed from a two-body Born-Majer type tween diffusivity, viscosity and excess entropy certainly do potential at ambient conditions exhibits a remarkable agree- existandaresometimesemphasizedintheliterature,theiref- mentwithexperimentaldataforallspecies(Na,Si,O)inthe fectivenessdependsstronglyon the meltcomposition, a fact NS2 liquid. This contrasts with the level of agreement ob- which makes risky a clear conclusion. On the other hand, a tained for the MORB system which shows a deviation by at recenttheoreticalanalysisby Schmelzer et al. (2005)seems least one order of magnitude when compared to experimen- tobepromising. Inthisstudythepressuredependenceofthe tal findings. The same situation is nearly reproduced in the viscosityis analyzedfroma thermodynamicalpointofview. comparisonofcalculatedviscosityusingtheGreen-Kubofor- Theworkingequationexpressesthederivativeoftheviscosity malism (based on the stress auto-correlation function) with withrespecttothepressureunderthefollowingform, experimental data from Bockris et al; (1955) for NS2, and Villeneuveetal. (2008)forMORB. dh k h¶ h¶ dx T Wehavethenstudiedthebehaviorofboththediffusioncon- (cid:18)dP(cid:19) =−a (cid:18)¶ T(cid:19) +(cid:18)x¶ (cid:19) (cid:18)dP(cid:19) , (9) stantandtheviscositywithchangingpressureinthetwoliq- T T P T T uidswithtemperaturecloseto 2000K. IntheNS2 system,a wherex isanorderparameter(e.g. thedegreeofpolymer- diffusivitymaximumfor the networkformingspecies (Si,O) izationgivenbyBO/(BO+NBO)whereBOandNBOarethe isobtainedataround15GPa,aresultwhichparallelssimilar numbers of bridging and nonbridgingoxygen, respectively), findingsforother densifiedtetrahedralliquidssuch aswater, k isthecompressibilityanda thethermalexpansioncoef- T T germania, or silica. The sodium cation is found to display ficient. If the order parameter is invariant with pressure (so threedistinctiverégimesfordiffusion,theonecorresponding dx /dP=0)then dh /dPis governedby the first term in eq. (9) to lower densities (negativepressure)being identified with a whichexpressesa freevolumeeffect(h onlyvarieswith the stretchedmelt(BauchyandMicoulaut,2011). Thesefeatures total volume of the melt). But as k is negative in a liquid T arenotfoundinthemoredepolymerizedMORBliquidwhich at equilibrium,and ¶h¶ T is positive(the viscosity decreases showsforSiandOdiffusionasteadybehaviorbetween0and whenthetemperatureincreases),thevariationofh withPwill 5 GPa, followed by a continuous decrease applied pressure. bepositiveornegativeaccordingtothesignofthethermalex- Interestingly, a pressure window is found in the NS2 liquid pansioncoefficient, a . If the latter oneis negativethen the T withaminimumataround5GPathatdoesnotseemtobecor- viscositywilltendtodecreaseinincreasingpressureandifa T relatedwiththemaximumintheobtaineddiffusivity. Again, becomespositiveafterafurthercompressionthentheviscos- this contrastswith the steadily increase of the MORB liquid itywillgotoaminimumvaluebeforetoincrease. Asshown viscositywithpressure. bySchmelzeretal. (2005)thisbehaviorisencounteredwith Having in hand both the computed diffusion and the vis- theviscosityofliquidwater. Howeverthefirsttermineq. (9) cosity, we have investigated the validity of the Eyring equa- isnotsufficienttoreproduceallthemagnitudeoftheviscosity tion which relates both quantities and involves also a jump minimumandthe contributionof structuralchangesinduced distancel usuallyoftheorderoftheaverageoxygen-oxygen bythepressurehastobeaccountedfor(viathesecondtermin bond distance (2.8 Å), as exemplified by numerous experi- eq.(9)).Inthecaseofsilicatemeltsitiswelldocumentedthat mentalstudies. Thisinvestigationhas beenperformedalong theviscosityincreaseswhenthedegreeofpolymerizationof twothermodynamicpaths:atfixedpressure(P=0)andchang- the melt increases(so dh /dx >0)wherasfor a givenmelt its ing temperature, and at fixed temperature (T≃ 2000 K) and degree of polymerization decreases when pressure increases changingpressure. Wehaveshownthatl calculatedfromthe (so dx /dP<0). Therefore the second term of eq. (9) is gen- simulateddiffusionandviscositywasindeedoftheorderofa erally negative. For NS2 and MORB we have checked that few Angstroems, butonly in the high viscosity régime (here a ispositiveatliquidtemperatureandoveralargepressure T 100Poise).ItunderscoresthefactthattheEyringrelationship rangewhichimpliesthatthefirsttermineq.(9)ispositivefor 10 thesetwocompositions. AsourMDresultsforNS2leadtoa Bauchy M., MicoulautM. (2011). From pockets to chan- decreaseoftheviscositybetween0and≃4GPa,thissuggests nels: density controlleddiffusionin silicates. Phys. Rev. B that the second term in eq. (9) overbalances the first term. 83,184118. ForMORBtheviscosityisfoundvirtuallyconstantinthe0- BauchyM.,MicoulautM.,CelinoM.,BoeroM.,LeRoux 4 GPa range so the two terms nearly compensate each other S., MassobrioC. (2011). Angularrigidityin tetrahedralnet- in eq. (9). At high pressures(e.g. above10 or 20 GPa) the work glasses with changingcomposition. Phys. Rev. B 83, two melts are more and more depolymerized and dx /dP be- 054201. comessmallbecausethedegreeofdepolymerizationdoesnot Behrens H., Schulze F. (2003). Pressure dependence of evolveverymuchwiththepressureduetomeltdensification. melt viscosity in the system NaAlSi O -CaMgSi O . Am. 3 8 2 6 Sothefreevolumeeffect(firstterm)isthedominantcontribu- Mineral.88,1351. tiontoeq. (9)athighcompressionratesandtheviscosityof Bockris J.O’M., Mackenzie J.D., Kitchener J.A. (1955). thetwomeltsincreasessteadilyinthehighpressurerange.In Viscousflowinsilicaandbinaryliquidsilicates. Trans. Fara- summaryitappearsthateq. (9)isveryusefultodecipherthe daySoc. 51,1734-1748. complexbehaviorexhibitedbytheviscosityofsilicatemelts BoonJ.P.,YipS.(1980. MolecularHydrodynamics. Mc- asfunctionofpressure.Tobemorequantitativeandpredictive GrawHill. itremainstomakethelinkbetweenthestructuralevolutionof Borodin O., Smith G. B., Kim H. (2009). Viscosity of a themeltandthevariationoftheorderparameterwiththepres- RoomTemperatureIonicLiquid: PredictionsfromNonequi- sure(x (P)).Thiswillbedoneinafuturepublication. libriumandEquilibriumMolecularDynamicsSimulations.J. Phys.Chem. B113,4771. BottingaY.,RichetP.(1995). Silicatemelts: The"anoma- Acknowledgments lous" pressure dependence of the viscosity. Geochim. Cos- mochim.Acta59,2725-2731. TheauthorsthankG. Henderson,D.R. Neuville, P. Richet BrearleyM.,DickinsonJr. J.E.,ScarfeC.M.(1986). Pres- forusefuldiscussions. sure dependence of melt viscosities on the join diopside- albite. Geochim.Cosmochim.Acta50,2563-2570. CherneF.J.,DeymierP.A.(1998).CalculationofViscosity of Liquid Nickel byMolecular Dynamics Methods. Scripta Mater39,1613. AdjaoudO.,Steinle-Neumann,JahnS.(2008).Mg2SiO4liq- Cormack A. N., Du J., Zeitler T. R. (2003). Sodium ion uid under high pressure from molecular dynamics. Chem. migrationmechanismsinsilicateglassesprobedbymolecular Geol. 256,185-192. dynamicssimulations.J.Non-Cryst.Solids323,147. Adjaoud O., Steinle-Neumann, Jahn S. (2011). Transport DelGaudioP., BehrensH.(2009). Anexperimentalstudy propertiesofMg2SiO4liquidathighpressure: Physicalstate on the pressure dependence of viscosity in silicate melts. J. ofamagmaocean.EarthandPlanet. Sci. Lett. 312,463-470. Chem. Phys.131,044504-1-14. AbramoM.C., CaccamoC., PizzimentiG.(1992). Struc- DingwellD.B.,WebbS.L.(1989). Structuralrelaxationin tural properties and medium-range order in metasilicate silicate melts and non-newtonian melt rheology in geologic (CaSiO )glass: Amoleculardynamicsstudy.J.Chem. Phys. processes.Phys. Chem. Minerals16,508-516. 3 96,9083. DreyfusC.,MicoulautM.(2012),unpublished Alejandre J., Tildesley D., Chapela G. A. (1995). Molec- DuJ.,CormackA.N.(2004.) Themediumrangestructure ularDynamicssimulationoftheorthobaricdensitiesandsur- ofsodiumsilicateglasses: amoleculardynamicssimulation. facetensionofwater. J.Chem. Phys.102,4574. J.Non-Cryst.Solids349,66. AllenM.P.,TildesleyD.J.(1987). ComputerSimulations DuJ.,CormackA.N.(2005). MolecularDynamicsSimu- ofLiquids,OxfordUniv.Press,p. 64. lationoftheStructureandHydroxylationofSilicaGlassSur- Allen M. P., Brown D., Masters A. J. (1994). Use of the faces. J.Am. Ceram. Soc. 88,2532. McQuarrieequationforthecomputationofshearviscosityvia Du J., Corrales L. R. (2006). Compositional dependence equilibriummoleculardynamics-comment.Phys.Rev.E49, ofthefirstsharpdiffractionpeaksinalkalisilicateglasses: A 2488. moleculardynamicsstudy.J.Non-Cryst.Solids,352,3255. AndoR., OhtaniE., SuzukiA., RubieD.C., FunakoshiK. Dunn T. (1982). Oxygen diffusion in three silicate melts (2003). Pressuredependencyof viscosities of MORB melts. along the join diopside-anorthite. Geochim. Cosmochim. AGUFallMeeting2003,abstractV31D-0958. Acta46,2293-2299. Angell C.A. (1995). Formation of Glasses from Liquids Dunn T., Scarfe C.M. (1986). Variation of the chemical andBiopolymers.Science267,1924. diffusivity of oxygen and viscosity of an andesite melt with Ardia P., Giordano D., Schmidt M.W. (2008). A model pressureatconstanttemperature.Chem. Geol. 54,203-215. fortheviscosityofrhyoliteasafunctionofH2O-contentand ErringtonJ.R.,DebenedettiP.G.(2001).RelationshipBe- pressure: A calibration based on centrifuge piston cylinder tween Structural Order and the Anomalies of Liquid Water. experiments.Geochim.Cosmochim.Acta72,6103-6123. Nature410,259. Barrat J.-L., Badro J., Gillet P. (1997). Strong to Fragile FernandezG.A.,VrabecJ.,HasseH.(2004).AMolecular transitioninamodelofliquidsilica. Mol. Simul. 20,17-25. Simulation Study of Shear and Bulk Viscosity and Thermal

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.