Anders Nilsson · Bilong Liu Vibro- Acoustics, Volume 2 Second Edition Vibro-Acoustics, Volume 2 Anders Nilsson Bilong Liu (cid:129) Vibro-Acoustics, Volume 2 Second Edition 123 Anders Nilsson Bilong Liu MWL-Marcus WallenbergLaboratory Key Laboratoryof Noise andVibration forSound andVibration Research Research KTH,The RoyalInstitute of Technology Institute of Acoustics, ChineseAcademy Stockholm ofSciences Sweden Beijing China SupportedbyNational 973Program of China(2012CB720204) ISBN978-3-662-47933-9 ISBN978-3-662-47934-6 (eBook) DOI 10.1007/978-3-662-47934-6 JointlypublishedwithSciencePress,Beijing ISBN:978-7-03-039150-6SciencePress,Beijing LibraryofCongressControlNumber:2015946068 SpringerHeidelbergNewYorkDordrechtLondon 1stedition:©SciencePress2013 2ndedition:©SciencePress,BeijingandSpringer-VerlagBerlinHeidelberg2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia (www.springer.com) Preface ThevibrationofsimplestructureslikebeamsandplateswasdiscussedinVolumeI of Vibro-Acoustics. Various wave types and their propagation in simple structures were investigated. The coupling effects between the basic wave types propagating in real constructions were demonstrated in the first volume. In Volume II the response and dynamic characteristics of more complicated structureslikeshells,compositepanelsandframereinforcedplatestypicalofmany types of vehicles are derived. The acoustic coupling between these structures and the energy flow between them are important parts of Volume II. The interaction between structures and fluids is also highlighted. VolumeIIofthetextincludesachapteronvariationalmethods.Thetechniqueis usedforthederivationof equations governingthevibrationofsandwich andother composite elements and some simple shell elements. In the following chapter the couplingbetweenmechanicalsystemsisexplored.Thisincludesanintroductionto the vibration of rubber mounts, resilient mountings and the design of engine foundations. Then follow chapters on waves in fluids including outdoor sound propagation androom acoustics. Couplingeffects between vibrating structuresand asurroundingfluidorquitesimplysoundradiationandsoundtransmissionlossand fluid loading of structures are the subjects of the next chapter. Discussions on randomexcitationofstructuresfollow.Finally,somemethods,includingStatistical EnergyAnalysis,forthepredictionofexcitationandpropagationofstructure-borne sound in large built-up structures are investigated. Anumberofproblemsareformulatedattheendofeachchapter.Solutionstothe problemsaregiveninVolumeIII.Asummaryofsomebasicequationspresentedin the first two volumes are summarized in Volume III. Many results discussed in Volume II are verified by model and full-scale measurements. Genova, Italy Anders Nilsson August 2015 v Contents 9 Hamilton’s Principle and Some Other Variational Methods . . . . . 1 9.1 Hamilton’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9.2 Flexural Vibrations of Slender Beams . . . . . . . . . . . . . . . . . 4 9.3 Equation of Motion for Honeycomb Beams in Flexure . . . . . 7 9.4 Plates with Constrained Viscoelastic Layer. . . . . . . . . . . . . . 14 9.5 Timoshenko Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9.6 Mindlin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9.7 Cylindrical Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9.8 Lagrange’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 9.9 Garlekin’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9.10 An Example Using Garlekin’s Method. . . . . . . . . . . . . . . . . 36 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10 Structural Coupling Between Simple Systems. . . . . . . . . . . . . . . . 41 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.2 Coupled Mass–Spring Systems. . . . . . . . . . . . . . . . . . . . . . 43 10.3 Coupled Systems with Losses. . . . . . . . . . . . . . . . . . . . . . . 47 10.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.5 Rubber Mounts, Some Material Parameters . . . . . . . . . . . . . 53 10.6 Wave Propagation in Rubber Mounts, Approximate Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.7 Equivalent Stiffness of Simple Mounts—Approximate Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 10.8 Static Deflection of Cylindrical Rubber Mounts . . . . . . . . . . 65 10.9 Wave Propagation in Circular Rods, Exact Solutions. . . . . . . 66 10.10 Measurements of Effective Stiffness of Mounts. . . . . . . . . . . 75 10.11 Structural Coupling Via Resilient Mounts . . . . . . . . . . . . . . 80 10.12 Simple Transmission Model. . . . . . . . . . . . . . . . . . . . . . . . 85 10.13 Multi-point Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 vii viii Contents 10.14 Multi-point Coupling, Low and High Frequency Limits. . . . . 96 10.15 Source Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11 Waves in Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.1 Wave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 11.2 Energy and Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11.3 Losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.4 Basic Solutions to Wave Equation. . . . . . . . . . . . . . . . . . . . 113 11.5 Green’s Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 11.6 Dipole and Other Multipole Sources . . . . . . . . . . . . . . . . . . 121 11.7 Additional Sources and Solutions . . . . . . . . . . . . . . . . . . . . 123 11.8 Moving Monopole Sources. . . . . . . . . . . . . . . . . . . . . . . . . 129 11.9 Reflection from a Plane Surface . . . . . . . . . . . . . . . . . . . . . 133 11.10 Reflection from a Water Surface. . . . . . . . . . . . . . . . . . . . . 141 11.11 Influence of Temperature and Velocity Gradients . . . . . . . . . 143 11.12 Acoustic Fields in Closed Rooms . . . . . . . . . . . . . . . . . . . . 146 11.13 Geometrical Acoustics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 11.14 Near and Reverberant Acoustic Fields in a Room. . . . . . . . . 155 11.15 Measurement of the Sound Transmission Loss of a Wall. . . . 157 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 12 Fluid Structure Interaction and Radiation of Sound. . . . . . . . . . . 163 12.1 Radiation and Fluid Loading of Infinite Plates . . . . . . . . . . . 163 12.2 Radiation—General Formulation. . . . . . . . . . . . . . . . . . . . . 169 12.3 Green’s Function—Rigid Plane Boundary . . . . . . . . . . . . . . 171 12.4 Spatial Fourier Transforms—Several Variables . . . . . . . . . . . 174 12.5 Radiation from Infinite Point-Excited Plates. . . . . . . . . . . . . 177 12.6 Mobilities of Fluid-Loaded Infinite Plates. . . . . . . . . . . . . . . 181 12.7 Discussion of Results—Infinite Fluid-Loaded Plates . . . . . . . 184 12.8 Radiation from Finite Baffled Plates . . . . . . . . . . . . . . . . . . 186 12.9 Radiation Ratios—Finite Baffled Plates . . . . . . . . . . . . . . . . 192 12.10 Radiation from Point-Excited Plates. . . . . . . . . . . . . . . . . . . 197 12.11 Sound Radiation Ratios—Cylinders. . . . . . . . . . . . . . . . . . . 200 12.12 Losses Due to Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.13 Radiation from Fluid-Loaded Finite Plates . . . . . . . . . . . . . . 204 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 13 Sound Transmission Loss of Panels. . . . . . . . . . . . . . . . . . . . . . . 215 13.1 Sound Transmission Through Infinite Flat Panels . . . . . . . . . 216 13.2 Plate Velocity Induced by an Acoustic Field. . . . . . . . . . . . . 223 13.3 Sound Transmission Between Rooms Separated by a Single Leaf Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 13.4 Sound Transmission Between Equal Rooms. . . . . . . . . . . . . 234 Contents ix 13.5 Sound Transmission Between Irregular Rooms. . . . . . . . . . . 236 13.6 Effect of Boundary Conditions of Plate on Sound Transmission Loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 13.7 Effect of a Baffle on Sound Transmission Loss. . . . . . . . . . . 243 13.8 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 13.9 Loss Factors and Summary. . . . . . . . . . . . . . . . . . . . . . . . . 253 13.10 Sound Transmission Through Complex Structures. . . . . . . . . 256 13.11 Flanking Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 13.12 Sound Transmission Through Fluid Loaded Plates . . . . . . . . 261 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 14 Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 14.2 Structural Waveguides. . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 14.3 Coupled Structural Waveguides . . . . . . . . . . . . . . . . . . . . . 270 14.4 Measurements and Predictions . . . . . . . . . . . . . . . . . . . . . . 276 14.5 Composite, Sandwich, and Honeycomb Plates . . . . . . . . . . . 289 14.6 Flexural Vibrations of Honeycomb/Sandwich Beams. . . . . . . 294 14.7 Wavenumbers, Sandwich/Honeycomb Beams. . . . . . . . . . . . 296 14.8 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 14.9 Dynamic Properties of Sandwich Beams . . . . . . . . . . . . . . . 302 14.10 Bending Stiffness of Sandwich Plates . . . . . . . . . . . . . . . . . 305 14.11 Response of Sandwich Beams . . . . . . . . . . . . . . . . . . . . . . 307 14.12 Energy Flow in Sandwich Beams . . . . . . . . . . . . . . . . . . . . 312 14.13 Energy Flow Across Pinned Junctions. . . . . . . . . . . . . . . . . 314 14.14 Wave Propagation on Infinite Cylinders. . . . . . . . . . . . . . . . 316 14.15 Vibration of Open Circular Cylindrical Shells. . . . . . . . . . . . 322 14.16 Sound Transmission Loss of Shallow Shell Segments . . . . . . 324 14.17 Comparison Between Measured and Predicted TL. . . . . . . . . 329 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 15 Random Excitation of Structures. . . . . . . . . . . . . . . . . . . . . . . . . 339 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 15.2 Excitation of Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 15.3 Rain on the Roof Excitation of Plates . . . . . . . . . . . . . . . . . 346 15.4 Turbulent Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . 350 15.5 TBL Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 15.6 Plate Response Due to TBL Excitation . . . . . . . . . . . . . . . . 356 15.7 Measurements of TBL-Induced Vibrations . . . . . . . . . . . . . . 362 15.8 Comparison Between Measured and Predicted Velocity Levels Induced by TBL . . . . . . . . . . . . . . . . . . . . 366 15.9 Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 15.10 Flow Noise Induced in Ships . . . . . . . . . . . . . . . . . . . . . . . 373 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 x Contents 16 Transmission of Sound in Built-Up Structures . . . . . . . . . . . . . . . 379 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 16.2 Statistical Energy Analysis, SEA. . . . . . . . . . . . . . . . . . . . . 382 16.3 Energy Flow Between Continuous Systems . . . . . . . . . . . . . 387 16.4 Coupling Between Acoustic Fields and Vibrating Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 390 16.5 Prediction of Sound Transmission Through a Panel Using SEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 16.6 Sound Transmission Through Double Walls. . . . . . . . . . . . . 395 16.7 Limitation of SEA-Derived Sound Transmission Loss . . . . . . 398 16.8 Coupling Between Vibrating Structures . . . . . . . . . . . . . . . . 400 16.9 Energy Flow in Large Structures, SEA . . . . . . . . . . . . . . . . 402 16.10 SEA Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 16.11 Ship Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 16.12 Waveguide Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 16.13 Noise Levels in Accommodation Spaces . . . . . . . . . . . . . . . 415 16.14 Source Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 16.15 Measured and Predicted Results . . . . . . . . . . . . . . . . . . . . . 418 16.16 Conclusions—Noise Prediction on Ships . . . . . . . . . . . . . . . 423 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 Appendix A: Sound Transmission Loss of Single Leaf Panels . . . . . . . 425 Appendix B: Velocity Level of Single Leaf Panels Excited by an Acoustic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Appendix C: Input Data for Noise Prediction on Ships . . . . . . . . . . . . 433 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Chapter 9 Hamilton’s Principle and Some Other Variational Methods Manyproblemsinmathematicalphysicsandthusinvibro-acousticscannotbesolved exactly.However,avariationaltechniquecanoftenbeusedtosufficientlywellfor- mulatetheequationsgoverningtheresponseofastructureexcitedbyexternalforces. Thetechniqueensuresthaterrorsareminimized.Variationaltechniquesareexcellent toolsforsolvingdynamicproblemsforwhichexactsolutionscannotbeformulated. ThewidelyusedFiniteElementMethodisbasedonHamilton’sprinciple,which isaverypowerfulvariationalmethod.TheprinciplecanbeprovedbasedonNewton’s law of motion. Inversely Newton’s law can be derived using Hamilton’s principle. However,Hamilton’sprincipleismuchmoregeneralthanNewton’slawandforthis reason,ithassurvivedtherevolutioninmechanicsbroughtbyEinstein. The key problem for the successful application of any variational technique is themathematicalformulationofthekineticandpotentialenergiesofasystem.This formulation also requires a physical understanding of the mechanisms governing the motion of a system. This can be illustrated by considering two different types of three-layered beams. In one case, the structure consists of a beam with a con- strainedviscoelasticlayer.Forthevibratingbeam,theshearforcesintheviscoelastic layeralongtheaxisofthebeamareofimportance.Intheothercase,thecoreofa three-layeredbeamconsistsofahoneycombstructure.Inthiscase,theshearforces perpendiculartotheaxisofthebeamareofmajorimportanceforthedeflectionof thebeam.Forthetwocases,theenergiesaremodeledindifferentwaysresultingin two different equations as discussed in Sects.9.3 and 9.4. In each case, the results areonlyvalidaslongasthebasicphysicalassumptionsaresatisfied. Hamilton’sprincipleisinthischapterusedtoderivetheequations,whichupto certain frequencies govern the flexural vibrations of thick beams or plates and of cylindricalshells.TheLagrangeandGarlekinmethodsarealsodiscussed.Thelon- gitudinalvibrationofthickbeamsorrodsisexaminedinChap.10inconnectionwith discussions on various models describing the axial vibration of cylindrical rubber mounts. ©SciencePress,BeijingandSpringer-VerlagBerlinHeidelberg2016 1 A.NilssonandB.Liu,Vibro-Acoustics,Volume2, DOI10.1007/978-3-662-47934-6_9