ebook img

Vibrational Investigation of Aromatics and their weakly bonded Clusters by Dispersed PDF

216 Pages·2014·5.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vibrational Investigation of Aromatics and their weakly bonded Clusters by Dispersed

Vibrational Investigation of Aromatics and their weakly bonded Clusters by Dispersed Fluorescence Spectroscopy and Franck-Condon Analysis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakulta¨t der Heinrich-Heine-Universita¨t Du¨sseldorf vorgelegt von Frieder Ortwin Benjamin Stuhlmann aus Herdecke Du¨sseldorf, Januar 2014 aus dem Institut fu¨r Physikalische Chemie I der Heinrich Heine-Universita¨t Du¨sseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakulta¨t der Heinrich-Heine-Universita¨t Du¨sseldorf Referent: Prof. Dr. Karl Kleinermanns Koreferent: Prof. Dr. Michael Schmitt Tag der mu¨ndlichen Pru¨fung: 23.01.2014 “I would like -if I may- to take you on a strange journey.” the Criminologist, the Rocky Horror Picture Show Contents Symbols and Abbreviations v 1 Introduction 1 I Theoretical Background 5 2 Measurement Principles 7 2.1 Photophysical Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Laser Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Laser Induced Fluorescence . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Dispersed Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Line Intensities and Linewidths . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Spectral Line Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 The Franck-Condon Principle . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Herzberg-Teller Coupling . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 Hot Bands, Combination Bands and Overtones . . . . . . . . . . . 22 2.4 The Platt Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Spectroscopy in Supersonic Jets . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Adiabatic Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 Anatomy of the Supersonic Free Jet . . . . . . . . . . . . . . . . . . 29 2.5.3 Maximum Particle Velocity . . . . . . . . . . . . . . . . . . . . . . 32 3 Calculations and Fit 33 3.1 Quantum Chemical Calculations . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 The Hartree-Fock Method . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3 Semi-Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.5 Variationality vs. Size-Consistency . . . . . . . . . . . . . . . . . . 41 ii CONTENTS 3.1.6 Møller-Plesset Perturbation Theory . . . . . . . . . . . . . . . . . . 41 3.1.7 The Coupled-Cluster Approach . . . . . . . . . . . . . . . . . . . . 43 3.1.8 Calculation of Vibrational Frequencies . . . . . . . . . . . . . . . . 45 3.2 Franck-Condon Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 One-dimensional Franck-Condon Factors . . . . . . . . . . . . . . . 47 3.2.2 Multi-dimensional Franck-Condon Factors . . . . . . . . . . . . . . 49 3.3 Herzberg-Teller Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 The Random Structure Generator . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 The Program FCfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Experimental Setup 63 4.1 The Laser Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 The Sample Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Temporal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Data Acquisition and Processing . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Photomultiplier Tube . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.2 Intensified Charge-coupled Device . . . . . . . . . . . . . . . . . . . 70 II Publications 75 5 Benzene-Acetylene Clusters 77 5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.1 IR-UV Double Resonance Spectroscopy . . . . . . . . . . . . . . . . 80 5.3.2 Dispersed Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Generation of Cluster Structures . . . . . . . . . . . . . . . . . . . 82 5.4.2 Computation of Vibrational Spectra . . . . . . . . . . . . . . . . . . 83 5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.1 R2PI Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.2 IR-UV Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5.3 Dispersed Fluorescence Spectra . . . . . . . . . . . . . . . . . . . . 93 5.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 CONTENTS iii 6 Phenol-Acetylene Clusters 99 6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Experiment and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.1 R2PI and IR-UV double resonance spectroscopy . . . . . . . . . . . 101 6.3.2 Dispersed Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.3 Quantum Chemical Calculations . . . . . . . . . . . . . . . . . . . . 102 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4.1 R2PI Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4.2 PhA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 1 6.4.3 PhA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2 6.4.4 PhA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3 6.4.5 Ph A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2 1 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 5-Cyanoindole 117 7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3 Experimental and Computational Details . . . . . . . . . . . . . . . . . . . 119 7.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.2 Ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.3 Franck-Condon fit of the structural change . . . . . . . . . . . . . . 120 7.3.4 Herzberg-Teller corrections to the FC analysis . . . . . . . . . . . . 121 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4.1 Ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.4.3 FC fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 Benzimidazole 145 8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 iv CONTENTS 8.3 Experimental and Computational Details . . . . . . . . . . . . . . . . . . . 147 8.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.3.2 Ab initiocalculations . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.3.3 Franck-Condon fit of the structural change . . . . . . . . . . . . . . 148 8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.4.1 Ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9 Summary 171 10 Zusammenfassung 177 Danksagung 185 References 202 Symbols and Abbreviations Physical Constants from Reference [1] h Planck Constant h = 6.62606957·10−34 Js (cid:2) Planck Constant (cid:2) = h/2π = 1.05457173·10−34 Js e Elementary Charge e = 1.60217657·10−19 C 0 0 k Boltzmann Constant k = 1.38064881·10−23 J/K B B R Universal Gas Constant R = 8.31446217 JK−1mol−1 0 0 m Mass of the Electron m = 9.10938291·10−31 kg el el ε Vacuum Permittivity ε = 8.85418782·10−12 C2J−1m−1 0 0 a Bohr Radius a = 4πε (cid:2)2/e2m = 5.29177211·10−11 m 0 0 0 0 el E Hartree Energy E = 2hcR = 4.35974434·10−18 J h h ∞ R Rydberg-Constant R = m e4/8h3cε2 = 1.09737316·105 cm−1 ∞ ∞ el 0 0 Methods and Equipment LIF Laser Induced Fluorescence HRLIF High Resolution Laser Induced Fluorescence DF Dispersed Fluorescence HF Hartree-Fock Theory R2PI Resonant two Photon Ionisation Spectroscopy REMPI Resonance-Enhanced Multi-Photon Ionisation Spectroscopy NMR Nuclear Magnetic Resonance Spectroscopy TOF Time of Flight (Mass Spectrometry/Spectroscopy) PMT Photomultiplier Tube ICCD Intensified Charge-Coupled Device YAG Yttrium Aluminium Garnet (Nd:Y Al O ) 3 5 12 BBO Beta Barium Borate (β−BaB O ) 2 4 KDP Potassium Dihydrogen Phosphate (KH PO ) 2 4 SHG Second Harmonic Generation THG Third Harmonic Generation MCP Micro-Channel Plate vi Symbols and Abbreviations OPO Optical Parametric Oscillator OPA Optical Parametric Amplifier KTP Potassium Titanyl Phosphate (KTiOPO ) 4 B A Benzene-Acetylene Cluster m n Ph A Phenol-Acetylene Cluster m n 5CI 5-Cyanoindole BI Benzimidazole THC Tetrahydrocarbazole AM1 Austin Model 1[2] DFT Density Functional Theory DFT-D/b97d Density Functional Theory with Dispersion-Correction[3] MRCI Multi-Reference Configuration Interaction (as in e.g. DFT/MRCI)[4] MP2 Møller-Plesset Perturbation Theory CCSD Coupled-Clusters Singles and Doubles CC2 A variant of CCSD[5] RI- Resolution of the Identity (as in e.g. RI-MP2 or RI-CC2) SCS- Spin-Component Scaling[6] (as in e.g. SCS-MP2 or SCS-CC2) -SAPT Symmetry-Adapted Perturbation Theory (as in e.g. DFT-SAPT) TZVP/TZVPP Triple Zeta Valence plus Polarisation Basis Set[7] cc-pVTZ Correlation Consistent Polarised Valence Triple Zeta Basis Set aug Augmented (e.g. aug cc-pVTZ for SCS-MP2 Calculations) aVDZ Augmented (for SCS-MP2) Valence Double Zeta Basis Set FC Franck-Condon HT Herzberg-Teller Operators, Matrices and Similar μˆ Electronic Transition Dipole Moment Operator el S Duschinsky Matrix (cid:5) d Displacement Vector ˆ H Hamiltonian ∇ Nabla Operator ∇2 Laplacian Operator ˆ F Fock Operator ˆ J Coulomb Operator ˆ K Exchange Operator (from Hartree-Fock Theory) ˆ U Fluctuation Operator in the CC2 Method H Hermite Polynomial ν

Description:
Transformation Matrix Containing the Eigenvectors of the Duschinsky-Matrix. C .. ber of vibrational normal modes is 3Nnuc −6 for non-linear molecules. For molecules above The Manga Guide to Linear Algebra. No Starch
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.