Vibrational Investigation of Aromatics and their weakly bonded Clusters by Dispersed Fluorescence Spectroscopy and Franck-Condon Analysis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakulta¨t der Heinrich-Heine-Universita¨t Du¨sseldorf vorgelegt von Frieder Ortwin Benjamin Stuhlmann aus Herdecke Du¨sseldorf, Januar 2014 aus dem Institut fu¨r Physikalische Chemie I der Heinrich Heine-Universita¨t Du¨sseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakulta¨t der Heinrich-Heine-Universita¨t Du¨sseldorf Referent: Prof. Dr. Karl Kleinermanns Koreferent: Prof. Dr. Michael Schmitt Tag der mu¨ndlichen Pru¨fung: 23.01.2014 “I would like -if I may- to take you on a strange journey.” the Criminologist, the Rocky Horror Picture Show Contents Symbols and Abbreviations v 1 Introduction 1 I Theoretical Background 5 2 Measurement Principles 7 2.1 Photophysical Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Laser Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Laser Induced Fluorescence . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Dispersed Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Line Intensities and Linewidths . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Spectral Line Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 The Franck-Condon Principle . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Herzberg-Teller Coupling . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 Hot Bands, Combination Bands and Overtones . . . . . . . . . . . 22 2.4 The Platt Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Spectroscopy in Supersonic Jets . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Adiabatic Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 Anatomy of the Supersonic Free Jet . . . . . . . . . . . . . . . . . . 29 2.5.3 Maximum Particle Velocity . . . . . . . . . . . . . . . . . . . . . . 32 3 Calculations and Fit 33 3.1 Quantum Chemical Calculations . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1 The Hartree-Fock Method . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3 Semi-Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.5 Variationality vs. Size-Consistency . . . . . . . . . . . . . . . . . . 41 ii CONTENTS 3.1.6 Møller-Plesset Perturbation Theory . . . . . . . . . . . . . . . . . . 41 3.1.7 The Coupled-Cluster Approach . . . . . . . . . . . . . . . . . . . . 43 3.1.8 Calculation of Vibrational Frequencies . . . . . . . . . . . . . . . . 45 3.2 Franck-Condon Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 One-dimensional Franck-Condon Factors . . . . . . . . . . . . . . . 47 3.2.2 Multi-dimensional Franck-Condon Factors . . . . . . . . . . . . . . 49 3.3 Herzberg-Teller Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 The Random Structure Generator . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 The Program FCfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Experimental Setup 63 4.1 The Laser Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 The Sample Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Temporal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Data Acquisition and Processing . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Photomultiplier Tube . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.2 Intensified Charge-coupled Device . . . . . . . . . . . . . . . . . . . 70 II Publications 75 5 Benzene-Acetylene Clusters 77 5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.1 IR-UV Double Resonance Spectroscopy . . . . . . . . . . . . . . . . 80 5.3.2 Dispersed Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Generation of Cluster Structures . . . . . . . . . . . . . . . . . . . 82 5.4.2 Computation of Vibrational Spectra . . . . . . . . . . . . . . . . . . 83 5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.1 R2PI Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.2 IR-UV Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5.3 Dispersed Fluorescence Spectra . . . . . . . . . . . . . . . . . . . . 93 5.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 CONTENTS iii 6 Phenol-Acetylene Clusters 99 6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Experiment and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.1 R2PI and IR-UV double resonance spectroscopy . . . . . . . . . . . 101 6.3.2 Dispersed Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.3 Quantum Chemical Calculations . . . . . . . . . . . . . . . . . . . . 102 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4.1 R2PI Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4.2 PhA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 1 6.4.3 PhA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2 6.4.4 PhA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3 6.4.5 Ph A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2 1 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 5-Cyanoindole 117 7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3 Experimental and Computational Details . . . . . . . . . . . . . . . . . . . 119 7.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.2 Ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.3 Franck-Condon fit of the structural change . . . . . . . . . . . . . . 120 7.3.4 Herzberg-Teller corrections to the FC analysis . . . . . . . . . . . . 121 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4.1 Ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.4.3 FC fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 Benzimidazole 145 8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 iv CONTENTS 8.3 Experimental and Computational Details . . . . . . . . . . . . . . . . . . . 147 8.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.3.2 Ab initiocalculations . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.3.3 Franck-Condon fit of the structural change . . . . . . . . . . . . . . 148 8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.4.1 Ab initio calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9 Summary 171 10 Zusammenfassung 177 Danksagung 185 References 202 Symbols and Abbreviations Physical Constants from Reference [1] h Planck Constant h = 6.62606957·10−34 Js (cid:2) Planck Constant (cid:2) = h/2π = 1.05457173·10−34 Js e Elementary Charge e = 1.60217657·10−19 C 0 0 k Boltzmann Constant k = 1.38064881·10−23 J/K B B R Universal Gas Constant R = 8.31446217 JK−1mol−1 0 0 m Mass of the Electron m = 9.10938291·10−31 kg el el ε Vacuum Permittivity ε = 8.85418782·10−12 C2J−1m−1 0 0 a Bohr Radius a = 4πε (cid:2)2/e2m = 5.29177211·10−11 m 0 0 0 0 el E Hartree Energy E = 2hcR = 4.35974434·10−18 J h h ∞ R Rydberg-Constant R = m e4/8h3cε2 = 1.09737316·105 cm−1 ∞ ∞ el 0 0 Methods and Equipment LIF Laser Induced Fluorescence HRLIF High Resolution Laser Induced Fluorescence DF Dispersed Fluorescence HF Hartree-Fock Theory R2PI Resonant two Photon Ionisation Spectroscopy REMPI Resonance-Enhanced Multi-Photon Ionisation Spectroscopy NMR Nuclear Magnetic Resonance Spectroscopy TOF Time of Flight (Mass Spectrometry/Spectroscopy) PMT Photomultiplier Tube ICCD Intensified Charge-Coupled Device YAG Yttrium Aluminium Garnet (Nd:Y Al O ) 3 5 12 BBO Beta Barium Borate (β−BaB O ) 2 4 KDP Potassium Dihydrogen Phosphate (KH PO ) 2 4 SHG Second Harmonic Generation THG Third Harmonic Generation MCP Micro-Channel Plate vi Symbols and Abbreviations OPO Optical Parametric Oscillator OPA Optical Parametric Amplifier KTP Potassium Titanyl Phosphate (KTiOPO ) 4 B A Benzene-Acetylene Cluster m n Ph A Phenol-Acetylene Cluster m n 5CI 5-Cyanoindole BI Benzimidazole THC Tetrahydrocarbazole AM1 Austin Model 1[2] DFT Density Functional Theory DFT-D/b97d Density Functional Theory with Dispersion-Correction[3] MRCI Multi-Reference Configuration Interaction (as in e.g. DFT/MRCI)[4] MP2 Møller-Plesset Perturbation Theory CCSD Coupled-Clusters Singles and Doubles CC2 A variant of CCSD[5] RI- Resolution of the Identity (as in e.g. RI-MP2 or RI-CC2) SCS- Spin-Component Scaling[6] (as in e.g. SCS-MP2 or SCS-CC2) -SAPT Symmetry-Adapted Perturbation Theory (as in e.g. DFT-SAPT) TZVP/TZVPP Triple Zeta Valence plus Polarisation Basis Set[7] cc-pVTZ Correlation Consistent Polarised Valence Triple Zeta Basis Set aug Augmented (e.g. aug cc-pVTZ for SCS-MP2 Calculations) aVDZ Augmented (for SCS-MP2) Valence Double Zeta Basis Set FC Franck-Condon HT Herzberg-Teller Operators, Matrices and Similar μˆ Electronic Transition Dipole Moment Operator el S Duschinsky Matrix (cid:5) d Displacement Vector ˆ H Hamiltonian ∇ Nabla Operator ∇2 Laplacian Operator ˆ F Fock Operator ˆ J Coulomb Operator ˆ K Exchange Operator (from Hartree-Fock Theory) ˆ U Fluctuation Operator in the CC2 Method H Hermite Polynomial ν
Description: