VIBRATION-IMPACT CUTTING OF SUBMERGED FROZEN CLAY IN AN ARCTIC TRENCHING PROCESS SHAKING THINGS UP IN THE TRENCHING BUSINESS In partial fulfillment of the requirements for MSc. Offshore & Dredging engineering – Delft U niversity of Technology By Robbin Thomas Motzheim ii PERCUSSIVE CUTTING OF PERMAFROST IN A MARINE ENVIRONMENT SHAKING THINGS UP IN THE FIELD OF ARCTIC TRENCHING PERCUSSIVE CUTTING OF PERMAFROST IN A MARINE ENVIRONMENT SHAKING THINGS UP IN THE FIELD OF ARCTIC TRENCHING Thesis inpartialfulfillmentoftherequirementsforthedegreeof MasterofScience inOffshore&DredgingEngineering attheDelftUniversityofTechnology, tobedefendedpubliclyonWednesdayMay25,14:30. by RobbinThomas MOTZHEIM MSc.Offshore&DredgingEngineering borninGroningen,TheNetherlands Thesiscommittee: Supervisor: Prof.Dr.Ir.C.vanRhee TUDelft Thesiscommittee: Dr.Ir.S.A.Miedema TUDelft Dr.Ir.M.AlvarezGrima RoyalIHC Dr.Ing.R.Plat RoyalIHC Dr.Ir.P.R.Wellens Deltares Keywords: Arctic trenching; Percussive cutting; Vibration cutting; Vibration- impactcutting;Permafrost;Frozenclay;Marineplough Printedby: RoyalIHC Front: IHCEngineeringBusinessPL3PipelinePlough Copyright©2016byR.T.Motzheim ThisthesisisconfidentialandcannotbemadepublicuntilDecember31,2016 Anelectronicversionofthisdissertationisavailableat http://repository.tudelft.nl/. v ABSTRACT ToprotectpipelinesinArcticregionstheyareoftenburiedintrenches,effectivelyprevent- ingdamagebyicegouging.WhentrenchingisperformedinArcticsoil,subseapermafrost maybeencounteredatwaterdepthsupto100m,mainlywhileexcavatingclaysoil.Frozen clayisananisotropicinhomogeneousmaterialwithatensilestrengthandbehaviorcom- parabletosoftrock. Previousobservationsofcuttingexperimentsonsubmergedfrozenclayindicatedthatthe dominantfailuremechanismistensilebrittle. Withanincreasingthicknessofthelayer cut,theincreaseofcuttingforcesseemstobelessthanproportional. Anexplanationfor this trend is the size effect, which describes the probabilistic weakening of the material whenthethicknessofthelayercutincreases. Anoptimalthicknessofthelayercutcould resultinlowerspecificenergyconsumption,howeverthismayleadtohighercuttingforces. Inordertoexcelinthedesignandconstructionofefficientsubseaexcavationequipment (e.g. subsea trenchers) thorough knowledge of physical characteristics of permafrost is mandatory. These characteristics include the failure mechanisms, the required cutting forcesandpowerconsumption. Duetothebrittlebehaviorofthefrozenclaytheuseofa vibration-impactmechanismhasbeeninvestigated.Aliteraturereviewidentifiedthatthe knowledgeonvibration-impactcuttinginpermafrostisverylimited.ThereforeRoyalIHC andDelftUniversityofTechnologyjoinedforcestofillthisknowledgegap. Themaingoalofthisresearchistoidentifythegoverningparametersin(vibration-impact) cutting of frozen clay. Knowledge of the effect of vibration-impact cutting leads to the abilitytocalculatecuttingforcesinsimilarconditionsandtodeterminetheparameters requiredfordesigningeffectivesubseaexcavationequipment. Inthisstudyapredictionmodelofthevibration-impactcuttingtoolandsoilisdeveloped. A specialized large scale vibration-impact cutting setup was designed and constructed. Thecuttingexperimentswereperformedonstiffclayhavingsimilarpropertiesofthesoils foundintheArctic. Theresultsfromtheexperimentswereusedtovalidatetheprediction model. Arelationshipbetweendrawbarforcereduction,velocityratioandforceratiohas beenfoundandiselaboratedtodesignparameters. vii CONTENTS Abstract vii Nomenclature xiii ListofFigures xvii ListofTables xix 1 Introduction 1 1.1 Contextoftheresearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problemdescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Problemdefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 Researchflowdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 TrenchingintheArctic 3 2.1 Arcticoil&gasreserves . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Arcticpipelinerisks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Seabed/icegouging . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Mitigationmethods . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 Strudel/icescour. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Currentoffshoretrenchingpractice. . . . . . . . . . . . . . . . . . . . . 5 2.3.1 Trenchshapes&sizes . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.2 Subseaploughing . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.3 Specificcuttingenergy. . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.4 Towingvesselefficiency . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.5 Specificenergyofcuttingprocessvs.totalsystem . . . . . . . . . . 8 2.4 Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 Formationofsubeapermafrost . . . . . . . . . . . . . . . . . . . 8 2.4.2 LocationofsubseapermafrostintheArctic . . . . . . . . . . . . . 9 2.4.3 DepthoftheArcticsubseapermafrost. . . . . . . . . . . . . . . . 9 2.4.4 Typesofsubseapermafrost . . . . . . . . . . . . . . . . . . . . . 10 2.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Clay,frozenclayandice 11 3.1 Mechanicalpropertiesofclay. . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Unfrozenwaterinfrozenclay . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Freezingprocessofclay . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.3 Conclusionsonclayandthefreezingprocessofclay. . . . . . . . . 13 3.2 Mechanicalpropertiesoffrozenclay . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Compressivestrengthoffrozenclay . . . . . . . . . . . . . . . . . 13 3.2.2 Tensilestrengthoffrozenclay . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Internal&externalfrictionangleoffrozenclay . . . . . . . . . . . 16 ix x CONTENTS 3.2.4 Salinityeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.5 Conclusionsonmechanicalpropertiesoffrozenclay . . . . . . . . 16 3.3 Mechanicalpropertiesofice . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 ISO19906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Tensilefailureandtensilestrength. . . . . . . . . . . . . . . . . . 17 3.3.3 Compressivefailureandcompressivestrength. . . . . . . . . . . . 17 3.3.4 Conclusionsonmechanicalbehaviourofice . . . . . . . . . . . . 18 3.4 Suitabilityoffrozenremoldedclay . . . . . . . . . . . . . . . . . . . . . 18 3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Vibro-impactcutting 19 4.1 Vibro-impactcuttingasanimprovement. . . . . . . . . . . . . . . . . . 19 4.1.1 Vibro-impactcuttingexplained . . . . . . . . . . . . . . . . . . . 20 4.2 Previousresearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.1 Landbasedploughing . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.2 Drilling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.3 Cuttingofrockysoils. . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.4 Cuttingoffrozensoil. . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Vibrationtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.1 Harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.2 ImpactingI&II . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4 Parametersofinterest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Rockcuttingtheories 27 5.1 Cuttingtheories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 Miedema’scuttingtheories . . . . . . . . . . . . . . . . . . . . . 27 5.1.2 Teartype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.3 Materialdiscontinuitieseffectonthecuttingprocess . . . . . . . . 33 5.2 Highstrainrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Permafrostcuttingtheories. . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.1 Liefferink’sWeibulltheorem . . . . . . . . . . . . . . . . . . . . . 34 5.3.2 Miedema’sBetatheorem. . . . . . . . . . . . . . . . . . . . . . . 35 5.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Fracturemechanics 37 6.1 Fracturetoughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 Fracturetoughnessofice . . . . . . . . . . . . . . . . . . . . . . 37 6.1.2 Fracturetoughnessoffrozensoil. . . . . . . . . . . . . . . . . . . 38 6.1.3 Comparisonoffrozenandunfrozenclayeysoils. . . . . . . . . . . 39 6.2 Crackstability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2.1 Crackstabilityofice . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3 Crackpropagationspeed . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4 Impactstrength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Description: