ebook img

Vibration Control of Large Scale Flexible Structures Using Magnetorheological Dampers Approved PDF

216 Pages·2012·5.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vibration Control of Large Scale Flexible Structures Using Magnetorheological Dampers Approved

Vibration Control of Large Scale Flexible Structures Using Magnetorheological Dampers by Wei Liu ADissertation Submittedto theFaculty of the WORCESTER POLYTECHNIC INSTITUTE In partial ful(cid:2)llmentofthe requirementsforthe DegreeofDoctorof Philosophy in MechanicalEngineering March2,2005 Approved: ProfessorZhikun Hou,MajorAdvisor ProfessorMichaelA.Demetriou,Co-advisor ProfessorJohn Sullivan,CommitteeMember ProfessorJamesHu, CommitteeMember (University ofRhode Island) ProfessorMarkRichman,GraduateCommittee Representative Copyright ' 2005 by Wei Liu ALL RIGHTS RESERVED Use or inclusion of any portion of this document in another work intended for commercial use will require permission from the copyright owner. Abstract Structural vibration control (SVC) of large scale structures using the magnetorheological (MR) dampers are studied. Some key issues, i.e. model reduction, suppression of spillover instability, optimal placement of actuators and sensors, modeling of the MR dampers and their applications inSVC system forlargescalestructures,areaddressed inthis work. A new model reduction method minimizing the error of a modal-truncation based reduced order model(ROM) is developed. The proposed method is implementedby using a GeneticAl- gorithm(GA),andcanbeef(cid:2)cientlyusedto(cid:2)ndaROMforalargescalestructure. Theobtained ROM has a (cid:2)nite normand therefore can be used for controllerdesign. The mechanism 2 2 H H of the spillover instability is studied, and a methodology to suppress the spillover instability in a SVC system is proposed. The suggested method uses pointwise actuators and sensors to con- structa controllerlyinginanorthogonalspacespannedby theseveralselectedresidual modes, suchthatthespilloverinstabilitycausedbytheseresidualmodescanbesuccessfullysuppressed. AGAbasednumericalschemeusedto(cid:2)ndtheoptimallocationsforthesensorsandactuatorsof a SVCsystem is developed. The spatial normis usedas the optimization index. Becausethe 2 H spatial norm is a comprehensive index in evaluating the dynamics of a distributed system, 2 H a SVC system using the sensors and actuators located on the obtained optimal locations is able to achieve a better performance de(cid:2)ned on a distributed domain. An improved model of MR dampers is suggested such that the model can maintain the desired hysteresis behavior when noisy data are used. For the simulation purpose, a numerical iteration technique is developed to solve the nonlineardifferential equations aroused from a passive controlof a structureusing the MR dampers. The proposed method can be used to simulate the response of a large scale structuralsystemwiththeMRdampers. Themethodsdevelopedinthis workare(cid:2)nallyveri(cid:2)ed usinganindustrial roofstructure. Apassiveandsemi-activeSVCsystems aredesignedto atten- uate the wind-induced structural vibration inside a critical area on the roof. The performances of the both SVC systems are analyzed and compared. Simulation results show that the SVC systems using the MR dampers have great potentials in reducing the structural vibration of the roofstructure. In Memory of My Grandmothers To My BelovedSon Acknowledgments I am grateful to all people who have contributed towards shaping this disserta- tion. First of all, I would like to express my sincere gratitude to my advisor, professor Zhikun Hou, for his comprehensive guidance and continuous support. His obser- vations and invaluable advice helped me to establish the overall direction of the re- search and to move forward smoothly. Withtout his support, this work would never be possible. Financial support from the FM Globalr Research Center is gratefully acknowledged. Iwouldlike toexpressmy sincere appreciationtomy co-advisor, professor Michael A. Demetriou, for his guidance and assistance in helping me to gain a better under- standing in the control theories. His encouragement and advice have substantially helped me out in learning this new discipline. Gratitude goes to my dissertation committee members, professor Sullivan, profes- sor Richman and professor Hu. Whenever I felt a dead-end in my research, they were there to give me helping hands. I am thankful to professor Sullivan for teaching me both theories and practical techniques in numerical analysis from which my research bene(cid:2)ted. I am thankful to professor Richman for teaching me elasticity theories and agreeing to provide me a TA assistantship during the end of my research. I am indebted to professor Hu for his instructive advice on this work. Thanks also go to professor Dimentberg who gave me valuable help on random and nonlinear vibration. I would like to express my gratitude towards my colleague Adriana for all the enlightening discussions with her. I’d like to thank Edyta for her efforts in keeping our of(cid:2)ce a clean, comfortable place to work. I also wish to express my appreciation to secretaries of the ME of(cid:2)ce, Barbara Edilberti, Barbara Furhman, Janice and Pam for all of their assist and cooperation. I would like to thank my grandfather, my parents, my sister and her husband for their sustained supports. I shall be more obliged to all of them than I can express. Finally, Iowespecialthanktomy wife,YiqunHu,forallwhatshedidinsupporting me in (cid:2)nishing this work. Without her understanding and supports, I would not have made it this far. My lovely son was brought into this world during the writing of my dissertation. His arrival added a lot of joy to my tedious work. As a father, I should have spent more time with him. For this, I felt obliged to him. I therefore dedicate this dissertation to my son, Andrew. Wei Liu Worcester, Massachusetts CONTENTS List of Tables v List of Figures vi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview ofStructuralVibration Control . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 ModelReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Suppressionof SpilloverInstability . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 Optimal Locations of Sensorsand Actuators . . . . . . . . . . . . . . . . . 11 1.3.4 ModelingandControlof MRDamper . . . . . . . . . . . . . . . . . . . . 13 1.4 Objectives of theDissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Overview ofthe Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Modeling of FlexibleStructuresand Controller Design 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Mindlin PlateTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Finite elementFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 ControllerDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 i 2.4.1 State SpaceForm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.2 LQG Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 H 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Model Reduction 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 BalancedRealizationand ModelReduction. . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Controllerabilityand Observability . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 BalancedRealization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.3 ModelReductionby BalancedTruncation . . . . . . . . . . . . . . . . . . 41 3.3 Modal Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 TruncationError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 ParametricStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 ModelReductionby Modi(cid:2)ed ModalTruncation . . . . . . . . . . . . . . . . . . . 55 3.4.1 Approximation ofRealSystem. . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Algorithmof Modi(cid:2)ed ModalTruncationUsingGA Method . . . . . . . . 58 3.5 NumericalExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 Suppressionof SpilloverInstability 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Mechanismof Spillover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 A NullSpaceApproachforSuppressingSpilloverInstability . . . . . . . . . . . . 72 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 NumericalExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Optimal Locations of Sensors/Actuators 90 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2 Spatial Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2 H ii 5.3 Dominant ModesandReducedOrderModel . . . . . . . . . . . . . . . . . . . . . 94 5.4 GA Method fortheOLSA Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5 NumericalExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 Modeling of MR Dampers and Applications 111 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2 ModelingofMRFluids Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2.1 Binham Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2.2 Extended BinghamModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2.3 Bouc-WenModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.4 Modi(cid:2)ed Bouc-WenModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2.5 Improvementof theNumericalProperty . . . . . . . . . . . . . . . . . . . 118 6.3 StructuralVibration ControlUsingMRDampers . . . . . . . . . . . . . . . . . . . 120 6.3.1 Passive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3.2 Semi-ActiveControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.4 NumericalExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4.1 Passive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.4.2 Semi-ActiveControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7 Vibration Control of a Roof Structure 132 7.1 DynamicResponseAnalysis of RoofStructure . . . . . . . . . . . . . . . . . . . . 133 7.1.1 Wind Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.1.2 Responseofthe Roofto the Wind Excitation . . . . . . . . . . . . . . . . . 140 7.2 Modal Analysisof theRoofStructure . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.3 Modelingofthe RoofStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.3.1 Admissible Actuator/SensorLocations . . . . . . . . . . . . . . . . . . . . 147 7.3.2 Optimal Locations of Actuatorsand Sensors . . . . . . . . . . . . . . . . . 149 7.3.3 ReducedOrderModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.4 Passive ControlUsing MRDamper . . . . . . . . . . . . . . . . . . . . . . . . . . 155 iii 7.5 Semi-ActivecontrolUsing MRDamper . . . . . . . . . . . . . . . . . . . . . . . . 162 7.6 Less Constrained RoofStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8 Concluding Remarks 175 8.1 Summaryof theWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 8.3 RecommendationsforFutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . 180 A Newmark Direct Integration Algorithm 182 B EigensystemRealization Algorithm 185 C GeneticAlgorithm 188 Bibliography 193 iv

Description:
Structural vibration control (SVC) of large scale structures using the both theories and practical techniques in numerical analysis from which my research I shall be more obliged to all of them than I can express. attention should be paid in minimizing the modeling error caused by the model
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.