ebook img

VI. Two-way tables and two-way ANOVA PDF

24 Pages·2001·0.92 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview VI. Two-way tables and two-way ANOVA

Twtotw-aaoAwbn-N aldwOye aVV syAI . Intr odAu.c tion 1. :sledo mnoisserge rro fnoitato ndnah-troh sf oweiveR mm =)...|y( x ROTCA F + + x ROTCA F + + x :FACTOR + x x: 1 a 2 b 1 a 1 2 2. Analysis of variance srotca fyln ohti wsisylan anoisserge r: 3. :setoN a. tnatropm ioo tt’ns inoitcnitsi dnoisserge r /AVONA b. )?yhw (lartne cer aselba tAVON Adn astset- F,AVON AnI c. 2-way ANOVA . .sa hAVON Ayaw- 3,srotca f 2sa h d. Additive 2-way model: mm (y) = FACTOR ROTCA F + a b evitidda-noN : FACTOR ROTCA F + ROTCA F + ::ROTCAF a b a b 412S/t5 12 p1a1g7e e. The noitacifissal cyaw-owt r o tuoya lyaw-owt : ROW COLUMN FACTOR FACTOR 1C 2C 3C 4C 1R Y Y Y Y 1 3 5 7 Y Y Y Y 2 4 6 8 2R Y Y Y Y 9 11 13 15 Y Y Y Y 10 12 14 16 3R Y Y Y Y 17 19 21 23 Y Y Y Y 18 20 22 24 Data File: index ROW COLUMN Y 1 R1 C1 Y 1 2 R1 C1 Y 2 3 R1 C2 Y 3 4 R1 C2 Y 4 5 R1 C 3 Y 5 6 R1 C3 Y 6 ... 412S/t5 12 p1a1g8e 4. smre tngise dlatnemirepx etnatropmI a. Experimental unit s itnemtaer teh thcih wo ttcejb oeh t: applied b. Treatment o tdeilpp as itah tnoitalupina mr onoitidno ceh t: unitthse c. Block stin ulatnemirepx eralimi sf onoitcello c a: d. ngise dkcol bdezimodnaR o tstnemtaer tf osnoitazimodna r: kcol bhca ero fyletarape sdetcudno cer astin u.repxe 5. mor fesir aya mnoitacifissal cyaw-ow t an iataD a. )yralas= y,cud esry=lo c,xes=wo r:xE (ydut slanoitavresbo b. stnemtaer t 2hti wtnemirepx edezimodnar c. tnemtaer t 1hti w.repx ekcol bdezimodnar )tnemtaer t =lo c,kcol b =wor( 412S/t5 12 p1a1g9e 6. noitacilpeR tuohti welba tyaw-2 setacilpe rhti welba tyaw-2 )lle cre p.sb o1 (setacilper a. Balance snoitavresb of orebmu nema seh ter aereh tsnae m )elba teh tf olle cre p.e.i (noitanibmo ctnemtaer trep b. consideration special require replicates without tables 2-way (Ch.14) c. ).repxe kcolb dezimodnar( )1.1.31( srezarG deewaeS :xE 412S/t5 12 p1a2g0e seta c ., ihBsyl t egpyirleea wobtrwfaa-tr2tS 1. lla )b( ,noitcaretni )a( :tuoba eb yam tseretni fo )s(noitseuq :etoN -ca fhto br oen of osleve lwe f a)c (,srotca fhto br oen of oslevel snoitanibmo craeni lniatre c)d (r o,srot 2. tol pneh tledo mevitidda-no nyaw- 2ti f;elbisso pf i,tol p:erolpxE yrassece nf imrofsnar t;seula vdetti fsusre vslaudiser 3. tset- Fn ahti wnoitcaretn iro ftseT 4. tuob ayliramir ps inoitseu qfI main effects noitcaretn ieh tpor d, ere hysrevortno cemo s:etoN (tnacifingi sto ner ayeh tf ismret )pihsnoitale recnacifingis/ezi selpma so teud 5. hti wtseretn if osnoitseu qcificep srewsnA a. f osnoitanibmo craenil bb ’s 412S/t5 12 p1a2g1e b. segarev anmulo cr owo rf osnoitanibmo craenil c. gnis usnoitaziretemara pesoh cylesi wn istneiciffeo c,RO regression models (my preference) 6. ro f,yrassece nf i,seuqinhce tnosirapmo celpitlu mesU gnipoon sata d)ii (r osnosirapmo celpitlu m)i( melborP ataD srezarG deewaeS .C 1. n aereh ts I)b (,noitamrofsnar tro fdee nevlose R)a (:ygetartS s I)c ()!to nyllufepoh (tnemtaer tdn akcol bneewte bnoitcaretni fi 1( EGRAL rof srotacidni etaerC )d( ?tceffe tnemtaert a ereht )tneser pf i1 (TEPMI Ldn a,)tneser pf i1 (LLAM S,)tneserp 2. f onoitropor p = p =esnopse r:ere hnoitamrofsnar ttuob aetoN si ti fI .)1 dna 0 neewteb( htworger deewaes yb derevoc tolp s’te L.])p-1(/p[go ls inoitamrofsnar tdoo g a,elbaterpretni .)p-1(/ ps a”oita rnoitarenege rdeewaes “enifed 412S/t5 12 p1a2g2e syalpsi Dlacihpar Gelbisso P3 7 8 2 3 -2 5 6 1 2 -2 -1 lrr 3 4 lrr 2 -2 -3 1 2 2 -2 -5 1 2 3 4 5 6 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 taert kcolb ;tnemtaer t.s vY taert ;kcol b.s vY 1 2 3 4 5 6 ro fyletarapes ro fedoc each block treatment 2 F f L level 1 rLeogge neration 0 ratio, adjusted laitraP partial for treat l for block effects -1 o r laudiseR t n -2 o c f F L f L f -3 412S/t5 12 p1a2g3e RESAUNLOTVSA D fS u mo fS M q e a nSFV P q a r l ( u F e ) block 7 76.23861 10.89123 35.96337 0.0000000 0000000 .6 02 5 5 t0 a. e 4 4r6 6t8 9 3. 92 12 3 95 9. 69 921902 1t0.a 90e 6r 53t1 4: 5.k131c 4 4o50.l3 30b2 .51 48203. 034635.4 18 4slaudise R ) F ( r eP u l q a nSFV a q e fS Mmo u fSD k c 3 o4l 8b6 3 .302 31 98 .1 06 187302 .67 7 9 9 8 00. 4456893 .t 9 a 21 e2 r3 t9 95 . 69 Resi d u a28l 9 3 s . 7 6 608 . 4 3 5 8 6 4 412S/t5 12 p1a2g4e 3. ...dluo cen o,rehtru ftceff etnemtaer teh terolpx eoT a. es udna (leve lreht oyrev eo tleve ltnemtaer tyrev eerapmoC si siht tub ;)tnemtsujda nosirapmoc elpitlum remarK-yekuT ew (stnemtaer teh tf oerutcurt sralucitra peh to tevitisnesni ,hsi fegra lgnidulcn if ostceff ecificep seh tsserdd ao thsiw .. .r o,)stepmi lgnidulcn idn ahsi fllam sgnidulcni b. gnidulcni fo tceffe eht gnitneserper snoitanibmoc raenil mroF large fish, etc. (see Section 13.3.4), or... c. 3 eht fo ecnesba/ecneserp eht rof selbairav rotacidni etaerC :ti fdn asrezar gf osdnik +tepmil.dn i +llams.dn i +egral.dn i +KCOLB ind.large ·· ind.small+ ind.limpet ·· tepmil.dni egral.dn i:etoN( ·· )?yh W.egral.dn i =llams.dni 412S/t5 12 p1a2g5e “large” = 1 if treatment level is 5 or 6; and 0 otherwise Value Std. Error t value Pr(>|t|) (Intercept) 0.1805 0.1497 1.2055 0.2314 block1 0.2300 0.1222 1.8814 0.0634 block2 0.6249 0.0706 8.8539 0.0000 block3 0.5315 0.0499 10.6494 0.0000 block4 -0.0341 0.0387 -0.8810 0.3808 block5 0.1121 0.0316 3.5530 0.0006 block6 -0.0508 0.0267 -1.9060 0.0601 block7 -0.0104 0.0231 -0.4520 0.6524 large -0.5078 0.2117 -2.3982 0.0187 small -0.4941 0.2117 -2.3338 0.0220 limpet -1.8925 0.2117 -8.9382 0.0000 large:limpet -0.2125 0.2994 -0.7097 0.4799 small:limpet 0.2017 0.2994 0.6738 0.5023 tnacifingis-no nf onoitele demit-a-ta-enO pet stxe netairporpp an as ismre tnoitcaretni 412S/t5 12 p1a2g6e

Description:
2-way ANOVA has 2 factors, 3-way ANOVA has .. d C. Seaweed Grazers Data Problem. 1 E. Example of 2x2 factorial, with replication. 1.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.