ebook img

Very deep spectroscopy of the Coma cluster line of sight PDF

17 Pages·2009·3.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Very deep spectroscopy of the Coma cluster line of sight

A&A507,1225–1241(2009) Astronomy DOI:10.1051/0004-6361/200912228 & (cid:2)c ESO2009 Astrophysics Very deep spectroscopy of the Coma cluster line of sight: (cid:2) exploring new territories C.Adami1,V.LeBrun1,A.Biviano2,F.Durret3,F.Lamareille4,R.Pelló4,O.Ilbert1,A.Mazure1, R.Trilling3,andM.P.Ulmer5 1 LAM,OAMP,UniversitéAix-Marseille&CNRS,Pôledel’Etoile,SitedeChâteauGombert,38rueFrédéricJoliot-Curie, 13388Marseille13Cedex,France e-mail:[email protected] 2 INAF-OsservatorioAstronomicodiTrieste,viaG.B.Tiepolo11,34143Trieste,Italy 3 Institutd’AstrophysiquedeParis,CNRS,UMR7095,UniversitéPierreetMarieCurie,98bisBdArago,75014Paris,France 4 Laboratoired’AstrophysiquedeToulouse-Tarbes,UniversitédeToulouse,CNRS,14Av.EdouardBelin,31400Toulouse,France 5 DepartmentofPhysics&Astronomy,NorthwesternUniversity,2131SheridanRoad,Evanston,IL60208-2900,USA Received30March2009/Accepted23June2009 ABSTRACT Context.Environmental effectsareknown tohaveanimportant influence oncluster galaxies,but studiesatvery faintmagnitudes (R>21)arealmostexclusivelybasedonimaging.Wepresenthereaverydeepspectroscopicsurveyofgalaxiesonthelineofsight totheComacluster. Aims.Afteraseriesofpapersbasedondeepmulti–bandimagingoftheComacluster,weexplorespectroscopicallypartofthecentral regions of Coma, inorder toconfirmand generalize previous results,concerning inparticular thegalaxy luminosity function, red sequence,stellarpopulationsandthemostlikelyformationscenariofortheComacluster. Methods.WehaveobtainedreliableVIMOSredshiftsfor715galaxiesinthedirectionoftheComaclustercentreintheunprecedented magnituderange21≤R≤23,correspondingtotheabsolutemagnituderange−14≤M ≤−12. R Results.WeconfirmthesubstructurespreviouslyidentifiedinComa,andidentifythreenewsubstructures.Wedetectalargenumber of groups behind Coma, in particular a large structure at z ∼ 0.5, the SDSS Great Wall, and a large and very young previously unknownstructureatz∼0.054,whichwenamedthebackgroundmassivegroup(BMG).Thesestructuresaccountforthemassmaps derivedfromarecentweaklensinganalysis.Theorbitsofdwarfgalaxiesareprobablyanisotropicandradial,andcouldoriginatefrom fieldgalaxiesradiallyfallingintotheclusteralongthenumerouscosmologicalfilamentssurroundingComa.Spectralcharacteristics ofComadwarfgalaxiesshowthatredorabsorptionlinegalaxieshavelargerstellarmassesandareolderthanblueoremissionline galaxies.R≤22galaxiesshowlessprominentabsorptionlinesthanR≥22galaxies.Thistrendislessclearforfieldgalaxies,which aresimilartoR ≥ 22Comagalaxies.ThissuggeststhatpartofthefaintComagalaxiescouldhavebeenrecentlyinjectedfromthe fieldfollowingtheNGC4911groupinfall.Wepresentalistoffiveultracompactdwarfgalaxycandidateswhichneedtobeconfirmed withhighspatialresolutionimagingwiththeHST.Wealsogloballyspectroscopicallyconfirmourpreviousresultsconcerning the galaxyluminosityfunctionsbasedonimagingdowntoR=23(M =−12)andfindthatdwarfgalaxiesfollowaredsequencesimilar R tothatdrawnbybrightComagalaxies. Conclusions.SpectroscopyoffaintgalaxiesinComaconfirmsthatdwarfgalaxiesareveryabundantinthiscluster,andthattheyare partlyfieldgalaxiesthathavefallenontotheclusteralongcosmologicalfilaments. Keywords.galaxies:clusters:individual:Coma 1. Introduction clusterswaswellconstrainedonlydowntorelativelybrightmag- nitudes (R ≤ 20 for z ∼ 0 clusters). However, according to On the pathway toward the use of galaxy clusters to constrain Cold Dark Matter models of hierarchical structure formation cosmology,one mustunderstandhow clusters and their galaxy (e.g.White&Rees1978;White&Frenk1991),thereshouldbe populations evolve. Until very recently, galaxy evolution in abundantlow-massdark-matterdominatedhalos presentin the Universeandthesehalosshouldthereforecontainlowluminos- (cid:2) Based on observations collected at the European Organisation itygalaxies.Itisthereforeimportanttosamplethefaintandvery for Astronomical Research in the Southern Hemisphere, Chile (pro- faint cluster galaxy populations. Moreover, in galaxy clusters, gram: 081.A-0172). Also based on observations obtained with these faint galaxies are of major interest as their evolutionary MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, pathsaresometimesdifferentfromthoseofbrightgalaxies:they attheCanada-France-HawaiiTelescope(CFHT)whichisoperatedby are very sensitive to environmental effects and can be created theNationalResearchCouncil(NRC)ofCanada,theInstitutNational via interactions of larger galaxies (e.g. Bournaud et al. 2003). des Sciences de l’Univers of the Centre National de la Recherche They also keep their dynamical memory longer (e.g. Sarazin Scientifique(CNRS)ofFrance,andtheUniversityofHawaii.Thiswork 1986), and as a consequence their spatial distribution can pos- is also partly based on data products produced at TERAPIX and the CanadianAstronomyDataCentreaspartoftheCanada-France-Hawaii siblybedifferentfromthatofbrightgalaxies(e.g.Bivianoetal. TelescopeLegacySurvey,acollaborativeprojectofNRCandCNRS. 1996). With the arrival of large field cameras on medium size ArticlepublishedbyEDPSciences 1226 C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories telescopes, we started to reach the faint and very faint galaxy 195.2 195.0 194.8 194.6 194.4 regime.OurteamconcentratedontheComacluster(Adamietal. 2005a,b,2006a,b,2007a,b,2008,2009a,b;Gavazzietal.2009, and http://cencosw.oamp.fr/COMA/). This cluster is rela- 28.2 tivelynearbyandthisfacilitatedearlysearches(e.g.Wolf1901; see Biviano 1998and referencetherein;and for recentstudies, 28.1 seee.g.Andreon&Cuillandre2002;Beijersbergenetal.2002; Iglesias-Páramo et al. 2003; Jenkins et al. 2007; Lobo et al. 28.0 1997;Milneetal.2007;Smithetal.2008;Terlevichetal.2001; Trentham 1998). Using CFH12K and Megacam data we now haveagoodstatisticalviewofthefaintestgalaxiesexistinginthe 27.9 Comacluster(M ∼−9.5).However,thisviewis“only”statisti- R calandweonlyhavearoughideaofthebehaviourofindividual galaxies at these magnitudes. Our previousspectroscopic cata- 27.8 log limit (despite the fact thatit gatheredmost of the literature data available at thattime, see Adamietal. 2005a) was far too 27.7 brighttoinvestigatethesefaintpopulations.Also,theprecision on photometricredshifts is far too low to allow any dynamical analysisorspectroscopiccharacterisation. 27.6 In order to fill this gap, we have obtained deep (21 ≤ R ≤ 23)VIMOS/VLTspectroscopyandperformedthespectroscopic characterisationofthesefaintComaclustergalaxypopulations. Fig.1.u*bandMegacamimagewithareacoveredbytheVIMOSspec- We describe our new spectroscopic and literature data in troscopy overlayed (in red). Large red circles are the VIMOS galax- ies inside the Coma cluster. Small green circles are galaxies inside Sects. 2 and 3. We then present in Sect. 4 the analysis of the the Coma cluster taken from the literature. Blue contours represent Comalineofsightintermsofdetectedgroupsandsubstructures. the X-ray substructures from Neumann et al. (2003). Coordinates are WederivethedynamicalbehaviouroftheComaclustergalaxies J2000. in Sect. 5 and describethespectralcharacteristicsof the Coma cluster galaxies in Sect. 6. In Sect. 7, we build an ultra com- pact dwarf galaxy candidate catalog. We discuss in Sect. 8 the detected(asdescribedinAdamietal.2005a):thewestinfalling luminosity function and color-magnitude-relationof the Coma galaxylayerandsubstructuresclosetoNGC4911. cluster galaxies. Finally, we summarize our results in Sect. 9, We obtained a reliable redshift (reliability flag ≥2, see the givingacomprehensivepictureoftheComacluster. following) for 715 objects. Among these, slightly fewer than Inthispaperweassume H = 70kms−1Mpc−1,Ω = 0.3, 100 galaxiesare partof the Coma cluster. The minimum num- 0 m ΩΛ = 0.7,adistancetoComaof100Mpc,adistancemodulus berofgalaxiesexpectedinsidetheComaclustergiventhetarget of 35.00, and a scale of 0.47 kpcarcsec−1. All coordinates are selectionwas70,soourresultsareingoodagreementwithour givenattheJ2000equinox. predictions. 2. VIMOSspectroscopy 2.2.Datareduction ThespectrawereextractedusingtheVIPGIpackage(Scodeggio 2.1.Settings et al. 2005), which was extensively used for the VIMOS VLT Selectingtargetsonthebasisofnewphotometricredshiftscom- Deep Survey (VVDS) data (e.g. Le Fèvre et al. 2005). This puted using deep u*BVRI images, we observed three VIMOS package (VIMOS Interactive Pipeline and Graphical Interface: fields in the Coma cluster in orderto spectroscopicallycharac- VIPGI), is a new software designed to simplify to a very high terize the faint cluster population and to sample the cluster at degree the task of reducing astronomical data obtained with unprecedentedmagnitudesofR∼23. VIMOS (Visible MultiObject Spectrograph).The final product Weobtained∼1000spectraoffaintComalineofsightgalax- wasthewavelength-calibrated1Dspectraofourtargets. ies (R ∼ [21,23]) using the VLT/VIMOS instrument in 2008 Duetothefactthatourobservationsweremadeathighair- with exposuretimesof ∼2 h,splitinto five ∼24minindividual masses, differentialrefractionwasnotnegligible.However,the exposures. Despite the very unfavourable declination of Coma levelofspectraphysicalcurvatureontheCCDsremainedmod- attheVLTlatitude,wewereabletoobservethreemasksatair- estandwaseasilycompensatedforbyalinearfunctiontodefine massescloseto1.7,withaseeingoftheorderof1.2arcsec(the theextractionarea.Theslopeofthelinearfunctionwasvisually relativelylongexposuretimesforR∼23galaxiescompensating adjustedforeachquadrant. forthehighairmass).Thetargetswerepartlyselectedonapho- We then adopted the same strategy as for the VVDS. Each tometricredshiftbasis(followingAdamietal.2008)andpartly spectrum was examined independently by two of us (CA and randomlyinordertoincreasethenumberoftargets. VLB) and redshifts were proposed using well known cross- Since our aim was to obtain low resolution spectra of very correlation techniques such as the rvsao IRAF package or the faint nearby galaxies, we used the LR-blue grism (5.3 Å/pix), EZ VVDStool(aswellasVIPGI-includedlineGaussianfitting providing a S/N between 2 and 5, depending on the galaxy whenpossible).Thedifferentredshiftdeterminationswerecom- characteristics. Given the redshift range of interest (Coma is paredandafinallistwasestablished,includingqualityflags. at z ∼ 0.023), it allowed us to efficiently sample lines from When a redshiftdeterminationwas possible, it was flagged [OII]3727toHα. with a number between 1 and 9, following the VVDS conven- We chose to observe strategically located regions of the tions (e.g. Le Fèvre et al. 2004) and indicating the reliability Coma cluster (see Fig. 1), where infalling material has been levelofthemeasurement.Flags2,3,4arethemostsecure,flag1 C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories 1227 Table 1. For the three VIMOS fields observed: coordinates (J2000), numberofslits(N)andexposuretimes. Fieldnumber α δ N Exp.time (deg) (deg) (s) 1 194.72 27.87 322 7200 2 194.69 28.14 298 7184 3 195.04 27.72 306 7098 Fig.3.Redshifthistogramofthespectroscopicdata(binof0.005)avail- able in the region of interest (literature + VIMOS). The two vertical dottedlinesrepresentthelimitsweadoptedfortheComacluster.The inner box shows the redshift histogram (bin of 0.0005) for the Coma clusteritself. Fig.2.LogarithmoftheredshiftversusVegaRbandmagnitudeforthe spectroscopic sample.Filledcirclesaregalaxieswithareliabilityflag atleastequalto2.Opencirclesaregalaxieswithareliabilityflagequal to 1. The two horizontal lines show the redshift limits chosen in this paper for the Coma cluster. The vertical line is the minimum R band magnitudewewillconsiderforthemostoftheanalyses(R=21). isanindicativemeasurementbasedonfewsupportingfeatures, and flag 9 indicates that there is only one secure emission line correspondingtothelistedredshift.LeFèvreetal.(2005)have shownwithrepeatedobservationsthattheseflagscorrespondto Fig.4.Rbandmagnitudehistogramofthespectroscopicdataavailable the following probabilities of finding the correct redshift: 55% intheregionofinterest(literature+VIMOS)forthegalaxiesinsidethe forflag1,81%forflag2,97%forflag3,and99.5%forflag4. Comacluster. Giventhesenumberswesimplychosetoignoreallobjectswith flag1. Wealsogaveasecondintegerflagbetween0and3(spectral flag): 0 for absorption line only spectra, 1 for spectra showing Le Fèvre et al. (2005) estimated the redshift uncertainty to be both emission and absorptionlines, 2 forspectra showingonly of the order of 280 kms−1 from repeated VVDS redshift mea- emissionlines,and3foractiveobjects(i.e.showingbroadband surements.We performedthesameexercisebyconsideringthe emissionlinesorverystrongBalmerlinesascomparedtooxy- literature redshifts included in our VIMOS sample (6 galaxies genlines). between R = 17 and 19.8) or observed twice during our spec- We finally note that our spectra are not photometrically troscopicrun(3galaxiesbetweenR = 20.8and23),andwitha calibrated. reliabilityflagstrictlygreaterthan1.Giventhereliabilityflags, we expect to have 8 galaxies out of 9 providinga good agree- ment. In practice, 7 show a good agreement.One galaxy has a 2.3.VIMOSspectroscopicsample 0.008differenceinredshift,butcheckingtheliteraturespectrum Table1givesthebasicdetailsofthespectroscopicVIMOSob- (fromtheSDSSsurvey)andapplyingourredshiftmeasurement servations.Outofthe926slits,833objectsprovidedaspectrum methods,we estimate a redshiftsimilar to the onewe obtained with a tentative redshift measure. Among these 833, 118 were fromourownspectrumofthesamegalaxy(theSDSSautomated flagged with a reliability flag of 1, 298 with a reliability flag measurepipelinemisinterpretedtheedgeofanabsorptionlineas of 2, 187 with a reliability flag of 3, 187 with a reliability flag anemissionline). of4,and43withareliabilityflagof9. Foranothergalaxythereisastrongredshiftdiscrepancybe- Afterexcludingobjectswithareliabilityflagequalto1,we tweenourmeasurementandthatoftheliterature.However,our wereleftwith715galaxies,outofwhich250hadaspectralflag spectrumcorrespondstoaflag4(z=0.1468)galaxywithstrong of 0, 288 a spectral flag of 1, 168 a spectral flag of 2, and 9 a emission lines, whereas the spectrum from the literature is not spectralflagof3. availableforinspection,makingourpresentdeterminationmore Figures2−4giveageneralideaofthepropertiesofthesam- reliablethanthepreviousone.Figure5showstheresultingred- ple:distributionoftheredshiftsasafunctionoftheR-bandmag- shift comparison, corresponding to a statistical uncertainty of nitudes,redshifthistogram,andmagnitudehistogram. 196 kms−1, slightly lower than the VVDS estimate. We also Wealsoinvestigatedthevelocityuncertaintyresultingfrom show in this graph the galaxies observed twice in our spectro- our measurements. With a similar instrumental configuration, scopicruns.Despitethelowstatistics,theseobjectsdonotseem 1228 C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories 4. GroupsalongtheComaclusterlineofsight fromthespectroscopicsample WenowpresentouranalysisofthegroupsfoundalongtheComa lineofsight. First, we haveto definethe boundariesofthe Coma cluster intermsofvelocity.FromAdamietal.(1998),weknowthatthe Coma cluster galaxy velocity dispersion σ increases with de- v creasingluminosity,asexpectedfromdynamicalconsiderations. Anaturalwaytofixclusterboundariesistolimittheclusterve- locityrangewithin±3σ .Assumingthemeanσ forthefaintest v v galaxiesinAdamietal.(1998)(1200kms−1 forR ∼ 17.5),we limittheclustertotheredshiftrange[0.011;0.035]. Fig.5. Difference between literature and VIMOS redshift measure- Second, in order to determine galaxy orbits, we limit the ments as a function of redshift. The galaxy with the 0.008 difference spectroscopic sample to the areas where photometric redshifts (seetext)isshownbeforeandafterremeasuringitsredshift.Thecircled arealsoavailable(inordertobeabletocomputeadensityprofile objectsarethethreegalaxiesobservedtwotimesinourspectroscopic onthephotometricredshiftbasis).Finallywerestrictthemagni- runsandarefainterthanR=20.8(seetext). tuderangeofthespectroscopicsampletotheR=[21,23]range wherethesamplingrateisthemosthomogeneous. toshowadifferentbehaviourcomparedtobrighterobjectsinthe In order to search for galaxy groups along the Coma clus- ter line of sight, we applied the Serna-Gerbal (SG hereafter: literature. Serna & Gerbal 1996) method to our total redshift catalogue (VIMOS+literature).Thishierarchicalmethodwasalreadyap- 3. Complementarydata plied in one of our early studies (Adami et al. 2005a) and we referthe readertothis paperformoredetails. Briefly,itallows 3.1.Spectroscopicdatafromtheliterature galaxy subgroups to be extracted from a catalogue containing A spectroscopiccatalogbasedondatatakenfromtheliterature positions, magnitudes, and redshifts, based on the calculation was compiledby one of us (RT) from the NED and SDSS (in- of their relative (negative)binding energies. Note that this cal- cludinguptoDR6)databases.Weextractedfromthiscatalogall culation takes into account the mass to luminosity M/L ratio galaxiesinourVIMOSregionthatarenotalreadypresentinour chosen by the user as an a priori input value of the M/L ra- VIMOSdata.WealsoaddedafewnewredshiftsfromtheSDSS tio in the structure. The group mass derived later is estimated DR7.Theresultingliteraturecatalogisthereforemorecomplete fromthegroupbindingenergyandvelocitydispersion,anddoes thantheonewe usedinAdamietal. (2005a).Theseadditional not depend upon M/L, which proves empirically (e.g. Covone datawereincludedinFigs.2−4.Figure3showstheComaclus- etal.2006)toactmainlyasacontrastcriterion.Resultsdonot ter itself plus several structures along the line of sight for ex- depend strongly on this factor, since a variation of a factor of ampleatz ∼ 0.16,0.38,or0.52.Figure4showsthemagnitude two in this parameterdoes not significantly change the results. gapbetweenspectroscopicdatafromtheliteratureandournew Qualitatively,lowinputvaluesof M/Lallowustodetectstruc- VIMOS spectroscopic data. This gap has no consequences on tureswithlowbindingenergies,whilehighvaluesof M/Lonly mostofthefollowinganalyses,whicharebasedonR ≥ 21ob- allowthedetectionofthemajorstructures. jects.However,wehavetobearinmindthemagnitudedistribu- The output of the SG method is a list of galaxies belong- tionofthespectroscopicsamplewhendiscussingpossiblestruc- ingtoeachgroup,aswellasinformationonthebindingenergy turesalongthelineofsight. andmassofthegroupitself.Wewillconsiderherethatagroup consistsofatleast3members. We use a nominal M/L ratio in the R band of 400, and we 3.2.u*,B,V,RandIbandCFHTimagingdata also search for less strongly linked galaxy groups inside the The B, V, R, and I data are fully described in Adami et al. Coma cluster and inside the z ∼ 0.5 large scale structure (see (2006a).We givehereonlythe salientpoints.A mosaicoftwo thefollowing)assuminglowerM/Lratiosof100. fieldswasobservedwiththeCFH12Kcamerainfourbands(B, The SG methodreveals the existence of 76 “groups”along V, R and I) covering a 52 × 42 arcmin2 field. The total field the line of sight (assuming M/L = 400), including the Coma isapproximatelycenteredonthetwodominantclustergalaxies clusteritself.Amongthem,52groupshaveN ≥4members,and (NGC4874andNGC4889).WederivedtotalKronVegamag- 44groupshaveN ≥5members.InFig.6weshowthelog10(N) nitudes(Kron1980)fromtheseimages.Thecompletenesslevel versusredshiftforthe76groups.ThereisnorelationbetweenN inRisclosetoR∼24.Theseeingconditionswereallcloseto1 andthegroupredshifts. arcsec.Alltheseimagingdataareavailableat The main caveat of this analysis is that we do not have a http://cencosw.oamp.fr. completespectroscopiccatalog.We willdedicatethefollowing The u* data including the previous field are described in sectiontothispoint. Adamietal.(2008).Theywereobtainedbetween2006and2007 with the CFH Megacam camera in a field of view of 1 deg2 4.1.Samplingofthetotalspectroscopiccatalog with an average seeing of 1.1 arcsec. The total exposure time was9.66h.WederivedtotalKronABmagnitudesfromthisim- InordertofindallthestructuresalongtheComaclusterlineof agereducedusingSCAMPandSWARPtools(Bertinetal.2002; sight, the SG methodwould requirethe galaxycatalogueto be Bertin2006).Figure2showsasubareaofthetotalu*image. 100% complete, which is obviouslynever the case. The detec- These data thereforeprovidea catalog of objectsin the u*, tionefficiencydependsonthecompletenessofthespectroscopic B,V,RandIbandscompletedowntoR∼24. catalogandwemustthereforeanalyzethiscompletenessinthe C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories 1229 partsofthespectroscopicareaonlypresentasparsedistribution of z≤0.2backgroundgroups.The location of these detections cannot be explained by the spectroscopic incompleteness (see Fig.7)alone.Evenifnotuniform,thissamplingisnotpreferen- tiallyhighinthePFA. Partof the detected groupsare includedin the SDSS Great Wall(Gottetal.2005)andarecoincidentwiththePFA,confirm- ing the existence of a complexstructurebetween z ∼ 0.07and 0.085.Wealsodetectanewlargegalaxystructureatz ∼ 0.054 (theBackgroundMassiveGroup,orBMGhereafter).Thisstruc- ture, undetectedwith SDSS data alone, is mainly populatedby faint galaxies and is very rich (sampled with 58 spectroscopic redshifts). It is probably not virialized, because applying the virial theorem would lead to a mass of ∼2.7×1015 M(cid:6). Such Fig.6.NumbersofgroupmembersfoundbytheSerna–Gerbalmethod (inlogarithmicscale)versusredshiftforthe76N ≥3detectedgroups. amajormassconcentrationwouldevidentlyshowupinX-rays, andnothingisdetectedbyNeumannetal.(2003)atthislocation. Thisdoesnotmeanthatthisstructurehasanegligiblemass however, and it could significantly contribute to the mass con- zonethatweconsidered.Forthis,weuseourCFHTR-bandpho- centration detected with a weak lensing analysis by Gavazzi tometric catalog (http://cencosw.oamp.fr/). We pixelize et al. (2009) at the same location (see Fig. 8). If we define the the VIMOS field in several subregions of 0.2 × 0.2 deg2 and PFA ascenteredatα = 194.772,δ = 27.914andenclosedina compute the percentage of objects with a redshift available in circle of 5.5(cid:7) radius, we can estimate a mass from the Gavazzi our spectroscopic catalog (VIMOS + literature), as a function etal.(2009)weaklensinganalysisof(4.2±0.8)×1013 M(cid:6) (if of R band magnitude. Figure 7 gives the sampling rate in the at z = 0.023), or 2 × 1013 M(cid:6) (if at z = 0.055). The Adami VIMOSareaforseveralmagnituderanges. etal.(2005a)G8andG9Comasubstructuresareprobablycon- tributing to the PFA mass detected by weak lensing. However, 4.2.SubstructuresintheComacluster G8andG9arenotdetectedinX-raysandtheirmaximummass canbeinferredtobe∼0.5×1013M(cid:6),thelowestmassComasub- Assuming an M/L of 400, well adapted to find highly gravita- structure emitting in X-rays (the group attached to NGC 4911, tionallyboundstructures,wedetecttheComaclusterasasingle seeNeumannetal.2003).GroupsG8andG9canthereforeac- structure(z ∼ 0.0234sampledwith382redshifts),alongwitha countfor∼25%ofthePFAestimatedmass.The75%remaining minoradditionalsubstructure(sampledinspectroscopybyonly couldthencomefromthez∼0.054BMGstructure,leadingtoa 3galaxies). massoftheorderof(1−3)×1013 M(cid:6).Thismassishighenough We theninvestigatehowthe maindetectedstructurecanbe to justify the qualificationof massive, butsmall enoughto jus- split in several substructures. For this, we redo the same SG tify theundetectedX-rayemission.Thelargedifferenceofthis analysis using this time a M/L ratio of 100.Results are shown mass estimate with the virial one clearly argues in favor of an in Fig. 8. We essentially confirmin the consideredarea the re- unvirializedstructure.Withacrossingtimeof∼2.9×108 years sults of Adami et al. (2005a), and detect 7 subtructures. Three atz = 0.054,thisplacestheBMGstructureinaveryearlyevo- are directly linked to NGC 4874 (G1 of Adami et al. 2005a). lutionarystage. A fourth one (undetected in Adami et al. 2005a) is detected Several other smaller structures are detected between z = northofNGC4874andcoincideswith thenorthernpartofthe 0.035and0.2inthePFA.Thisleadsustosuspecttheexistence west X-ray substructures of Neumann et al. (2003). The last ofa(minor)lineofsightfilamentjoiningtheComaclusterand three are detected south of NGC 4874. One of them is along the new z ∼ 0.054 large galaxy structure, and then extending the NGC 4839 infalling path, and coincides with the G8/G9 towardtheSDSSGreatWallandbeyond. groups(seeTable2andFig.4inAdamietal.2005a),whilethe Suchahighlevelofstructuresintheimmediatebackground lasttwowerenotdetectedinAdamietal.(2005a).Thesethree vicinity of the Coma cluster could have a significant effect on groupsalsoseemtobevisibleintheOkabeetal.weaklensing theclusterluminosityfunctiondeterminationsinthisregion,es- study (private communication) and are included in the south- timatedforexamplefromstatisticalarguments(seeAdamietal. westmassextensiondetectedbyGavazzietal.(2009),whoused 2007a,b),becauseasignificantpartofthesenearbybackground thesamephotometricdataasinthepresentpaper. groupswere not detected in this early study. We will therefore determineinthefollowingaluminosityfunctiononlybasedon 4.3.Structuresatz≤0.2notbelongingtoComa ourspectroscopicdata. We note that most of these structures(e.g. the BMG or the BesidestheComaclustersubstructures,wearemorespecifically SDSSGreatWall)donotprominentlyappearinFig.3because interested in the z ≤ 0.2 structures (see also Gutiérrez et al. theyarenotfullyvirializedandthereforetheirredshiftdistribu- 2004)becausetheycannotbeefficientlyremovedfromtheback- tionisnotverycompact. ground using only photometric redshifttechniques (see Adami etal.2008). 4.4.SamplingtheComaback-infallinggalaxylayers:nature WegiveinFig.8andinTable2thelocationsandcharacter- ofgalaxyhaloes istics of the z ≤ 0.2 structures, excluding the structures which aremembersoftheComacluster. Our spectroscopic sample contains a number of active objects, We immediately notice a concentration of structures in a which can be used to study the foreground gaseous clouds small zone south-west of NGC 4874, which we will call the through the absorption features that imprint the spectrum (e.g. Putative Filament Area (PFA) in the following, while other Ledoux et al. 1999). This method has led to the discovery of 1230 C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories 195.2 195.0 194.8 194.6 195.2 195.0 194.8 194.6 28.2 28.2 28.1 28.1 28.0 28.0 27.9 27.9 27.8 27.8 27.7 27.7 27.6 27.6 5% 10% 15% 20% 2% 4% 6% 8% 10%12% 195.2 195.0 194.8 194.6 195.2 195.0 194.8 194.6 28.2 28.2 28.1 28.1 28.0 28.0 27.9 27.9 27.8 27.8 27.7 27.7 27.6 27.6 2% 4% 6% 8% 10%12% 1% 3% 5% 7% 9% Fig.7.CompletenesslevelinpercentageintheVIMOSarea(redlimitedregions)intheRmagnituderanges[18,20](upperleft),[19,21](upper right),[20,22](lowerleft),and[21,23](lowerright).CoordinatesareJ2000. extended halos around field galaxies (e.g. Bergeron & Boissé MgI line. The respective equivalent widths are 2.8 and 2.5 Å, 1991)andoftheintergalacticmedium(thewellknownLyman- andthe detectionlevelsare3σ. Theabsorptionredshiftscorre- alpha forest, see e.g. Croft et al. 2002, for a detailed review), spond to z ∼ 0.0496and 0.0595,just behind the Coma cluster and has allowed to study the internal regions of high redshift and very close to the mean redshift of the BMG structure dis- galaxies (throughthe so-called Damped Lyman-alphasystems, cussed in Sect. 4.3. The only possible identification is MgI, as see Khare et al. 2007). We tried to detect the gaseous regions any otheridentificationwouldeither lead to a negativeredshift just behind the Coma cluster with the same method. However or to a redshift higher than that of the active object. However, thecaseisparticular,becauseoftheverylowredshiftofComa MgIisalowionizationline,whicharisesonlyinlowtempera- andofthe wavelengthrangeofourspectroscopicobservations, turehaloesaroundfieldgalaxies,anddefinitelynotinhightem- whichimpedesusfromusinghigh-redshiftbackgroundtargets, peratureintraclustergas.Thisthereforesuggeststhatthe BMG since it would have been impossible to disentangle blue rest- intrastructuremediumdoesnothaveahightemperature,consis- frame wavelength lines at high redshift from redder restframe tentwithitssupposedlyunvirializeddynamicalstatus. wavelength lines at low redshift. We therefore looked for low redshift (z ≤ 0.25) active objects in our spectroscopic data. At We have searched for galaxies located within 100 kpc of thoseredshifts,theonlystrongabsorptionlinesthatcouldarise the line of sight to the VIMOS active object, as this corre- fromgaseoushalosorinterstellarmedium,andbedetectablein spondstothemeasuredsizeoflowionizationhaloesaroundfield ourspectraareMgIandCaH&K.Otherusualabsorptionlines galaxies(Fig. 10).Thereis a galaxyatredshift0.0482,located likeMgIIorCIVhaverestframewavelengthsintheUV,andare ∼50h−1 kpc away from the active object, plus several galaxies notdetectableintheopticalpartofalowredshiftspectrum.One potentially at z ≤ 0.2 (from photometric redshift estimates by objectissuitableforourstudyataredhiftof0.2312andlocated Adamietal.2008).Giventhatprobablymostfieldgalaxiesare spatiallyclosetotheBMG.ThespectrumofthisVIMOSobject surroundedbyagaseoushaloofradius∼90kpc(Kacprzaketal. isdisplayedinFig.9andisprobablyaSeyfert2galaxy. 2007),wesuggestthatoneormoreofthesegalaxies(partofthe AscanbeseeninthemagnifiedpartoftheVIMOSspectrum, BMGstructure)alsohasitsownhalo.Theintrastructuremedium there is an unidentified double line, shortward of the intrinsic oftheBMGthereforeallowsagaseoushalotosurviveinatleast C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories 1231 195.2 195.0 194.8 194.6 194.4 Table 2. Characteristics of the structures at z ≤ 0.2 not belonging to Coma(inorderofincreasingredshift). 28.2 α δ N Tentativemass Redshift (2000.0) (2000.0) (ifvirialized) 28.1 (deg) (deg) (M(cid:6)) 194.9867 27.77410 3 6.67E+13 0.0074 194.7974 27.93770 5 3.9E+12 0.0364 28.0 194.8937 27.81673 3 2.0E+12 0.0373 194.7462 27.87338 5 2E+10 0.0381 27.9 194.8206 27.95107 58 2.73E+15 0.0542 194.8296 27.84444 8 1.27E+14 0.0720 194.8266 27.95877 30 1.88E+14 0.0831 27.8 194.8543 27.92563 3 1.8E+12 0.0945 194.7782 28.16868 5 7E+11 0.0986 27.7 194.7517 28.17983 3 5E+11 0.0952 194.9777 27.78710 3 7.2E+12 0.1054 194.8250 27.90883 3 6E+11 0.1078 27.6 194.7706 27.82888 5 8.8E+12 0.1153 194.7916 27.89518 5 5.3E+12 0.1175 194.7713 27.94355 4 1.6E+12 0.1197 Fig.8. u* band image overlayed with X-ray substructures from 194.8791 27.85061 9 1.19E+13 0.1272 Neumann et al. (2003: blue contours), and with the mass map from 194.8550 27.92140 4 1.86E+13 0.1305 Gavazzi et al. (2009: green contours), VIMOS fields (red area), and 194.6917 27.89147 3 1E+08 0.1326 galaxy groups at z ≤ 0.2and outsidetheComa cluster (red:z ≥ 0.1, 194.8280 27.82573 3 4.18E+13 0.1374 green:z ≤ 0.1).ComasubstructuresfromtheM/L = 100SGanalysis 194.8205 28.02470 6 8.23E+13 0.1427 areshownasblackcircles.PFAislocatedaroundα = 194.77degand 195.0567 27.73113 6 1.9E+12 0.1458 δ=27.91deg.CoordinatesareJ2000. 194.7197 28.09023 6 3.7E+12 0.1534 194.7230 27.89113 39 8.5E+12 0.1590 194.7263 27.99955 4 8.13E+13 0.1734 194.9545 27.85410 10 2.7E+12 0.1780 194.8757 27.91133 3 1.1E+12 0.1796 oneof these galaxies.Thisisin goodagreementwith the early 195.0393 27.76123 3 3E+10 0.1838 evolutionarystageoftheBMG. 194.9579 27.83376 7 4.68E+13 0.1854 194.8118 27.89033 6 3E+11 0.1888 194.8523 28.01927 6 2.3E+12 0.1900 4.5.Structuresatz∼0.5 194.6847 27.93407 3 8E+11 0.1925 Inordertocharacterizethevicinityofthez ∼ 0.5galaxystruc- turedetectedinAdamietal.(1998and2000),wearealsointer- 5.1.Jeansanalysis estedinthestructuresnearthatredshift.AssuminganM/Lratio Inordertodeterminetheorbitsofapopulationofgalaxiesina of 100, we find with the SG method a very extended structure cluster,weneedthreeingredients: (coveringthewholefieldofview)atz∼ 0.52andsampledwith 29spectroscopicredshifts(Fig.11),whichwedonotdetectwith – themassprofileofthecluster,M(r),whereristhe3-Ddis- an M/Lratioof400.Amoreconcentratedstructureisfoundin- tancefromtheclustercenter; sidethisgalaxylayer(sampledwith6galaxies),locatedontop – the projected number density profile of the galaxies, N(R), oftheAdamietal.(1998and2000)clustercandidateatz∼0.52. whereRistheprojecteddistancefromtheclustercenter; We therefore have a z ∼ 0.52 compact structure of galaxies in – the line-of-sight velocity dispersion profile of the galax- thiszone.Wecannotestimatearobustmassbecauseofthelow iesσ(R). sampling.However,thefactthatwedetectthisstructureneither intheweaklensingmassmapofGavazzietal.(2009)norinthe We choose to take M(r) from the literature, scaling all param- X-raymapsofNeumannetal.(2003)andFormanetal.(private eters to the presently assumed cosmology. Geller et al. (1999) communication)doesnotsupportaverymassivestructure. haveappliedthecaustictechniquetodeterminethemassprofile oftheComaclusterouttolargeradii.Thistechniqueisclaimed toprovideaclustermassprofilewithlittledependenceontheas- sumedorbitalvelocityanisotropy.Theyhavefitthemassprofile 5. Galaxyorbits withaNFWmodelwithconcentrationc =r200/rs =8.3−+11..27and massM200 =1.14×1015M(cid:6).AnotherstudybyŁokas&Mamon ItisimportanttocharacterizetheorbitsoffaintgalaxiesinComa (2003)givesforthedarkmatterprofilec=9andatotalmassat asthisisapowerfultooltoputconstraintsontheirorigin.While the virialradiusof M200 = 1.19×1015M(cid:6). These are notvery bright galaxy orbits are relatively well known in clusters (e.g. differentfromtheGelleretal.estimates,andsupportourinitial Biviano & Katgert2004), nothingis knownaboutthe orbitsof choice. faintdwarfgalaxies.Wewillselectinthefollowingallgalaxies In both Geller et al.’s and Łokas & Mamon’s analyses, the withmagnitudesbetweenR=21and23andhavingameasured Coma cluster center is taken to be the position of NGC 4874. spectroscopicredshift.Weassumeasafirstguessthatthedwarf Since webaseouranalysisontheirmassprofile,wemustcon- galaxypopulationishomogeneousinordertoperformtheJeans sistently assume the same center throughout our analysis (i.e. analysis. alsoforN(R)andσ(R)). 1232 C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories Table 3. Characteristics of the substructures detected in the Coma 195.2 195.0 194.8 194.6 194.4 cluster. 28.2 α δ N Tentativemass Redshift (2000.0) (2000.0) (ifvirialized) (deg) (deg) (M(cid:6)) 28.1 194.9353 27.83393 3 3.85E+11 0.0117 194.8504 27.96517 7 4.83E+10 0.0128 28.0 194.8732 27.95258 9 2.83E+12 0.0162 194.6830 27.84417 4 2.49E+12 0.0193 194.8887 27.95417 3 1.17E+12 0.0236 27.9 194.7610 28.15490 3 1.36E+13 0.0283 194.8395 27.82490 4 5.08E+12 0.0342 27.8 27.7 27.6 Fig.11. u* band image withtheVIMOS area(red area) withthe z ∼ 0.52 galaxy structure members (green circles) overlayed. Coordinates areJ2000. Fig.9.VIMOSspectrumofaz=0.2312activeobject(black)detected inour survey.Thenoisespectrumisshowninred.Thepossiblefore- groundMgIlinesatz=0.0496andz=0.0595areindicatedinred. 27.79 27.78 27.77 0.0482 27.76 0.2312 27.75 Fig.12. Number densityprofile N(R ). 1σerrorbarsareshown. The n 27.74 solidlineisthebest-fitcoreprofile,thedashedlineisthebest-fitKing- modelprofile(i.e.acoreprofilewithslopea=−1). 195.02 195.00 194.98 cosmological term, v≡(V −V )/(1+V /c), where we have los c c Fig.10.Vicinityofthez=0.2312VIMOSactiveobject.Thelargeblue takenVc =7090kms−1 fromGelleretal. circleshowsa100kpcradiusatz=0.055.Thesmallbluecircleshows We havecheckedthatifwetakeŁokasandMamon’svalue thepositionoftheactiveobject.Thegreencircleistheonlygalaxywith forM200insteadofGelleretal.’s,theresultsoftheJeansanalysis aknownspectroscopicredshiftinthefield.Redcirclesaregalaxiesat areessentiallyunchanged. photometricredshiftsz≤0.2.CoordinatesareJ2000. In order to compute N(R ) one must be aware of the prob- n lemsduetoincompleteness.Onecannotusethesampleofspec- troscopically confirmed members, since it is only poorly com- We then consider the value of M given by Geller et al. plete. We therefore consider here the sample of dwarfs whose 200 to define the scaling radiusr and the scaling velocityv ≡ membership is based on their photometric redshift z < 0.2. 200 200 p (GM /r )1/2, so that we can work in the space of normal- We computed a binned N(R ) by counting galaxies within cir- 200 200 n ized radii r ≡ r/r (R ≡ R/r in projection), and ve- cularannulianddividingthesecountsbytheeffectivearea,i.e. n 200 n 200 locities v ≡ v/v , where v are the line-of-sight velocities thetotalareaofannuliexcludingthemaskedregions(definedin n 200 with respect to the cluster mean velocity, corrected for the Adamietal.2006a).TheresultingN(R )isshowninFig.12. n C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories 1233 Fig.13.Velocitydispersionprofile.1σerrorbarsareshown.Thesolid Fig.14.ResultsoftheJeansanalysis:χ2 valuesfordifferentβ(cid:7)values. lineistheJeanssolutionintheassumedNFWmassprofileforβ(cid:7)=1.8, Thesolidlineshowstheresultsobtainedusingthebest-fitcoreprofile obtainedusingthebest-fitcoreprofileforN(Rn).Thedashedlineisthe forN(Rn),thedashedlineshowstheresultsobtainedusingthebest-fit JeanssolutionintheassumedNFWmassprofileforβ(cid:7) =1.3,obtained King-modelprofileforN(Rn).Theverticallinesindicatethebest-fitβ(cid:7) usingthebest-fitKing-modelprofileforN(R ).Thedash-dottedlineis values.Thehorizontallinesrepresenttheχ268%and90%limits. n theisotropicJeanssolution(β(cid:7) =1)intheassumedNFWmassprofile, obtainedwiththebest-fitcoreprofileforN(R ). n would obtain marginally acceptable solutions (90%confidence level) butonly forverylow concentrations,c < 0.3,whichare We fit N(Rn) with a core model profile, N(Rn) = N0[(1+ excludedbyallanalysesofthemassprofilesnotonlyofComa, (Rn/Rc)2]−a, with three free parameters. Note that N0 does not butofanygalaxycluster. entertheJeansequationsolution(itcancelsout),sotheeffective WecanthereforeconcludethatdwarfgalaxiesinComahave number of interesting parameters is two. The best fit obtained radially anisotropicorbitsevenclose to the cluster center. This with N0 = 11544r2−020, Rc = 1.2r200 anda = −0.1 is shownin isatvariancewithanyothertypeofgalaxy(Biviano&Katgert Fig.12.Clearly,thedensityofdwarfgalaxiesisalmostconstant 2004). Late-typegalaxiesdomovealongradiallyelongatedor- withRn(atleastinthiscentralregion). bitsbutfarfromthecenter.Itistemptingtointerprettheseresults For the determination of σ(Rn) we consider the spectro- inevolutionaryterms. scopic sample. We do not need to consider incompleteness, as Dwarfgalaxiescouldbetheremnantsofthosegalaxiesthat longasthevelocitydispersionisindependentofthegalaxymag- fallintoComawithradialorbits.Theirradialorbitsdrovethem nitude.Thisislikelytobethecasesincedwarfgalaxiesarevery very near the cluster center where they were morphologically low-massobjectsandthetimescaleofdynamicalfrictionneeded transformedbysomephysicalmechanismthatis effectiveonly toslowdownsuchlightobjectsisbeyondtheHubbletimeina nearthecenter(e.g.tidaleffectsrelatedtotheclusterpotential). clusterlike Coma.We thendetermineσforthegalaxiesincir- Galaxies that we still see today as giant spirals would then be cularannuli.TheresultingbinnedprofileisshowninFig.13. those thatdid not pass verynear the Coma centerand so man- aged to survive. Hence their orbits cannot be radially strongly elongated in the central regions (or their pericenters would be 5.2.Results small). We arenowinthepositiontosolvetheJeansequation.Ideally, Unfortunately, these results depend on the solution for we could perform this analysis splitting our sample in several N(R ). The density profile is not well determined because it is n spectromorphologicaltypes,butthestatisticsaretoolowforthis onlywellknownneartheclustercenter.Wehavetriedtoassess purpose.We notehoweverthatoursampleisdominatedbyab- the systematics by forcing the slope of the core model to the sorption line galaxies (with or without emission lines) and by valuea = −1,whichcorrespondstothetraditionalKingmodel relativelyredobjects(∼75%oftheconsideredsampleisredder (King 1962). The fit is still acceptable, with a larger core ra- thanthe2-σlowerboundoftheColorMagnitudeRedSequence, dius than before, R /r = 1.7 (see Fig. 14). Using this new c 200 seeFig.23).Ourresultswillthereforemainlyapplytoreddwarf N(R )andthesameM(r)asbefore,weobtainabest-fitconstant n galaxies. anisotropy solution of the Jeans equation β(cid:7) = 1.3 ± 0.2 (see Given M(R )andN(R )wesearchfortheconstantvalueof Figs.12and14).Thissolutionisconsistentwiththeoneprevi- n n β≡1−(σ/σ)2thatprovidesthebest-fittoσ(R ),whereσ and ouslyfound,butisalso(marginally)consistentwithisotropy. t r n t σ are respectivelythe tangentialand radialcomponentsof the Withthecurrentdata-set,wehavemarginallysignificantev- r velocitydispersion.Aconstantβmodelshouldbeadequatehere idencethatthedwarfgalaxiesfollowradiallyanisotropicorbits giventhatthesampledregiondoesnotextendoverawideradial nearthecenterofComa.Extendingthephotometricdata-setto range. We preferto expressthe results in termsof β(cid:7) ≡ σ/σ. largerradiiwouldbeveryusefultobetterconstrainthenumber r t Thebestfitisgivenbyβ(cid:7) =1.8±0.3,significantlydifferentfrom density profile slope, which seems to play a critical rôle in the theisotropiccaseβ(cid:7) =1.ThiscanbeseeninFig.14. solutionoftheJeansequation. Ifweweretoforceisotropywithβ(cid:7) =0,wewouldobtainan Moreover,ifwearbitrarilysplitthedwarfgalaxysamplein unacceptable solution. On the other hand, if we force isotropy two parts (below and above R = 22.3) a puzzling behaviour andleavethe concentrationofthe massprofilefreetovary,we appears: dwarf galaxies with R ≤ 22.3 have a mean velocity 1234 C.Adamietal.:VerydeepspectroscopyoftheComaclusterlineofsight:exploringnewterritories of 6721 ± 350 kms−1, while dwarf galaxies with R ≥ 22.3 more massive (regardingtheir stellar mass) than blue galaxies. haveameanvelocityof7846±272kms−1.Thetwovaluesap- We findhereforfaintdwarfgalaxiesthesamewellknownten- pear quite different and a Kolmogorov-Smirnovtest leads to a denciesobservedforgiantgalaxies. 93% probability that the two velocity distributions (below and Dust attenuation and stellar metallicity do not vary signifi- above R = 22.3) are different. The fainter sample has a mean cantly and are not given in Table 4. Metallicities are compati- velocity equivalent to that of the G4 group of Adami et al. blewithsolarvalues,ingoodagreementwiththeassumptionof (2005a:notsampledbytheVIMOSdata).Thisgroupisrelated Adamietal.(2009b). to the giant galaxyNGC 4911,so we could expectto have the R ≥ 22.3 dwarf galaxies spatially correlated with the position of NGC 4911. However, this is not the case: a Kolmogorov- 6.3.Comparisonwithnon-Comaclusterdwarfgalaxies Smirnovtestdoesnotshowanyevidencefora differentspatial In this analysis, we classify our dwarf galaxies in four dif- distribution between the two samples of galaxies. An explana- ferent classes: low surface brightness galaxies, absorption-line tionwouldbethattheNGC4911groupislosingitsfaintgalaxy galaxies,absorption-plusemission-linegalaxies,emission-line populationalongitstrajectory,spreadingthispopulationallover galaxies.ThesecorrespondtotheComaLSB,Comaabs,Coma theComacluster. em+abs, and Coma em lines in Table 4 for the Coma cluster The velocity dispersionsof the two samples are less differ- andtoNonComaLSB,NonComaabs,NonComaem+abs,and ent: galaxies with R ≥ 22.3 have 1516+−210739 kms−1 and galax- NonComaemlinesinTable4forthez≤0.1non-Comacluster ies with R ≤ 22.3 have 1942+−226300 kms−1, higher than the value galaxies.Thesegalaxiesactasa comparisonsample,notbeing computedin Adamiet al. (1998) of1200kms−1 forR ∼ 17.5. subject to the strong influence of the Coma cluster and being This is not surprising as we deal here with very low mass ob- atsufficientlylowredshiftnottoexhibitstrongevolutionaryef- jects,forwhichdynamicalrelaxationmechanismsareveryinef- fects. Figure 16 shows the PDF for the ages of the oldest stel- ficientinremovinginitialenergyandtheninreducingtheveloc- larpopulationsforthesefourclasses(fromlefttoright)andfor itydispersion. galaxies inside and outside the Coma cluster (top to bottom). We observe two trends. First, dwarf galaxies show decreasing mean ages from absorption-line to emission-line galaxies. We 6. Galaxyspectralcharacteristics note that this trend is also associated with decreasing stellar masses. Second, the Coma cluster dwarf galaxies seem on av- 6.1.Method erage older than field dwarf galaxies, even if this trend is not significant.Conversely,lowsurfacebrightnessgalaxiesseemto We have produced stacked spectra by computing a weighted meanoftheindividualcleanspectraavailable,usingtheR-band followtheoppositetrend:theyarebarelysignificantlyolderout- sidetheComaclusterthaninsideit,wheretheyhaveagessimilar magnitudeasaweight.Wemeasuredspectralindicesfromthese toabsorption-linegalaxies.Thereisnosignificantevidenceofan stacked spectra and fit them, together with the stacked spectral energydistributionsintheu∗BVRI bands,withalibraryofstel- agetrend,although,takenatfacevalue,themeanageswouldin- dicateadifferentoriginforatleastpartoftheLSBsinthefield larpopulationmodels.Theabsorptionindiceswhichwereused andintheComacluster.Thiswouldbeingoodagreementwith inthefitareLick_G4300,Lick_Mgb,Lick_Fe5270,Lick_NaD, aninteraction-inducedoriginforpartoftheComaLSBs(seee.g. BH_G,andBH_Mgg.Wealsousedthe4000Åbreak:Dn4000. Adamietal.2009b). The fit was performed in a Bayesian approach, namely we Finally, it is interesting to note that the metallicity of the computed for each stack the probability distribution function (hereafterPDF)ofeachdesiredparameter,givenaninputlibrary Comaintraclustermediumis0.2Z(cid:6)(Strigarietal.2008),clearly lessmetal–richthanthedwarfgalaxiesconsideredhere. of 100000 modelswith uniformcoverageof their physicalpa- rameters(seeSalimetal.2005;Walcheretal.2008;Lamareille et al. 2009). These models include in particular complex star 6.4.Influenceoftheintraclustermedium:X-ray formationhistories.TheIMFisthatofChabrier(2003). substructures. We thus derived for each stack the age of the oldest stellar populations,thestellarmass,thedustattenuation,andthestellar We check in this section if the intracluster medium X-ray sub- metallicity. structures have an influence on the faint Coma dwarf galaxies (R≥21).GalaxiesinsideX-raysubstructuresofNeumannetal. (2003: Coma X line in Table 4) and outside of these substruc- 6.2.PropertiesofComaclusterdwarfgalaxiesasafunction tures(ComanonX lineinTable4)haveverysimilarproperties ofcolor:red,blue,andred-sequencegalaxies. withoutanysignificantdifferencesgivenouruncertainties.This In this analysis we consider three different classes of dwarf suggests that whatever influence the cluster substructures may haveonthefaintdwarfgalaxies,thisdoesnotoccurviathehot galaxies: red galaxies, red-sequence galaxies, and blue galax- gasattachedtothesesubstructures. ies (see Sect. 7.2). Figure 15 shows the spectral energy distri- butionsandthemeanstellarpopulationmodelfortheseclasses: red-sequence population, blue galaxies, and red galaxies. This 6.5.Magnitudeversusspectralproperties figurealsoshowsthePDFfortheagesoftheoldeststellarpop- ulationsandthestellarmasses. We investigate in this section the possible relation between Frombluetoredsequence,toredgalaxiesrespectively,the galaxymagnitudesandtheirspectralpropertieswithinthemain agesoftheComaclusterdwarfgalaxiesrangefromlog(age) = magnituderangecoveredbytheVIMOSdata(R=[21,23]). 9.13to9.53and9.78.Thebluegalaxiesthereforeseemtohave Splitting our Coma sample into R ≤ 22 (the Coma abs a young stellar population (∼1.3 Gyr) while red galaxies ap- R ≤ 22,andComaem+absR≤ 22linesinTable4)andR> 22 peartobeolderobjects(∼6Gyr).Thestellarmassesrangefrom (the Coma abs R > 22, and Coma em+abs R > 22 lines in log(M(cid:2)/M(cid:6))=6.21to6.66and6.93.Redgalaxiesaretherefore Table 4), we show that the ages of galaxies of a given class

Description:
Spectroscopy of faint galaxies in Coma confirms that dwarf galaxies are very . dotted lines represent the limits we adopted for the Coma cluster. The.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.