ebook img

Very Ampleness of Line Bundles and Canonical Embedding of Coverings of Manifolds PDF

15 Pages·2000·0.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Very Ampleness of Line Bundles and Canonical Embedding of Coverings of Manifolds

Compositio Mathematica123: 209^223, 2000. 209 # 2000 Kluwer Academic Publishers. Printed inthe Netherlands. Very Ampleness of Line Bundles and Canonical Embedding of Coverings of Manifolds SAI-KEE YEUNG* Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A. e-mail: [email protected] (Received: 2 December1998; in ¢nal form: 20 April1999) Abstract. LetLbeanamplelinebundleonaKa«hlermanifoldsofnonpositivesectionalcurvature withKasthecanonicallinebundle.WegiveanestimateofmsuchthatK(cid:135)mLisveryamplein termsoftheinjectivityradius.This impliesthat mcanbe chosenarbitrarilysmalloncewego deep enough into atowerofcoveringofthe manifold.The same argumentgives an effective Kodaira EmbeddingTheorem for compact Ka«hler manifolds in terms ofsectional curvature and the injectivity radius. In case oflocally Hermitian symmetric space of noncompacttype orifthesectionalcurvatureisstrictlynegative,weprovethatK itselfisveryampleonalarge coveringofthemanifold. Mathematics Subject Classi¢cations (2000). Primary14E25, 32J27, 32Q05,32Q40. Key words: very ampleness, canonical embedding. LetLbeanamplelinebundleonanalgebraicmanifoldM.LetK bethecanonical line bundle of the manifold. It follows by de¢nition that there is a constantmsuch that K (cid:135)mL is ample. It is natural to ask for the smallest value of such m. In case that the line bundle is the canonical line bundle, the question is about the smallest k such that kK is very ample. Let M be a nonpositively curved algebraic manifold with a pro¢nite fundamental group so that there is a tower of coverings over M corresponding to normal subgroups of ¢nite index. In this paper, we show that for suf¢ciently large covering manifold in the tower, m can be taken to be 1. In the particular case of a suf¢ciently large covering of the Hermitian symmetric manifoldofnonpositivecurvature,weshowthatactuallyk(cid:136)1,thatis,thecanonical linebundleK itselfisampleforacoveringmanifoldofasuf¢cientlylargecovering index. The same conclusion holds for similar examples of Ka«hler manifolds with negative Riemannian sectional curvature. An effective version of the Kodaira embeddingtheoremwhichgivesanestimateofkormintermsofcurvaturebounds and the injectivity radius of a general manifold is also obtained. Here are the main results of this article. *The authorwaspartially supported bygrantsfrom the National Science Foundation. https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press 210 SAI-KEEYEUNG THEOREM 1. Let M be a complex manifold of complex dimension n. Suppose the sectional curvature R of M satis¢es (cid:255)a2WRW0. Let the curvature R of the L holomorphic line bundle Lsatisfy c<R : Let the injectivity radius of the manifold L M beboundedfrombelowbyt:Then,K (cid:135)mLisveryampleformX2nd ;where t;a;c (cid:20) (cid:16) (cid:17)(cid:21) 1 16(cid:135)16log2 4log2 at d (cid:136) (cid:135) acoth : (cid:133)1(cid:134) t;a;c c t2 t 2 Moreover, K (cid:135)mL generates the Nth order jet of M at any point of M for mX(cid:133)(cid:133)N=2(cid:134)(cid:135)n(cid:134)d : t;a;c Remarks.(1) We remark that d !0 as t!1: t;a;c (2)(EffectiveKodairaEmbeddingTheorem)Ifwerelaxthecurvatureconditionto (cid:255)a2WRWb2; where b>0; the conclusion is that K (cid:135)mL is very ample for mX2nd : Letting t (cid:136)min(cid:133)t;p=2b(cid:134), d is estimated by t;a;b;c o t;a;b;c (cid:20) (cid:16) (cid:17) (cid:21) 1 16(cid:135)16log2 4log2 at bt cot(cid:133)bt (cid:134)(cid:255)1 d (cid:136) (cid:135) acoth o (cid:255) o o ; (cid:133)2(cid:134) t;a;b;c c t2 t 2 t2 o o o Moreover, K (cid:135)mL generates the nth order jet of M at every point of M for mX(cid:133)(cid:133)N=2(cid:134)(cid:135)n(cid:134)d : The number t is used instead of t so that cot(cid:133)bt (cid:134) will t;a;b;c o o not become too negative. This is an effective version of Kodaira embedding Theorem. AssomeapplicationsofTheorem1,weassumethatthefundamentalgroupp (cid:133)M(cid:134) 1 of M is pro¢nite in the sense that there exists a sequence of normal subgroups G i satisfying G <G, G (cid:136)p (cid:133)M(cid:134) and \1 G (cid:136);. Let M~ be the universal covering i(cid:135)1 i 0 1 i(cid:136)0 i of M. Then M (cid:136)M~ =G is a covering space of M with the covering map denoted i i by p:M !M: As \1 G (cid:136);, we conclude that the injectivity radius of M tends i i i(cid:136)0 i i to 1asi!1duetothediscretenessofp (cid:133)M(cid:134):WecallfMgatowerofcoverings 1 i for M with the injectivity radius increasing to 1: The following is an immediate corollary of Theorem 1: THEOREM 2. Let M be a nonpositively curved algebraic manifold with pro¢nite fundamentalgroup. Thereexists i suchthatforalliXi ;K (cid:135)p(cid:3)Lisvery ample. o o Mi i In fact, there is i such that K (cid:135)p(cid:3)L generate the jth jet space of M for iXi: j Mi i j Furthermore, the same is true for K (cid:135)ep(cid:3)Lfor any small rational e>0such that Mi i ep(cid:3)L is a line bundle on M: i i Since the fundamental group of Hermitian symmetric manifolds of noncompact typearediscretesubgroupsofgenerallineargroups,theyhavetobepro¢nite.Hence, theaboveconclusionisreadilyapplicableinthiscase.However,thisissupersededby the following theorem: https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press AMPLENESSOFLINE BUNDLES 211 THEOREM3.LetfMgbeatowerofcoveringofHermitiansymmetricmanifoldsof j noncompact type. There exists a constant i X0 such that K is very ample for 0 M j jXi : Moreover, given any l >0; there exists i X0 such that K generates the 0 l M j kth jet Jk(cid:133)M(cid:134) of M for jXi: j j l SimilarstatementsforKa«hlermanifoldswithsectionalcurvaturepinchedbetween two negative numbers are also true. THEOREM 4.LetfMgbea towerofcoveringoveraKa«hlermanifoldM withsec- j tionalcurvatureRsatisfying(cid:255)a2 <R<(cid:255)b2 <0:Thereexistsaconstanti X0such 0 thatK isveryampleforjXi :Moreover,givenanyl >0;thereexistsi X0such M 0 l j that K generates the kth jet Jk(cid:133)M(cid:134) of M for jXi: M j j l j Followingfromthede¢nitionoftheSeshadriconstantforalinebundle,whichwill be explained in Section 1, we get the following conclusion: COROLLARY1.FortheexamplesinTheorems3and4,theSeshadriconstantforthe canonical line bundle is at least 1. Theorganizationofthearticleisasfollows.InSection1,we¢rstuseL2estimates toshowthatthevalueofm,sothatK (cid:135)mLisample,canbeeffectivelyestimatedby the injectivity of the manifold and the curvature form of L. In this way, we also estimate the Seshadri constant of the line bundle. Then we apply the results to a towerofcoveringsofpro¢nitenonpositivelycurvedmanifoldstogettheresultthat K (cid:135)L is very ample after one goes deep enough into the covering space. In par- ticular, this includes the class of Hermitian symmetric manifolds of noncompact type. In Section 2, we relate the L2 geometry of the universal covering to conclude that K is actually very ample for the covering of a suf¢ciently large covering index for the manifolds stated in Theorems 3 and 4. 1. Some Criteria forVeryAmpleness of Line Bundles on General Manifolds The main tool is the following L2-estimates due to Ho«rmander [Ho]. LEMMA1.LetMbeacompactKa«hlermanifoldwithaKa«hlermetricoandletK be M the canonical line bundle. Let j be a function on M. Let (cid:133)L;h(cid:134) be a Hermitian line bundle on M. Assume that p(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129) c (cid:133)L;h(cid:134)(cid:135) (cid:255)1@@(cid:22)j(cid:255)c (cid:133)K (cid:134)>co: 1 1 M R Letgbea@(cid:22)-closedL-valued(cid:133)0;1(cid:134)-formonMwith kgk2e(cid:255)j <0.Thentheequation M h https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press 212 SAI-KEEYEUNG @(cid:22)f (cid:136)g has a solution satisfying the L2- estimate Z Z kgk2e(cid:255)j kfk e(cid:255)j < h : h c M M WealsoneedthefollowingHessiancomparisontheoremasstatedin[G-W],p.19: LEMMA 2.Let (cid:133)M ;o (cid:134)and (cid:133)M ;o (cid:134)be Riemannian manifolds with poles at o ;o 1 1 2 2 1 2 and of equal dimension. Suppose that the radial curvature of a point on a normal geodesic g on M starting from o is at least the radial curvature of the point on 1 1 1 a corresponding normal geodesic g on M : Then for every increasing function f, 2 2 the following Hessian comparison is valid. D2f(cid:133)r (cid:134)(cid:133)g (cid:133)t(cid:134)(cid:134)WD2f(cid:133)r (cid:134)(cid:133)g (cid:133)t(cid:134)(cid:134): 1 1 2 2 ProofofTheorem1.Weneedtoconsiderthelowerboundoftheeigenvaluesofthe complex Hessian Lf(cid:133)X;Y(cid:134)(cid:136)D2f(cid:133)X;Y(cid:134)(cid:135)D2f(cid:133)JX;JY(cid:134), where J is the complex structure involved. Since the injectivity radius of M is at least t; we can place a geodesic ball B(cid:133)x;t(cid:134) of radius t centered at each point x of M within which there isnocutlocusorconjugatelocus.Fora¢xede>0,letw(cid:133)t(cid:134)beaC1 bumpingfunc- tion de¢ned on the interval (cid:137)0;1(cid:134), satisfying t w(cid:133)t(cid:134)(cid:136)1;tW ; w(cid:133)t(cid:134)(cid:136)0;tXt; 2 2(cid:135)e 4(cid:133)2(cid:135)e(cid:134) (cid:255) Ww0(cid:133)t(cid:134)W0; jw00(cid:133)t(cid:134)jW : t t2 Thenw(cid:133)t(cid:134)isadecreasingfunction,withsupportin(cid:137)0;t(cid:138):Thefunctionwcanbecon- structed as follows. Construct a step function s(cid:133)t(cid:134), (cid:18) (cid:19) (cid:18) (cid:19) 8 t 3t 8 3t s(cid:133)t(cid:134)(cid:136)(cid:255) for t2 ; ; s(cid:133)t(cid:134)(cid:136) for t2 ;t t2 2 4 t2 4 and s(cid:133)t(cid:134)(cid:136)0 outside the range. Let s (cid:133)t(cid:134) be the integral of s(cid:133)t(cid:134)with initial condition 1 s (cid:133)0(cid:134)(cid:136)0;ands (cid:133)t(cid:134)betheintegralofs (cid:133)t(cid:134)withs (cid:133)0(cid:134)(cid:136)1.Smoothings(cid:133)t(cid:134),theresulting 1 2 1 2 s (cid:133)t(cid:134)givesacandidateforw.Letr (cid:133)y(cid:134)bethedistanceofyfromxwithrespecttothe 2 x Ka«hler metric. De¢ne a function c on M by c (cid:136)(cid:133)log(cid:133)4r2=t2(cid:134)(cid:134)w(cid:14)r : c is x x x x x supported only on B(cid:133)x;t(cid:134). For simplicity of notations, we will suppress x in the formula below. Note that D2f(cid:133)r(cid:134)(cid:133)X;Y(cid:134)(cid:136)f00(cid:133)r(cid:134)dr(cid:133)X(cid:134)(cid:10)dr(cid:133)Y(cid:134)(cid:135)f0(cid:133)r(cid:134)D2r(cid:133)X;Y(cid:134) fortwovectorsX;Y onM:LetM bethespaceformofconstantRiemanniansec- m https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press AMPLENESSOFLINE BUNDLES 213 tional curvature m: We let X0 be the vector on M corresponding to vectors X: m (cid:20) (cid:18) (cid:19) (cid:21) 4r2 D2c(cid:133)X;X(cid:134)(cid:136)D2 log x w(cid:14)r (cid:133)X;X(cid:134) t2 x (cid:136)w(cid:14)r D2logr2(cid:133)X;X(cid:134)(cid:135)2Dlogr2D(cid:133)w(cid:14)r (cid:134)(cid:133)X;X(cid:134)(cid:135) x x (cid:18) (cid:19) 4r2 (cid:135)log x D(cid:133)(cid:133)w(cid:14)r (cid:134)(cid:133)X;X(cid:134)(cid:134) t2 x Applying Lemma 2 by comparing it with the £at space M and denoting the 0 restriction of g to the geodesic sphere perpendicular to the radial direction by h, we get Llogr2(cid:133)X;X(cid:134)(cid:136)D2logr2(cid:133)X;X(cid:134)(cid:135)D2logr2(cid:133)JX;JX(cid:134) XD2logr2 (cid:133)X0;X0(cid:134)(cid:135)D2logr2 (cid:133)(cid:133)JX(cid:134)0;(cid:133)JX(cid:134)0(cid:134) M M (cid:255)b 0 2 2 X (cid:255) dr(cid:10)dr(cid:133)X;X(cid:134)(cid:255) dr(cid:10)dr(cid:133)JX;JX(cid:134)(cid:135) (cid:133)3(cid:134) r2 r2 2 2 (cid:135) h(cid:133)X;X(cid:134)(cid:135) h(cid:133)JX;JX(cid:134) r2 r2 X0: ComparingwithM andusingthefactthattXr Xt=2intheregionwherew0 6(cid:136)0; (cid:255)a x we have (cid:18) (cid:19) (cid:18) (cid:19) 4r2 4r2 log x D2(cid:133)w(cid:14)r(cid:134)(cid:133)X;X(cid:134)X log x D2(cid:133)w(cid:14)r (cid:134)(cid:133)X0;X0(cid:134) t2 t2 M(cid:255)a (cid:18) (cid:19) 4r2 (cid:136)log x w00(cid:133)r (cid:134)dr (cid:10)dr (cid:133)X0;X0(cid:134)(cid:135) t2 M(cid:255)a M(cid:255)a M(cid:255)a (cid:18) (cid:19) 4r2 (cid:135)log x w0(cid:133)r (cid:134)D2r (cid:133)X0;X0(cid:134) t2 M(cid:255)a M(cid:255)a https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press 214 SAI-KEEYEUNG (cid:18) (cid:19) 4r2 X log x w00(cid:133)r (cid:134)dr (cid:10)dr (cid:133)X0;X0(cid:134)(cid:255) t2 M(cid:255)a M(cid:255)a M(cid:255)a (cid:18) (cid:19) 4r2 2(cid:135)e (cid:255)log x acoth(cid:133)ar(cid:134)g(cid:133)X;X(cid:134) t2 t 4(cid:133)2(cid:135)e(cid:134) X (cid:255)log4 dr(cid:10)dr(cid:133)X;X(cid:134)(cid:255) t2 (cid:16) (cid:17) 2(cid:135)e at (cid:255)log4 acoth g(cid:133)X;X(cid:134) t 2 and Dr Dlogr(cid:10)D(cid:133)w(cid:14)r(cid:134)(cid:133)X;X(cid:134)(cid:136) (cid:10)D(cid:133)w(cid:14)r(cid:134)(cid:133)X;X(cid:134) r 1 (cid:136) w0Dr(cid:10)Dr(cid:133)X;X(cid:134)j r rXt2 2(cid:133)2(cid:135)e(cid:134) X (cid:255) dr(cid:10)dr(cid:133)X;X(cid:134): t2 Combining the above inequalities, we get Lc (cid:133)X;X(cid:134) M;x 4(cid:133)2(cid:135)e(cid:134) X (cid:255)log4 (cid:137)dr(cid:10)dr(cid:133)X;X(cid:134)(cid:135)dr(cid:10)dr(cid:133)JX;JX(cid:134)(cid:138)(cid:255) t2 (cid:16) (cid:17) at 8(cid:133)2(cid:135)e(cid:134) (cid:255)log42(cid:135)etacoth (cid:137)g(cid:133)X;X(cid:134)(cid:135)g(cid:133)JX;JX(cid:134)(cid:138)(cid:255) dr(cid:10)dr(cid:133)X;X(cid:134) 2 t2 (cid:20) (cid:16) (cid:17)(cid:21) 2(cid:135)e 2(cid:135)e at X (cid:255) (cid:133)8(cid:135)4log4(cid:134) (cid:135)log4 acoth (cid:133)g(cid:133)X;X(cid:134)(cid:135)g(cid:133)JX;JX(cid:134)(cid:134): t2 t 2 We can now apply the L2-estimates to construct sections which separate points and generate the ¢rst jet of the tangent bundle. Let x;y be arbitrary points on M. The functions c and c , as constructed above, are supported in B(cid:133)x;t(cid:134) and x y B(cid:133)y;t(cid:134), respectively. Note that for r(cid:133)x;w(cid:134) suf¢ciently small, r(cid:133)x;w(cid:134)2 is jx(cid:255)wj2(cid:133)1(cid:135)O(cid:133)jx(cid:255)wj(cid:134); where O(cid:133)jx(cid:255)wj(cid:134) is a bounded term tending to 0 as w approachesx:Hence,sodoes c . Letj(cid:136)n(cid:133)c (cid:135)c (cid:134):As histheHermitianmetric x x y for L and h (cid:136)detg(cid:255)1 is the metric for K , heh e(cid:255)j is a metric for K (cid:135)mL: It 1 M 1 M https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press AMPLENESSOFLINE BUNDLES 215 follows from our choice of j that p(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129)(cid:129) mc (cid:133)L;h(cid:134)(cid:135) (cid:255)1@@(cid:22)j(cid:135)c (cid:133)K (cid:134)(cid:255)c (cid:133)K (cid:134)>e o 1 1 M 1 M 1 with some positive e provided that the following inequality is satis¢ed: 1 (cid:20) (cid:16) (cid:17)(cid:21) 2(cid:135)e 2(cid:135)e at e (cid:136)mc(cid:255)2n (cid:133)8(cid:135)4log4(cid:134) (cid:135)log4 acoth >0: (cid:133)4(cid:134) 1 t2 t 2 Let l(cid:136)min(cid:133)t;1r(cid:133)x;y(cid:134)(cid:134). The line bundle K (cid:135)mL is trivial on the support of 2 M B(cid:133)x;l(cid:134) which is the ball of radius l centered at x: Let s be the canonical section of the bundle (cid:133)K (cid:135)mL(cid:134)j : Consider now M B(cid:133)x;l(cid:134) (cid:18) (cid:19) r(cid:133)x;w(cid:134) z(cid:133)w(cid:134)(cid:136)w s(cid:133)w(cid:134) 1=2r(cid:133)x;y(cid:134) as a C1 section of K (cid:135)mL, which is 1 in a small neighbourhood of x and 0 in a M small neighbourhood of y: @(cid:22)z is an integrable @(cid:22)-closed K (cid:135)eL-valued 1-form, M as@(cid:22)ziszeroaroundxandy:Hence,fromL2-estimatesasstatedinLemma1,there is a solution of @(cid:22)f (cid:136)@(cid:22)z satisfying Z Z k@(cid:22)zk2e(cid:255)j kfk2e(cid:255)j < h <1: h e M M 1 Fromthepoleorderofjatxandy;weconcludethatf(cid:133)x(cid:134)(cid:136)f(cid:133)y(cid:134)(cid:136)0:Hence,z(cid:255)f is a holomorphic section of K (cid:135)mL which is 1 at x and 0 at y: M To prove that sections of K (cid:135)mL generate 1-jet at any x2M, let w be a M 1 bumping function as w supported in a normal coordinate chart of x so that z(cid:136)0 corresponds to x. Let z(cid:133)z(cid:134)(cid:136)zw (cid:133)z(cid:134)s(cid:133)z(cid:134) and extend by 0 so that z is a i i 1 i well-de¢nedC1 sectionofK (cid:135)mLonM.Letj(cid:136)(cid:133)n(cid:135)1(cid:134)c :Thenthesameargu- M 2 x ment as above shows that we can solve @(cid:22)f (cid:136)@(cid:22)z with f vanishing to order 2 at x i corresponding to our choice of (cid:133)n(cid:135)1(cid:134)c in j once the inequality (4) is satis¢ed. 2 x Hence, z (cid:255)f is a holomorphic section of K (cid:135)mL satisfying @=@z(cid:133)z (cid:255)f(cid:134)(cid:133)x(cid:134) i M i i (cid:136)1: As z can be an arbitrary holomorphic coordinate function at x, this shows i that the sections of K (cid:135)mL generates the 1-jet and, hence, together with earlier M discussions the very ampleness of the line bundle if Equation (4) is satis¢ed. Note that we can always ¢nd an e satisfying Equation (4) once equation (1) is true. For the generation in the Nth order jet, it suf¢ces for us to consider z (cid:133)z(cid:134)(cid:136)z (cid:1)(cid:1)(cid:1)z w (cid:133)z(cid:134)s(cid:133)z(cid:134) instead of z(cid:133)z(cid:134) in the earlier argument. This concludes i1(cid:1)(cid:1)(cid:1)in i1 in 1 i the proof of Theorem 1. & ProofofRemarktoTheorem1.Weuset (cid:136)min(cid:133)t;p=2b(cid:134)insteadoftintheproof o of Theorem 1. The only modi¢cation to this case is the estimates for L2logr2(cid:133)X;X(cid:134)inEquation(3).InsteadofcomparingwithM ;weneedtocompare 0 https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press 216 SAI-KEEYEUNG with M : Instead of Equation (3), we get the new estimate b L2logr2(cid:133)X;X(cid:134) 2 X (cid:255) (cid:137)dr(cid:10)dr(cid:133)X;X(cid:134)(cid:135)dr(cid:133)JX;JX(cid:134)(cid:138)(cid:135) r2 (cid:133)5(cid:134) 2 (cid:135) bcot(cid:133)br(cid:134)(cid:137)h(cid:133)X;X(cid:134)(cid:135)h(cid:133)JX;JX(cid:134)(cid:138): r NotethatifX isaradialtangentvector,JX istangentialtothegeodesicsphere.We now observe that (cid:133)(cid:133)rbcot(cid:133)br(cid:134)(cid:255)1(cid:134)=r2(cid:134)0W0 and, hence, the minimum of (cid:133)rbcot(cid:133)br(cid:134)(cid:255)1(cid:134)=r2 is achieved at t : This concludes the proof of Remark 1. & o Asadetour,weconsidertheSeshadriconstantofalinebundleLwhichisde¢ned as follows (cf [De]): For each x2M; let p:X~ !X be the blow-up of X at x and E be the exceptional divisor. Let s(cid:133)L;x(cid:134)(cid:136)supfeX0jp(cid:3)L(cid:255)eE is nefg L(cid:1)C (cid:136) inf C2x n(cid:133)C;x(cid:134) where n(cid:133)C;x(cid:134) is the multiplicity of C at x and the in¢mum is taken over all curves passing through x. The relation between the Seshadri constant and very ampleness is related by the following Lemma, which follows immediately from the de¢nition of very ampleness (cf. [De], p.68). LEMMA 3. Suppose mL is very ample. Then s(cid:133)L(cid:134)X 1: m As a corollary, we get COROLLARY 2. AssumethatM isanalgebraicmanifoldwithsectionalcurvature satisfying(cid:255)aWKW0andthecurvatureofLisatleastcwithrespecttotheKa«hler metric.ThentheSeshadriconstantofanamplelinebundleLisboundedfrombelow by c=(cid:133)2nd (cid:135)na2(cid:134); where d is the function considered in Theorem 1. t;a;c t;a;c This follows immediately from Theorem 1, Lemma 3 and the estimates (cid:16) (cid:17) na (cid:135)m c (cid:133)L(cid:134)Xc (cid:133)K(cid:134)(cid:135)mc (cid:133)L(cid:134): c 1 1 1 2. VeryAmpleness of Canonical LineBundlesin SomeHermitian Symmetric Manifolds and Negatively Curved Manifolds In the following, we ¢rst assume that M is a Hermitian symmetric manifold of noncompacttypeandgiveaproofofTheorem3.Lateronwewillmodifytheproof https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press AMPLENESSOFLINE BUNDLES 217 tohandlethecaseofnegativelycurvedKa«hlermanifolds.fMgisatowerofcovering j over M (cid:136)M. 0 Before we go to the proof of Theorem 3, we need some preliminaries. On a compact manifold M, the space of L2 sections of K is ¢nite-dimensional. Let M s;i(cid:136)1;...;nbeanorthonormalbasiswithrespecttotheHermitianinnerproduct i R P (cid:133)s;s(cid:134)(cid:136) s ^s: The Bergmann kernel is de¢ned to be H (cid:133)x;y(cid:134)(cid:136) n s(cid:133)x(cid:134) i j M i j M i(cid:136)1 i ^s(cid:133)y(cid:134)onM(cid:2)M andisindependentofthebasischosen.Fortheuniversalcovering j M~ , the space of L2-holomorphic section of K form a Hilbert space with respect R M~ to a similar inner product (cid:133)t;t(cid:134)(cid:136) t ^t: Take an orthonormal basis t;i2N i j M~ i Pj i and form the Bergman kernel H (cid:133)x;y(cid:134)(cid:136) t(cid:133)x(cid:134)^t(cid:133)y(cid:134): It is well known that M~ i2N i j the L2-cohomology of a Hermitian symmetric space of noncompact type is trivial except for those corresponding to holomorphic n-forms which are in¢nite-dimensional. Hence, Theorem 1.1.1 of [Y] can be phrased as the following lemma: LEMMA 4. The dimension of the space of holomorphic n-forms on M is j asymptoticallyproportionaltothevolumeofM withtheproportionalconstantgiven j by the von Neumann dimension of L2-holomorphic n-forms on M~ . Hence,bothH andH arenontrivial.Letusnowidentifyapointx2Mwitha M~ Mj pointx~ 2M~ inthefundamentaldomainofMinM~ .Letp :M !M bethecover- j;0 j 0 ingmap.p(cid:255)1xconsistsofa¢nitenumberofpointsinM.Letx beoneofthepointsin j;0 j i p(cid:255)1x. H (cid:133)x;x(cid:134) is independent of the point chosen as representative since the j;0 Mj j j Bergman kernel is invariant under deck transformation which is an isometry. The following result is essentially due to Donnelly [Do]: LEMMA 5. H (cid:133)x;y(cid:134) converges pointwise to H (cid:133)x;y(cid:134) in a C1 way. Mj j j M~ Donnelly stated in [Do] that H (cid:133)x;x(cid:134) converges pointwise to H (cid:133)x;x(cid:134) Mj j j M~ uniformly.Asthekernelfunctionsareholomorphicwithrespecttothe¢rstvariable and antiholomorphic with respect to the second variable, it follows easily from power series expansion the uniform convergence of H (cid:133)x;y(cid:134) to H (cid:133)x;y(cid:134): Then Mj j j M~ we conclude the convergence in a C1 way from Schauder estimates. Proof of Theorem 3. Base point freeness Letus¢rstprovethattheglobalsectionsG(cid:133)M;K (cid:134)generatesjforsuf¢cientlylarge j Mj i M:Letsj;i(cid:136)1;...;N W1beanorthonormalbasisofG(cid:133)M;K (cid:134),here0WjW1 j i j j Mj with M (cid:136)M~ , and B be the base locus of G(cid:133)M;K (cid:134). As p :M !M is a 1 j j M j(cid:135)1;j j(cid:135)1 j j https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press 218 SAI-KEEYEUNG holomorphic covering map, p (cid:3)(cid:133)sj(cid:134) is a holomorphic section of K for each j(cid:135)1;j i Mj(cid:135)1 sectionsj ofK .LetDbeafundamentaldomainofM (cid:136)M intheuniversalcover- i Mj 0 ing M~ and p:M~ !M as before. It follows that p(cid:255)1(cid:133)B (cid:134)\D(cid:26)p(cid:255)1(cid:133)B(cid:134)\D: j j j(cid:135)1 j(cid:135)1 j j Hence, p(cid:255)1(cid:133)B(cid:134)\D(cid:136)\j p(cid:255)1(cid:133)B (cid:134)\D is a decreasing set. We claim that j j k(cid:136)0 j k \1 p(cid:255)1(cid:133)B(cid:134)\D(cid:136); so that from the relative compactness of D, p(cid:255)1(cid:133)B (cid:134)\D is j(cid:136)0 j j j j(cid:135)1 emptyforallsuf¢cientlylargej.Toprovetheclaim,notethattheBergmannkernel function speci¢ed at x(cid:136)y can be expressed as H (cid:133)x;x(cid:134)(cid:136) sup jf(cid:133)x(cid:134)j2 M j f2G(cid:133)M(cid:134);kfk(cid:136)1 j H (cid:133)x;x(cid:134)(cid:136) sup jf(cid:133)x(cid:134)j2: M~ f2G(cid:133)2(cid:134)(cid:133)M~(cid:134);kfk(cid:136)1 ThisfollowsfromthefactthattheBergmannkernelisindependentofthechoiceof base and, hence, we may choose s with maximal value at the point x. Suppose 1 x2\1 p(cid:255)1(cid:133)B(cid:134)\D6(cid:136); so that H (cid:133)x(cid:134)(cid:136)0 for each j. From the above lemma, it j(cid:136)0 j j Mj follow that H (cid:133)x(cid:134)(cid:136)0 as well. However, since M~ is homogeneous, the base locus M~ of K is empty and, hence, such a x does not exist. This concludes the proof of M~ the claim and, hence, the statement that the global sections generate the bundle. Separation of points LEMMA6.AssumethattheL2-canonicalsectionsoftheuniversalcoveringseparates points.Alsoassumethatforanyc>0;thereexistsanumberk>0suchthatforevery pairofpointsx;y2M~ ofdistanced(cid:133)x;y(cid:134)Xc,thereisalwaysaholomorphicsection s2G(cid:133)2(cid:134)(cid:133)M~ ;K(cid:134) satisfying ksk (cid:136)1; s(cid:133)x(cid:134)(cid:136)0;ks(cid:133)y(cid:134)kXk: Then K separates M L2 Mj j for all suf¢ciently large j: Proof. Take a nested sequence of domains D on M~ so that each D is a funda- j j mental domain of M: From the above discussion on base-point freeness, we j may assume that sections of G(cid:133)M;K(cid:134) is base point free for all jX0. Let j t ;...t be a basis of G(cid:133)M ;K(cid:134): 1 N 0 Consider ¢rst the case that x;y2M both lying in some fundamental domain of j M whenpulledbacktoM~ :Wemayassumethatx;y2D afterabiholomorphism o P 0 if necessary. Since H (cid:133)w;z(cid:134)(cid:136) sj(cid:133)w(cid:134)sj(cid:133)z(cid:134) converges to H (cid:133)w;z(cid:134) uniformly on Mj i i i M1 anyrelativelycompactsetcontainingw;zaccordingtoLemma1,andfor0WjW1, X (cid:133)sj(cid:133)x(cid:134)(cid:255)sj(cid:133)y(cid:134)(cid:133)sj(cid:133)x(cid:134)(cid:255)sj(cid:133)y(cid:134)(cid:134) i i i i i (cid:136)H (cid:133)x;x(cid:134)(cid:255)H (cid:133)y;x(cid:134)(cid:255)H (cid:133)x;y(cid:134)(cid:135)H (cid:133)y;y(cid:134); M M M M j j j j https://doi.org/10.1023/A:1002036918249 Published online by Cambridge University Press

Description:
Abstract. LetLbe an ample line bundle on a Ka«hler manifolds of nonpositive sectional curvature with K as the canonical line bundle.We give an
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.