ebook img

Vehicular Networking for Road Safety PDF

169 Pages·2020·4.911 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vehicular Networking for Road Safety

Wireless Networks Feng Lyu Minglu Li Xuemin Shen Vehicular Networking for Road Safety Wireless Networks SeriesEditor XueminShen UniversityofWaterloo Waterloo,ON,Canada The purpose of Springer’s new Wireless Networks book series is to establish the state of the art and set the course for future research and development in wireless communication networks. The scope of this series includes not only all aspects of wireless networks (including cellular networks, WiFi, sensor networks, and vehicular networks), but related areas such as cloud computing and big data. The series serves as a central source of references for wireless networks research and development. It aims to publish thorough and cohesive overviews on specific topics in wireless networks, as well as works that are larger in scope than survey articles and that contain more detailed background information. The series also providescoverageofadvancedandtimelytopicsworthyofmonographs,contributed volumes,textbooksandhandbooks. Moreinformationaboutthisseriesathttp://www.springer.com/series/14180 Feng Lyu (cid:129) Minglu Li (cid:129) Xuemin Shen Vehicular Networking for Road Safety FengLyu MingluLi SchoolofComputerScience ComputerScienceandEngineering andEngineering ShanghaiJiaoTongUniversity CentralSouthUniversity Shanghai,China Changsha,Hunan,China XueminShen ElectricalandComputerEngineering UniversityofWaterloo Waterloo,ON,Canada ISSN2366-1186 ISSN2366-1445 (electronic) WirelessNetworks ISBN978-3-030-51228-6 ISBN978-3-030-51229-3 (eBook) https://doi.org/10.1007/978-3-030-51229-3 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Road safety has always been the first priority for daily commuters. According to the World Health Organization (WHO), more than 1.2 million and 50 million people worldwide are killed and injured due to collisions each year, respec- tively. Being unresponsive to on-road emergencies is the major reason to most accidents, which poses the necessity of building active cooperative road-safety applications viaVehicular Adhoc NETworks (VANETs).Particularly, empowered by vehicle-to-everything (V2X) communications, which broadly include vehicle- to-vehicle(V2V),vehicle-to-infrastructure(V2I),vehicle-to-pedestrian(V2P),etc., real-time environment information can be exchanged among neighboring vehicles rapidlyviabroadcastingroad-safetybeacons,i.e.,cooperativeawarenessmessages (CAMs), that can facilitate various advanced road-safety applications with pre- sensingcapabilities.Comparedwithothersensors,suchascamera,radar,andlight ◦ detectionandranging(LiDAR),V2Xcommunicationscanprovide360 situational awarenessonroadwithofferingmoreexcellentsensingrange,through-objectsview functionality,andaround-cornerviewingcapability.Besides,V2Xcommunications arenotaffectedorinfluencedbynon-idealweatherconditions,suchasheavyrain, fog, and harsh sunbeams, which can work robustly in real driving environments. Both advantages can collectively facilitate the extensive usage of V2X in future transportationsystems,especiallyforroadsafetyenhancement. To well support road-safety applications, low-latency and reliable V2X com- munications are required, which however are challenging to be guaranteed under vehicularenvironmentswithfast-changingnetworktopologies,intermittentwireless links,anddynamictrafficdensities.First,attheMAClayer,asCAMsarerelatedto roadsafety,minimizingthemediumaccessdelayandavoidingthemediumaccess collision should be achieved simultaneously. However, due to the lack of a global centralunitinvehicularenvironments,vehicleshavetonegotiatethemediumaccess in a fully distributed way. Additionally, the fast-changing network topology can furtherrendertheMACdesignintricate.Second,atthelinklayer,evengrantedwith theappropriatemediumresources,communicationreliabilityremainstobefurther enhanced, as there are many uncontrollable factors, such as types of roads, time- v vi Preface varyingtrafficconditions,andalldifferentsurroundingbuildingsandtrees,thatcan precariouslyaffectthewirelesslinkperformance.Third,atthenetworklayer,dueto dynamictrafficdensities,thenaivebroadcastingschemewithafixeddatarateand transmission power may cause severe channel congestion, especially under dense- vehiclescenarios,whichcansignificantlydegradetheV2Xreliability. In this monograph, we investigate vehicular networking technologies to guar- antee low-latency and reliable V2X communications for road-safety applications. Specifically, we focus on dedicated short range communication (DSRC) technolo- gies at the MAC, link, and network layers. In Chap.1, we introduce vehicular networks, including its definition, technical challenges, and how it can support road-safety applications, etc. In Chap.2, we review the state-of-the-art vehicular networkingtechniquesandorganizeacomprehensivesurveytostateourtechnical motivations per the MAC, link, and network layer. In Chap.3, to avoid medium access collisions caused by vehicular mobilities, we propose a mobility-aware TDMA-based MAC, named MoMAC, which can assign each vehicle a collision- avoidancetimeslotaccordingtotheunderlyingroadtopologyandlanedistribution onroads.AstheexistingvehicularMACsdonotconsiderthesituationthatvehicles have diverse beaconing rates to support various road-safety applications, and such inflexible design may suffer from a scalability issue in terms of channel resource management, in Chap.4, we propose a novel time slot-sharing MAC, named SS-MAC, to support diverse beaconing rates of vehicles. The proposed MoMAC and SS-MAC can work collectively to provide collision-free/reliable, scalable, and efficient medium access for moving and distributed vehicles. In Chap.5, to understand the DSRC performance in urban environments, we implement a V2V communication testbed based on commodity onboard units (OBUs) and collect large volumes of beaconing traces together with the simultaneous environmental context information in Shanghai city, based on which we then conduct extensive data analytics to characterize the V2V communications. In Chap.6, with the deep understanding on link characteristics, we propose a link-aware beaconing scheme, named CoBe, to enhance the broadcasting reliability by coping with harshnon-line-of-sight(NLoS)conditions.InChap.7,toadapttodynamicvehicle densitieswithsatisfyingindividualroadsafetydemand,wefurtherproposeafully distributed adaptive beaconing control scheme, named ABC, to conduct safety- awarebeaconingrateadaptationforvehicles.Atlast,weconcludethismonograph andprovidepotentialfutureresearchissuesinChap.8.Thesystematicprinciplein thismonographprovidesvaluableguidanceonthedeploymentandimplementation offutureVANET-enabledroad-safetyapplications. WewouldliketothankProf.HongziZhuatShanghaiJiaoTongUniversity,Dr. Haibo Zhou, Dr. Nan Cheng, Dr. Wenchao Xu, Dr. Huaqing Wu, and Dr. Haixia PengfromBroadbandCommunicationsResearch(BBCR)GroupattheUniversity ofWaterloo,fortheircontributionsinthepresentedresearchworks.Wealsowould liketothankallthemembersofBBCRgroupforthevaluablediscussionsandtheir insightfulsuggestions,ideas,andcomments.Inaddition,Iwouldpersonallythank my wife Ms. Xingxin Chen for her heartfelt support on my overseas studying and Preface vii working and thank for the birth of my lovely son Haoran Lyu that directs and strengthens my faith in facing challenges. Special thanks also go to the staff at Springer Science+Business Media: Susan Lagerstrom-Fife, Shina Harshavardhan, andChristianeBauerfortheirhelpthroughoutthepublicationpreparationprocess. Changsha,Hunan,China FengLyu Shanghai,China MingluLi Waterloo,ON,Canada XueminShen Contents 1 Introduction .................................................................. 1 1.1 VehicularNetworks..................................................... 1 1.2 SupportingRoad-SafetyApplications ................................. 3 1.3 NetworkingChallenges................................................. 4 1.4 AimoftheMonograph.................................................. 5 References..................................................................... 8 2 VehicularNetworkingTechniquesforRoad-SafetyApplications ...... 11 2.1 MACDesign ............................................................ 11 2.1.1 Contention-BasedMACProtocols............................. 11 2.1.2 Contention-FreeMACProtocols............................... 12 2.2 LinkQualityCharacterizationandEnhancement ..................... 15 2.2.1 LinkQualityCharacterization.................................. 15 2.2.2 RelaySchemeDesign .......................................... 16 2.3 NetworkCongestionControl........................................... 18 2.3.1 TransmitPowerControl(TPC) ................................ 18 2.3.2 TransmitMessageRateControl(TRC)........................ 19 2.4 Summary ................................................................ 20 References..................................................................... 20 3 Mobility-AwareandCollision-AvoidanceMACDesign ................. 25 3.1 ProblemStatement...................................................... 25 3.2 SystemModel........................................................... 28 3.3 MoMACDesign......................................................... 30 3.3.1 PreliminariesAboutTDMA-BasedMACs.................... 30 3.3.2 DesignOverview ............................................... 31 3.3.3 TimeSlotAssignmentScheme................................. 32 3.3.4 TimeSlotAccessApproach.................................... 35 3.4 PerformanceAnalysis................................................... 36 3.4.1 AverageNumberofCollisions................................. 36 3.4.2 MediumAccessDelay.......................................... 40 3.4.3 PacketOverhead................................................ 42 ix x Contents 3.5 PerformanceEvaluation ................................................ 43 3.5.1 Methodology.................................................... 43 3.5.2 ImpactofVariousRoadTopologies ........................... 45 3.5.3 ImpactofDynamicTrafficConditions ........................ 47 3.6 Summary ................................................................ 49 References..................................................................... 50 4 EfficientandScalableMACDesign........................................ 53 4.1 ProblemStatement...................................................... 53 4.2 SystemModelandPreliminariesAboutTDMA-BasedMAC........ 55 4.2.1 SystemModel................................................... 55 4.2.2 PreliminariesAboutTDMA-BasedMAC..................... 57 4.3 SS-MACDesign ........................................................ 58 4.3.1 DesignOverview ............................................... 58 4.3.2 PerceivingTimeSlotsOccupyingStatus...................... 58 4.3.3 DistributedTimeSlotSharingApproach...................... 59 4.3.4 OnlineVehicle-SlotMatchingApproach...................... 64 4.4 PerformanceEvaluation ................................................ 66 4.4.1 EvaluationofRIFFAlgorithm................................. 67 4.4.2 EvaluationofSS-MAC......................................... 69 4.5 Summary ................................................................ 73 References..................................................................... 74 5 CharacterizingUrbanV2VLinkCommunications...................... 77 5.1 ProblemStatement...................................................... 77 5.2 CollectingV2VTrace................................................... 80 5.2.1 ExperimentPlatformDescription.............................. 80 5.2.2 DataCollectionCampaign ..................................... 83 5.3 OverallUrbanV2VPerformanceAnalysis............................ 84 5.3.1 ObservingPrevalentPerfectZone ............................. 84 5.3.2 AnalyzingKeyFactorsofPerformanceDegradation......... 85 5.4 InteractionsBetweenLoSandNLoS .................................. 88 5.4.1 PowerLawDistributionsofNLoSandLoSDurations ....... 88 5.4.2 MixedDistributionsofPIRTimes............................. 89 5.4.3 SevereNLoSConditionHurts ................................. 91 5.5 DiscussiononLink-AwareCommunicationParadigmDesign ....... 94 5.5.1 ReliableRoad-SafetyMessageBroadcasting ................. 94 5.5.2 EfficientRoutingEstablishment ............................... 95 5.5.3 SmartMediumResourceAllocation........................... 96 5.6 Summary ................................................................ 97 References..................................................................... 97 6 Link-AwareReliableBeaconingSchemeDesign ......................... 101 6.1 ProblemStatement...................................................... 101 6.2 DesignofCoBe ......................................................... 103 6.2.1 Overview........................................................ 103 6.2.2 OnlineNLoSDetection......................................... 103

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.