ebook img

Vehicular-2-X Communication: State-of-the-Art and Research in Mobile Vehicular Ad hoc Networks PDF

117 Pages·2010·2.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vehicular-2-X Communication: State-of-the-Art and Research in Mobile Vehicular Ad hoc Networks

Vehicular-2-X Communication · · Radu Popescu-Zeletin Ilja Radusch Mihai Adrian Rigani Vehicular-2-X Communication State-of-the-Art and Research in Mobile Vehicular Ad hoc Networks 123 RaduPopescu-Zeletin IljaRadusch Fraunhofer-InstitutfürOffene Fraunhofer-InstitutfürOffene Kommunikationssysteme Kommunikationssysteme (FOKUS) (FOKUS) Kaiserin-Augusta-Allee31 Kaiserin-Augusta-Allee31 10589Berlin 10589Berlin Germany Germany [email protected] [email protected] MihaiAdrianRigani Fraunhofer-InstitutfürOffene Kommunikationssysteme (FOKUS) Kaiserin-Augusta-Allee31 10589Berlin Germany [email protected] ISBN978-3-540-77142-5 e-ISBN978-3-540-77143-2 DOI10.1007/978-3-540-77143-2 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010924046 ©Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 WhyVehicularCommunication? . . . . . . . . . . . . . . . . . 2 1.3 ArchitectureLayers. . . . . . . . . . . . . . . . . . . . . . . . 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 ApplicationsofVehicularCommunication . . . . . . . . . . . . . . 5 2.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 CriticalTrafficSituations . . . . . . . . . . . . . . . . 9 2.1.2 ClassificationofSafetyApplications . . . . . . . . . . 17 2.1.3 NormalTransmissionScheme . . . . . . . . . . . . . 20 2.1.4 BidirectionalTransmissionScheme. . . . . . . . . . . 22 2.1.5 Non-autonomousSystems . . . . . . . . . . . . . . . 23 2.1.6 QuickWarningAlerts . . . . . . . . . . . . . . . . . . 25 2.2 ResourceEfficiency . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 AutonomousSystems . . . . . . . . . . . . . . . . . . 31 2.2.2 NormalTrafficAlerts . . . . . . . . . . . . . . . . . . 31 2.3 Infotainment . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 AdHocServices . . . . . . . . . . . . . . . . . . . . 34 2.3.2 ProviderServices . . . . . . . . . . . . . . . . . . . . 35 2.4 SummaryofApplicationRequirements . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 CommunicationRegimes. . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 BidirectionalCommunicationRegime . . . . . . . . . . . . . . 40 3.2 PositionBasedCommunicationRegime . . . . . . . . . . . . . 42 3.3 Multi-HopPositionBasedCommunicationRegime . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 InformationintheVehicularNetwork . . . . . . . . . . . . . . . . 47 4.1 AccuracyofInformation . . . . . . . . . . . . . . . . . . . . . 48 4.2 TimeCriticalInformation . . . . . . . . . . . . . . . . . . . . 49 4.3 TimeandDistanceforBraking . . . . . . . . . . . . . . . . . . 49 4.4 TimeandDistanceforOvertaking . . . . . . . . . . . . . . . . 56 v vi Contents 4.5 TimeZonesforProactiveApplications . . . . . . . . . . . . . 58 4.5.1 DataRequirements . . . . . . . . . . . . . . . . . . . 58 4.5.2 NetworkRequirements . . . . . . . . . . . . . . . . . 60 4.5.3 TheCooperativeCollisionAvoidanceSystem . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1 Multi-hopRoutingProtocols . . . . . . . . . . . . . . . . . . . 69 5.1.1 AdHoconDemandDistanceVector(AODV) . . . . . 69 5.1.2 GridLocationService(GLS) . . . . . . . . . . . . . . 71 5.1.3 GreedyPerimeterStatelessRouting(GPSR) . . . . . . 74 5.1.4 GeographicSourceRouting(GSR) . . . . . . . . . . . 75 5.1.5 Contention-BasedForwarding(CBF) . . . . . . . . . . 76 5.1.6 Octopus . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.7 AdvancedGreedyForwarding(AGF). . . . . . . . . . 81 5.1.8 PreferredGroupBroadcasting(PGB) . . . . . . . . . . 81 5.2 SecureMulti-hopRouting . . . . . . . . . . . . . . . . . . . . 84 5.2.1 AuthenticatedRoutingforAdHocNetworks (ARAN) . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.2 SecureAdHoconDemandVector(SAODV) . . . . . 85 5.2.3 SecureLinkStateRoutingProtocol(SLSP) . . . . . . 86 5.2.4 SecurePositionAidedAdHocRouting(SPAAR) . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 MediumAccessforVehicularCommunications . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7 PhysicalLayerTechnologies . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Chapter 1 Introduction Universalvehicularcommunicationpromisesmanyimprovementsintermsofacci- dent avoidance and mitigation, better utilization of roads and resources such as timeandfuel,andnewopportunitiesforinfotainmentapplications.However,before widespreadacceptance,vehicularcommunicationmustmeetchallengescomparable tothetroubleanddisbeliefthataccompaniedtheintroductionoftrafficlightsback then.Thefirsttrafficlightwasinstalledin1868inLondontosignalrailway,butonly later,in1912,wasinventedthefirstred-greenelectrictrafficlight.Androughly50 yearsafterthefirsttrafficlight,in1920,thefirstfour-waytrafficsignalcomparable toourtoday’strafficlightswasintroduced. Theintroductionoftrafficsignalswasnecessaryafterautomobilessoonbecame prevalentoncethefirstcarinhistory,actuallyawoodenmotorcycle,wasconstructed in 1885. Soon, the scene became complicated, requiring the introduction of the “right-of-way”philosophyandlaterontheveryfirsttrafficlight. Inthesamewaythetrafficlightwasanecessarymeantoregulatethebeginning oftheautomotivelifeandtoprotectdrivers,passengers,aswellaspedestriansand other inhabitants of the road infrastructure, vehicular communication is necessary toaccommodatethefurthergrowthoftrafficvolumeandtosignificantlyreducethe numberofaccidents. Vehicular communication cannot only create an extended virtual information horizon,warningdriversearlyofdangersaheadandtherebyavoidingaccidents,but also allows for mitigation of unavoidable accidents by advanced short-range com- municationbetweenthecarsinvolved.Furthermore,asthesystemsstabilize,vehicle communication can evolve into paradigms such as cooperative driving analog to traffic lights evolved from man-controlled lamps to automatic traffic management systems. Already, today’s literature suggests that cooperative driving is more effi- cient,providesmoresafetyandimprovementsoftraffic-flowstability.Cooperative behaviorisverybeneficialtoimproveexistingapplicationssuchasautomaticadap- tationofspeedwiththevehicleinfront(eachvehicleisdrivenbyahumandriver)or automaticfollowingofaleadingvehicleformingaplatoonofvehicles(onlyleader isdrivenbyhumandriver).Butcooperativebehaviorcangomuchfurther,providing forthefirsttimeapossiblesolutiontoachieveapplicationssuchascollisionavoid- ance or automatic merging of vehicles on the highway, which without vehicular communicationwereonlyadream.Asoftoday,thegoalofcooperativedrivingis R.Popescu-Zeletinetal.,Vehicular-2-XCommunication, 1 DOI10.1007/978-3-540-77143-2_1,(cid:2)C Springer-VerlagBerlinHeidelberg2010 2 1 Introduction tocorrecterrorsordeviationsfromtherequiredbehaviorindangeroussituationson behalfofthedriver. 1.1 Overview This book describes the various aspects of vehicular communication such as medium access control, routing, security, and accompanying standards along the ISO OSI reference model. Furthermore, future automotive applications such as cooperative driving maneuvers utilizing vehicular communication are introduced anddescribedindetail.Moreover,orthogonaltothisdescriptionofvehicularcom- municationtechnologies,anoveltestingandsimulationapproachcombiningcurrent approaches for traffic and network simulations is introduced as a method for vali- datingtheintroducedautomotiveapplications.Researchanddevelopmentprojects are also outlined. We strongly believe that the results will be introduced soon due to: • Trafficflung • Costs(humanlyandmaterially)oftheaccidents • Strongerneedofenvironmentpreservation Traffic flung refers to increased and still increasing traffic in all industrialized countries all over the world, which leads to the increasing number of accidents. Therefore,onemainobjectiveoftheEuropeanUnionistoreducetrafficaccidents byhalfintheendof2010. Inordertomaximizethesafetybenefitsgainedfromnewvehicletechnology,the focusshouldbebothoninnovationandimplementation. 1.2 WhyVehicularCommunication? Inthebeginningofvehicleindustry,streetsanddifferenttypesofvehicleswerecon- sideredasautonomoussystems.Later,theinfluenceofeachotheronlyinsize,but sharing common resources, introduced regulations on the streets that, again, were consideredautonomousvehiclesystems.Today,thenumberofaccidentsandtraffic jamsisincreasing,duetoacontinuousgrowingnumberofvehiclesandanimper- fectresourcesharing.Thenextstepwouldbetocreateanewwayofcontrollingthe system.Thisreferstonewkindofapplicationsthatwillenablethefullyautomated carofthefuturetodrivebyitself.Today,thefocusliesontheautomationofspecific difficult driver maneuvers. These maneuvers, without automation, are leading to a growingnumberofaccidents.Examplesofsuchapplicationsare:automaticspeed adaptation to follow a leader on the highway, automatic entrance on the highway or self parking. To achieve such tasks, a great step forward would be to use envi- ronmental perception of surroundings by vehicle communication in the so called cooperativeapproach[1,2]. 1.3 ArchitectureLayers 3 Researchonintelligenttransportsystemsdatesbackinthelate1980sandbegin- ning of 1990s. Since its beginning, research shifted from Automated Highway Systems(AHS)totheIntelligentVehicleInitiative(IVI),tryingtoimproveSafety (drivers and other road users), Resource Efficiency (use of roads as well as use of fuel)andInfotainment/AdvancedDriverAssistantSystems(ADAS). Sincethebeginningofresearchinintelligenttransportsystems,therehavebeen three areas that can possibly be improved: Vehicles (e.g. adaptive cruise control, collision avoidance systems), Roads (e.g. adaptive speed control, advanced traffic management),andDrivers(e.g.byprovidingadvancetrafficinformation,collision warnings).Ofcourse,mostresearchprojectsfollowedamixedapproach,tryingto improveallthreeareas. Furthermore,thegeneralfeasibilityandtechnologicalmaturityofadaptivecruise controlisalsodemonstratedbyvehiclemanufacturersastheyalreadyincludefea- tures like detecting the leading vehicle and maintaining appropriate distances as well as support for stop-and-go traffic in their luxury-lines of cars. However, the longtermimpactofthesetechnologiestoroadsafetyandtrafficefficiencyhasyet to be verified in, e.g., large scale field-tests. Again, current research investigates how inter-vehiclecommunication canincrease theproactive safetyand isoutlined inmoredetailbelow. Examplesofthevehicularcommunicationbenefitsareapplicationssuchasdif- ferent warnings (on road incidents or traffic alerts) as well as improvement of classicapplicationssuchasautomaticadaptationofspeedaccordingtothevehicle infront(CooperativeAdaptiveCruiseControl),assistantmergingofvehiclesonthe highway(CooperativeMerging),assistantfollowofaleadingvehicle(Cooperative Platooning), assistant avoidance of collisions (Cooperative Collision Avoidance). Theword“Cooperative”fromtheaboveapplicationsmeansthatvehiclescooperate with each other by exchanging information by means of vehicle to vehicle com- ◦ munication. This communication offers features such as: full 360 around vehicle situationawareness thatisfarmorereliablethanlocal sensorsandprovides abig- ger coverage area in all directions, warnings about different hidden hazards such asaccidentsorobstaclesbehindacurve.Suchfeaturesareunbeatablecomparedto existenttechnologiessuchasnormalradarbasedsensors.Onebigdrawbackofthe sensorsisthattheyareinfluencedbyweatherconditionsandbymudordirt. Thevehicularcommunicationopensupnewfeatures,butlet’sseehowthistech- nology can be implemented. In the next chapter, we present a fundamental design ofsuchasystem. 1.3 ArchitectureLayers Thetransmissionoftheinformationinthevehicularnetworkmaybedoneinmul- tiple ways according to the application. We define three communication regimes: bidirectional,single-hopandmulti-hoppositionbased.Eachregimeisdesignedfor a specific communication. Bidirectional is a classic communication in both direc- tions.Theothertworegimesareone-waycommunications.Single-hopisafastone,

Description:
The European Car-to-Car Communication Consortium in relation with the American Vehicle Safety Communication project has been playing a key role in the development of the concepts and technologies which are now at the origin of the standardization activities and research projects (PREVENT, SAFESPOT,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.