Reza N. Jazar Vehicle Dynamics Theory and Application 2nd Edition Vehicle Dynamics Reza N. Jazar Vehicle Dynamics Theory and Application Second Edition Reza N. Jazar School of Aerospace, Mechanical and Manufacturing Engineering RMIT University Bundoora, VIC Australia ISBN978-1-4614-8543-8 ISBN 978-1-4614-8544-5 (eBook) DOI10.1007/978-1-4614-8544-5 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013951659 © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents Preface xvii 1 Tire and Rim Fundamentals 1 1.1 Tires and Sidewall Information . . . . . . . . . . . . . . . . 1 1.2 Tire Components . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Radial and Non-Radial Tires . . . . . . . . . . . . . . . . . 15 1.4 Tread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5 Tireprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6 Wheel and Rim . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 Vehicle Classi(cid:31)cations . . . . . . . . . . . . . . . . . . . . . 26 1.7.1 ISO and FHWA Classi(cid:31)cation . . . . . . . . . . . . . 26 1.7.2 Passenger Car Classi(cid:31)cations . . . . . . . . . . . . . 29 1.7.3 Passenger Car Body Styles . . . . . . . . . . . . . . 31 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.9 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I Vehicle Motion 37 2 Forward Vehicle Dynamics 39 2.1 Parked Car on a Level Road . . . . . . . . . . . . . . . . . . 39 2.2 Parked Car on an Inclined Road . . . . . . . . . . . . . . . 45 2.3 Accelerating Car on a Level Road. . . . . . . . . . . . . . . 50 2.4 Accelerating Car on an Inclined Road . . . . . . . . . . . . 55 2.5 Parked Car on a Banked Road . . . . . . . . . . . . . . . . 66 2.6 F Optimal Drive and Brake Force Distribution . . . . . . . 70 2.7 F Vehicles With More Than Two Axles . . . . . . . . . . . 76 2.8 F Vehicles on a Crest and Dip . . . . . . . . . . . . . . . . 80 2.8.1 F Vehicles on a Crest . . . . . . . . . . . . . . . . . 81 2.8.2 F Vehicles on a Dip . . . . . . . . . . . . . . . . . . 86 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.10 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3 Tire Dynamics 99 3.1 Tire Coordinate Frame and Tire Force System . . . . . . . 99 3.2 Tire Sti(cid:30)ness . . . . . . . . . . . . . . . . . . . . . . . . . . 103 v vi Contents 3.3 E(cid:30)ective Radius . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4 F Tireprint Forces of a Static Tire . . . . . . . . . . . . . . 122 3.4.1 F Static Tire, Normal Stress . . . . . . . . . . . . . 123 3.4.2 F Static Tire, Tangential Stresses . . . . . . . . . . 126 3.5 Rolling Resistance . . . . . . . . . . . . . . . . . . . . . . . 128 3.5.1 E(cid:30)ect of Speed on the Rolling Friction Coe(cid:33)cient . 131 3.5.2 E(cid:30)ect of In(cid:32)ation Pressure and Load on the Rolling Friction Coe(cid:33)cient . . . . . . . . . . . . . . . . . . . 135 3.5.3 F E(cid:30)ect of Sideslip Angle on Rolling Resistance . . 138 3.5.4 F E(cid:30)ect of Camber Angle on Rolling Resistance . . 138 3.6 Longitudinal Force . . . . . . . . . . . . . . . . . . . . . . . 139 3.7 Lateral Force . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.8 Camber Force . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.9 Tire Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.11 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4 Driveline Dynamics 179 4.1 Engine Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 179 4.2 Driveline and E(cid:33)ciency . . . . . . . . . . . . . . . . . . . . 186 4.3 Gearbox and Clutch Dynamics . . . . . . . . . . . . . . . . 192 4.4 Gearbox Design . . . . . . . . . . . . . . . . . . . . . . . . . 200 4.4.1 Geometric Ratio Gearbox Design . . . . . . . . . . . 201 4.4.2 F Progressive Ratio Gearbox Design . . . . . . . . . 215 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 4.6 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 II Vehicle Kinematics 231 5 F Applied Kinematics 233 5.1 Rotation About Global Cartesian Axes . . . . . . . . . . . . 233 5.2 Successive Rotation About Global Cartesian Axes . . . . . 238 5.3 Rotation About Local Cartesian Axes . . . . . . . . . . . . 239 5.4 Successive Rotation About Local Cartesian Axes . . . . . . 243 5.5 General Transformation . . . . . . . . . . . . . . . . . . . . 251 5.6 Local and Global Rotations . . . . . . . . . . . . . . . . . . 258 5.7 Axis-angle Rotation . . . . . . . . . . . . . . . . . . . . . . 259 5.8 Rigid Body Motion . . . . . . . . . . . . . . . . . . . . . . . 264 5.9 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . 267 5.10 F Time Derivative and Coordinate Frames . . . . . . . . . 275 5.11 Rigid Body Velocity . . . . . . . . . . . . . . . . . . . . . . 284 5.12 Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . 288 Contents vii 5.13 Rigid Body Acceleration . . . . . . . . . . . . . . . . . . . . 293 5.14 F Screw Motion . . . . . . . . . . . . . . . . . . . . . . . . 296 5.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 5.16 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 6 Applied Mechanisms 319 6.1 Four-Bar Linkage . . . . . . . . . . . . . . . . . . . . . . . . 319 6.2 Slider-Crank Mechanism . . . . . . . . . . . . . . . . . . . . 339 6.3 Inverted Slider-Crank Mechanism . . . . . . . . . . . . . . . 346 6.4 Instant Center of Rotation . . . . . . . . . . . . . . . . . . . 352 6.5 Coupler Point Curve . . . . . . . . . . . . . . . . . . . . . . 364 6.5.1 Coupler Point Curve for Four-Bar Linkages . . . . . 364 6.5.2 Coupler Point Curve for a Slider-Crank Mechanism. 366 6.5.3 CouplerPointCurveforInvertedSlider-CrankMech- anism . . . . . . . . . . . . . . . . . . . . . . . . . . 370 6.6 F Universal Joint . . . . . . . . . . . . . . . . . . . . . . . 371 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 6.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 7 Steering Dynamics 387 7.1 Kinematic Steering . . . . . . . . . . . . . . . . . . . . . . . 387 7.2 Vehicles with More Than Two Axles . . . . . . . . . . . . . 404 7.3 F Vehicle with Trailer . . . . . . . . . . . . . . . . . . . . . 407 7.4 Steering Mechanisms . . . . . . . . . . . . . . . . . . . . . . 411 7.5 F Four wheel steering. . . . . . . . . . . . . . . . . . . . . . 417 7.6 F Road Design . . . . . . . . . . . . . . . . . . . . . . . . . 434 7.7 F Steering Mechanism Optimization . . . . . . . . . . . . . 461 7.8 F Trailer-Truck Kinematics . . . . . . . . . . . . . . . . . . 469 7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 7.10 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 484 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 8 Suspension Mechanisms 497 8.1 Solid Axle Suspension . . . . . . . . . . . . . . . . . . . . . 497 8.2 Independent Suspension . . . . . . . . . . . . . . . . . . . . 508 8.3 Roll Center and Roll Axis . . . . . . . . . . . . . . . . . . . 513 8.4 F Car Tire Relative Angles . . . . . . . . . . . . . . . . . . 524 8.4.1 F Toe . . . . . . . . . . . . . . . . . . . . . . . . . . 527 8.4.2 F Caster Angle. . . . . . . . . . . . . . . . . . . . . 529 8.4.3 F Camber . . . . . . . . . . . . . . . . . . . . . . . 530 8.4.4 F Thrust Angle . . . . . . . . . . . . . . . . . . . . 532 8.5 F Suspension Requirements and Coordinate Frames . . . . 533 8.5.1 Kinematic Requirements . . . . . . . . . . . . . . . . 533 viii Contents 8.5.2 Dynamic Requirements . . . . . . . . . . . . . . . . 534 8.5.3 Wheel, wheel-body, and tire Coordinate Frames. . . 534 8.6 F Caster Theory . . . . . . . . . . . . . . . . . . . . . . . . 544 8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 8.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 III Vehicle Dynamics 567 9 F Applied Dynamics 569 9.1 Elements of Dynamics . . . . . . . . . . . . . . . . . . . . . 569 9.1.1 Force and Moment . . . . . . . . . . . . . . . . . . . 569 9.1.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . 570 9.1.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 571 9.1.4 Equation of Motion . . . . . . . . . . . . . . . . . . 573 9.1.5 Work and Energy. . . . . . . . . . . . . . . . . . . . 573 9.2 Rigid Body Translational Dynamics . . . . . . . . . . . . . 579 9.3 Rigid Body Rotational Dynamics . . . . . . . . . . . . . . . 582 9.4 Mass Moment Matrix . . . . . . . . . . . . . . . . . . . . . 593 9.5 Lagrange’s Form of Newton’s Equations of Motion . . . . . 603 9.6 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . . 610 9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 9.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 623 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 10 Vehicle Planar Dynamics 631 10.1 Vehicle Coordinate Frame . . . . . . . . . . . . . . . . . . . 631 10.2 Rigid Vehicle Newton-Euler Dynamics . . . . . . . . . . . . 637 10.3 Force System Acting on a Rigid Vehicle . . . . . . . . . . . 644 10.3.1 Tire Force and Body Force Systems . . . . . . . . . 644 10.3.2 Tire Lateral Force . . . . . . . . . . . . . . . . . . . 648 10.3.3 Two-wheel Model and Body Force Components . . . 649 10.4 Two-wheel Rigid Vehicle Dynamics . . . . . . . . . . . . . . 659 10.5 Steady-State Turning. . . . . . . . . . . . . . . . . . . . . . 670 10.6 F Linearized Model for a Two-Wheel Vehicle . . . . . . . . 695 10.7 F Transient Response . . . . . . . . . . . . . . . . . . . . . 699 10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 10.9 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 729 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 11 F Vehicle Roll Dynamics 741 11.1 F Vehicle Coordinate and DOF. . . . . . . . . . . . . . . . 741 11.2 F Equations of Motion . . . . . . . . . . . . . . . . . . . . 742 11.3 F Vehicle Force System . . . . . . . . . . . . . . . . . . . . 746 Contents ix 11.3.1 F Tire and Body Force Systems . . . . . . . . . . . 746 11.3.2 F Tire Lateral Force . . . . . . . . . . . . . . . . . . 749 11.3.3 F Body Force Components on a Two-wheel Model . 752 11.4 F Two-wheel Rigid Vehicle Dynamics . . . . . . . . . . . . 759 11.5 F Steady-State Motion . . . . . . . . . . . . . . . . . . . . 763 11.6 F Time Response . . . . . . . . . . . . . . . . . . . . . . . 767 11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 11.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 783 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 IV Vehicle Vibration 795 12 Applied Vibrations 797 12.1 Mechanical Vibration Elements . . . . . . . . . . . . . . . . 797 12.2 Newton’s Method and Vibrations . . . . . . . . . . . . . . . 805 12.3 Frequency Response of Vibrating Systems . . . . . . . . . . 812 12.3.1 Forced Excitation . . . . . . . . . . . . . . . . . . . 813 12.3.2 Base Excitation . . . . . . . . . . . . . . . . . . . . . 823 12.3.3 Eccentric Excitation . . . . . . . . . . . . . . . . . . 835 12.3.4 F Eccentric Base Excitation . . . . . . . . . . . . . 841 12.3.5 FClassi(cid:31)cationfortheFrequencyResponsesofOne- DOF Forced Vibration Systems . . . . . . . . . . . . 847 12.4 Time Response of Vibrating Systems . . . . . . . . . . . . . 852 12.5 Vibration Application and Measurement . . . . . . . . . . . 864 12.6 F Vibration Optimization Theory . . . . . . . . . . . . . . 869 12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 12.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 882 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 13 Vehicle Vibrations 891 13.1 Lagrange Method and Dissipation Function . . . . . . . . . 891 13.2 F Quadratures . . . . . . . . . . . . . . . . . . . . . . . . . 901 13.3 Natural Frequencies and Mode Shapes . . . . . . . . . . . . 908 13.4 Bicycle Car and Body Pitch Mode . . . . . . . . . . . . . . 915 13.5 Half Car and Body Roll Mode. . . . . . . . . . . . . . . . . 920 13.6 Full Car Vibrating Model . . . . . . . . . . . . . . . . . . . 925 13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933 13.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 934 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936 14 Suspension Optimization 939 14.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 939 14.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . 945 14.3 RMS Optimization . . . . . . . . . . . . . . . . . . . . . . . 949
Description: