ebook img

Vector Analysis Versus Vector Calculus (Instructor Solution Manual, Solutions) PDF

71 Pages·2012·1.655 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vector Analysis Versus Vector Calculus (Instructor Solution Manual, Solutions)

ANTONIO GALBIS AND MANUEL MAESTRE VECTOR ANALYSIS VERSUS VECTOR CALCULUS Springer Solutions to exercises SolvedexercisesofChapter1 1.3.1. Findthedivergenceofthevectorfields (1)F(x,y)=(sin(x), ex y). − (2)F(x,y,z)= sin(y), cos(z), z3 . � � Solution:(1)F=(f ,f )where 1 2 f (x,y)=sin(x); f (x,y)=ex y. 1 2 − Thus ∂f ∂f 1 2 DivF= + ∂x ∂y =cosx ex y. − − (2) Let us put f (x,y,z)=sin(y), f (x,y,z)=cos(z) and f (x,y,z)=z3. Then the 1 2 3 divergenceofFis ∂f ∂f ∂f 1 2 3 DivF= + + ∂x ∂y ∂z =3z2.� 1.3.2. Findthedivergenceandthecurlatthepoint(1,1,0)forthevectorfield F(x,y,z)=(xyz, y,z). 1 2 Solutionstoexercises Solution:Thecomponentsofthevectorfieldare f (x,y,z)=xyz, f (x,y,z)=y, f (x,y,z)=z. 1 2 3 Then ∂f ∂f ∂f 1 2 3 DivF= + + ∂x ∂y ∂z =yz+2. Hence, DivF(1,1,0)=2. Wenowcalculatethecurlas e e e 1 2 3 CurlF= ∂ ∂ ∂ =(0,xy, xz). � ∂x ∂y ∂z� − �xyz y z � � � � � � � Inparticular, � � (CurlF)(1,1,0)=(0,1,0).� 1.3.3. Checkthat Div(CurlF)=0 forthevectorfield F(x,y,z)= x2z, x, 2yz � � Solution:Thecomponentsofthevectorfieldare f (x,y,z)=x2z, f (x,y,z)=x, f (x,y,z)=2yz. 1 2 3 Hence e e e 1 2 3 CurlF= ∂ ∂ ∂ =(2z,x2,1). � ∂x ∂y ∂z � �x2z x 2yz� � � � � That is, the components of Cur�l F = (g ,g� ,g ) are given by g (x,y,z) = 2z, � 1 �2 3 1 g (x,y,z)=x2,g (x,y,z)=1.Consequently, 2 3 ∂g ∂g ∂g 1 2 3 Div(CurlF)= + + ∂x ∂y ∂z =0. � 1.3.4. LetF:IR3 IR3 beavectorfieldandletg:IR3 IRbeascalarfunction, bothofclassC1on→Rn.Checkthat → Curl(gF)=g(CurlF)+(∇∇∇g) F. × Solutionstoexercises 3 Solution:IfF=(f ,f ,f )then 1 2 3 e e e 1 2 3 Curl(gF)= ∂ ∂ ∂ � ∂x ∂y ∂z � �gf gf gf � � 1 2 3� � � � � =� ∂(gf3) ∂�(gf2),∂(gf1) ∂(gf3),∂(gf2) ∂(gf1) ∂y − ∂z ∂z − ∂x ∂x − ∂y � � while e e e 1 2 3 ∇∇∇g F= ∂g ∂g ∂g × �∂x ∂y ∂z � � f f f � � 1 2 3� � � � � � ∂g �∂g ∂g ∂g ∂g ∂g = f f ,f f ,f f . 3 2 1 3 2 1 ∂y− ∂z ∂z − ∂x ∂x− ∂y � � Consequently, ∂f ∂f ∂f ∂f ∂f ∂f Curl(gF) (∇∇∇g F)=g. 3 2, 1 3, 2 1 − × ∂y − ∂z ∂z − ∂x ∂x − ∂y � � =gCurlF.� 1.3.5. IfF,G:IR3 IR3arevectorfieldsofclassC1,provethat → Div(F G)= CurlF, G F, CurlG . × � �−� � Solution: We put F = (f ,f ,f ) and G = (g ,g ,g ). According to Definition 1 2 3 1 2 3 1.2.11,wehave ∂f ∂f ∂f ∂f ∂f ∂f CurlF, G =g 3 2 +g 1 3 +g 2 1 . 1 2 3 � � ∂y − ∂z ∂z − ∂x ∂x − ∂y � � � � � � Analogously, ∂g ∂g ∂g ∂g ∂g ∂g F, CurlG = f 3 2 +f 1 3 +f 2 1 . 1 2 3 � � ∂y − ∂z ∂z − ∂x ∂x − ∂y � � � � � � Moreover,fromDefinition1.1.4itfollowsthat F G=(h ,h ,h ), 1 2 3 × where h = f g f g , h = f g f g , h = f g f g 1 2 3 3 2 2 3 1 1 3 3 1 2 2 1 − − − andfromDefinition1.2.10wehave 4 Solutionstoexercises ∂h ∂h ∂h Div(F G)= 1 + 2 + 3. × ∂x ∂y ∂z Finally,itisroutine(althoughatediouscalculation)tocheck ∂h ∂h ∂h 1 + 2 + 3 = CurlF, G F, CurlG . ∂x ∂y ∂z � �−� � � ThepreviousexerciseissolvedwithfulldetailsinExercise6.7.7usingthetheory ofdifferentialformspresentedinChapter6. SolvedexercisesofChapter2 2.8.1 Evaluatethelengthofthepath π γγγ:[0, ] IR2,γγγ(t)=(etcos(t),etsin(t)). 2 → Solution:Wefirstevaluate γγγ(t)=et(cost sint , sint+cost). � − Hence, 1 γγγ(t) =et (cost sint)2+(sint+cost)2 2 � � � − � � =et√2 andthelengthofthepathisgivenby π √2 2 et dt = √2 eπ2 1 .� 0 − � � � 2.8.2 Obtainaparameterization,counterclockwise,oftheellipse x y ( )2+( )2=1; (a,b > 0). a b Solution:If(x,y)isapointoftheellipsethenthepoint x y ( , ) a b Solutionstoexercises 5 Y Y �acost,bsent� �0,1� X �Γ Γ 3 2 Γ 1 X �0,0� �1,0� (a) (b) Fig.9.7 (a)Ellipse;(b)triangleofExercise2.8.3. isontheunitcircle,hence x y , = (cost , sint) a b � � forsomet [0,2π[.Consequently,aparameterizationoftheellipseisgivenby ∈ γγγ:[0,2π] IR2; γγγ(t) = (acost , bsint).� → 2.8.3 Integratethevectorfield FFF(x,y)=(y2, 2xy) − alongthetrianglewithvertex(0,0),(1,0),(0,1),orientedcounterclockwise. Solution: The triangle is the union of three segments. A parameterization of the segmentfrom(0,0)to(1,0)is γγγ :[0,1] IR2; γγγ (t)=(t,0). 1 → 1 Aparameterizationofthesegmentfrom(1,0)to(0,1)is γγγ :[0,1] IR2; γγγ (t)=(1 t)(1,0)+t(0,1)=(1 t,t). 2 → 2 − − Now,insteadofthesegmentfrom(0,1)to(0,0)weconsidertheoppositepath(the segmentfrom(0,0)to(0,1)),whichiseasier.Thisis γγγ :[0,1] IR2; γγγ (t)=(0,t). 3 → 3 6 Solutionstoexercises Then, the path along which we have to integrate the vector field FFF is the union of thefollowingthreepaths: γγγ=γγγ γγγ ( γγγ ) 1∪ 2∪ − 3 and,consequently, FFF = FFF+ FFF FFF. γγγ γγγ γγγ − γγγ � � 1 � 2 � 3 Wenowevaluate FFF = y2dx 2xydy γγγ γγγ − � 1 � 1 1 = 0dt=0 0 � andalso F =0. �γ3 Moreover FFF = y2dx 2xydy γγγ γγγ − � 2 � 2 1 = t2( 1) 2(1 t)t dt 0 − − − � � � 1 1 = (t2 2t)dt= 1. 0 − 3− � Finally, 1 FFF = 1.� γγγ 3− � 2.8.4 (1) Findapathγγγwhosetrajectoryistheintersectionofthecylinderx2+y2= 1 with the plane x+y+z=1 and with the additional property that the initial (and final) point is (0, 1,2) and the projection onto the plane XY is oriented − counterclockwise. (2) Evaluate xydx + yzdy xdz. γγγ − � Solution: (1) The intersection of the cylinder with the plane is an ellipse in IR3 whoseprojectionontotheplaneXY istheunitcircle.Consequently,wefirstparam- eterizetheunitcircleinsuchawaythattheinitialandfinalpointis(0, 1)anditis − orientedcounterclockwise.Thatis,weput π 3π x = cost ; y = sint ( t ). −2 ≤ ≤ 2 Solutionstoexercises 7 Fig.9.8 PathofExercise2.8.4. Now,fromtheequationoftheplanewededuce z = 1 x y = 1 cost sint. − − − − Thepathwearelookingforis π 3π γγγ:[ , ] IR3; γγγ(t) = (cost , sint , 1 cost sint). −2 2 → − − (2)Wenowdenote ωωω=xydx + yzdy xdz. − Wecouldevaluate 3π 2 ωωω= ωωω(γγγ(t)) γγγ(t) dt, � γγγ π � �−2 � � butamoreefficientmethodconsistsinmakingaformalsubstitutionintheintegral x = cost ; y = sint ; z = 1 cost sint − − andalso dx = ( sint)dt ; dy = cost dt ; dz = (sint cost)dt − − toobtain 3π ωωω = 2 2sin2tcost sintcos2t+cos2t dt. γγγ π − − � �−2 � � Moreover, 8 Solutionstoexercises 32πsin2t cost dt= sin3t 32π = 0, π 3 π �−2 �−2 32π sint cos2t dt= cos3��t 32π = 0 π − 3 π �−2 �−2 and � � 32πcos2t dt = 32π 1+cos(2t) dt = t +sin(2t) 32π = π. π π 2 2 4 π �−2 �−2 �−2 Finally, � � ωωω = π.� γγγ � 2.8.5 Letγγγbea simple path whose trajectoryis the intersection of the coordinate planes with the portion of the unit sphere in the first octant, oriented according to thesequence (1,0,0),(0,1,0),(0,0,1),(1,0,0). Evaluate zdx+xdy+ydz. γγγ � Fig.9.9 PathofExercise2.8.5. Solution:Theportionoftheunitsphereinthefirstoctantis (x,y,z) IR3; x2+y2+z2=1, x 0, y 0, z 0 { ∈ ≥ ≥ ≥ } anditsintersectionwithacoordinateplaneisanarcofcircumference.Inparticular, theintersectionwiththeplanez=0isthetrajectoryofthepath π γγγ :[0, ] IR3; γγγ (t)=(cost,sint,0), 1 2 → 1 Solutionstoexercises 9 whiletheintersectionwiththeplanex=0isthetrajectoryof π γγγ :[0, ] IR3; γγγ (t)=(0,cost,sint). 2 2 → 2 Alsotheintersectionwithy=0isthetrajectoryof π γγγ :[0, ] IR3; γγγ (t)=(sint,0,cost). 3 2 → 3 Thepathofintegrationis γγγ=γγγ γγγ γγγ . 1∪ 2∪ 3 Weput ωωω=zdx+xdy+ydz andweevaluate,bearinginmindthatz=0onγγγ , 1 π ωωω = xdy = 2 cos2t dt γγγ γγγ 0 � 1 � 1 � π2 1+cos(2t) π = dt= . 2 4 0 � Also,sincex=0onγγγ , 2 ωωω = ydz = π2 cos2t dt= π. γγγ γγγ 0 4 � 2 � 2 � Fromthefactthaty=0alongγγγ weobtain 3 ωωω = zdx = π2 cos2t dt= π. γγγ γγγ 0 4 � 3 � 3 � Finally 3π ωωω= .� γγγ 4 � 2.8.6 Findapathwhosetrajectoryistheintersectionoftheupperhemisphereofthe spherewithradius2a x2+y2+z2=4a2 withthecylinder x2+(y a)2=a2. − Solution:If(x,y,z)isapointonthattrajectorythen(x,y)isonthecircle x2+(y a)2=a2. − Hence,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.