ebook img

Variations on a Theme of Borel: An Essay on the Role of the Fundamental Group in Rigidity PDF

365 Pages·2022·2.642 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variations on a Theme of Borel: An Essay on the Role of the Fundamental Group in Rigidity

CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO 213VariationsonaThemeofBorel blih d li b C bid i i CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics Recenttitlesincludethefollowing: 196. TheTheoryofHardy’sZ-Function.ByA.IVIC´ 197. InducedRepresentationsofLocallyCompactGroups.ByE.KANIUTHandK.F.TAYLOR 198. TopicsinCriticalPointTheory.ByK.PERERAandM.SCHECHTER 199. CombinatoricsofMinusculeRepresentations.ByR.M.GREEN 200. SingularitiesoftheMinimalModelProgram.ByJ.KOLLÁR 201. CoherenceinThree-DimensionalCategoryTheory.ByN.GURSKI 202. Canonical Ramsey Theory on Polish Spaces. By V. KANOVEI, M. SABOK, and J.ZAPLETAL 203. APrimerontheDirichletSpace.ByO.EL-FALLAH,K.KELLAY,J.MASHREGHI,and T.RANSFORD 204. GroupCohomologyandAlgebraicCycles.ByB.TOTARO 205. RidgeFunctions.ByA.PINKUS 206. ProbabilityonRealLieAlgebras.ByU.FRANZandN.PRIVAULT 207. AuxiliaryPolynomialsinNumberTheory.ByD.MASSER 208. RepresentationsofElementaryAbelianp-GroupsandVectorBundles.ByD.J.BENSON 209. Non-HomogeneousRandomWalks.ByM.MENSHIKOV,S.POPOVandA.WADE 210. FourierIntegralsinClassicalAnalysis(SecondEdition).ByC.D.SOGGE 211. Eigenvalues,MultiplicitiesandGraphs.ByC.R.JOHNSONandC.M.SAIAGO 212. Applications of Diophantine Approximation to Integral Points and Transcendence. By P.CORVAJAandU.ZANNIER 213. VariationsonaThemeofBorel.ByS.WEINBERGER 214. TheMathieuGroups.ByA.A.IVANOV 215. SlendernessI:Foundations.ByR.DIMITRIC 216. JustificationLogic.ByS.ARTEMOVandM.FITTING 217. DefocusingNonlinearSchrödingerEquations.ByB.DODSON 218. TheRandomMatrixTheoryoftheClassicalCompactGroups.ByE.S.MECKES 219. OperatorAnalysis.ByJ.AGLER,J.E.MCCARTHY,andN.J.YOUNG 220. Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory. By C.WENDL 221. MatrixPositivity.ByC.R.JOHNSON,R.L.SMITH,andM.J.TSATSOMEROS 222. AssouadDimensionandFractalGeometry.ByJ.M.FRASER 223. CoarseGeometryofTopologicalGroups.ByC.ROSENDAL 224. AttractorsofHamiltonianNonlinearPartialDifferentialEquations.ByA.KOMECHandE. KOPYLOVA 225. NoncommutativeFunction-TheoreticOperatorFunctionandApplications.ByJ.A.BALL andV.BOLOTNIKOV 226. TheMordellConjecture.ByA.MORIWAKI,H.IKOMA,andS.KAWAGUCHI 227. TranscendenceandLinearRelationsof1-Periods.ByA.HUBERandG.WÜSTHOLZ 228. Point-CountingandtheZilber–PinkConjecture.ByJ.PILA 229. LargeDeviationsforMarkovChains.ByA.D.DEACOSTA 230. FractionalSobolevSpacesandInequalities.ByD.E.EDMUNDSandW.D.EVANS blih d li b C bid i i Variations on a Theme of Borel An Essay on the Role of the Fundamental Group in Rigidity SHMUEL WEINBERGER UniversityofChicago blih d li b C bid i i UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107142596 DOI:10.1017/9781316529645 ©ShmuelWeinberger2023 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2023 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Weinberger,Shmuel,author. Title:VariationsonathemeofBorel/ShmuelWeinberger,UniversityofChicago. Description:Cambridge,UnitedKingdom;NewYork,NY:CambridgeUniversityPress, 2021.|Series:Cambridgetractsinmathematics;213|Includesbibliographicalreferences. Identifiers:LCCN2022024936(print)|LCCN2022024937(ebook)|ISBN 9781107142596(hardback)|ISBN9781316507490(ebook) Subjects:LCSH:Rigidity(Geometry)|Manifolds(Mathematics)|Three-manifolds (Topology)|Graphtheory.|BISAC:MATHEMATICS/Geometry/General| MATHEMATICS/Geometry/General Classification:LCCQA640.77.W452021(print)|LCCQA640.77(ebook)|DDC 514/.34–dc23/eng20220823 LCrecordavailableathttps://lccn.loc.gov/2022024936 LCebookrecordavailableathttps://lccn.loc.gov/2022024937 ISBN978-1-107-14259-6Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. blih d li b C bid i i Contents Preface pageix 1 Introduction 1 1.1 IntroductiontoGeometricRigidity 1 1.2 TheBorelConjecture 4 1.3 Notes 8 2 ExamplesofAsphericalManifolds 10 2.1 Low-DimensionalExamples 10 2.2 ConstructionsofLattices 14 2.3 SomeMoreExoticAsphericalManifolds 20 2.4 Notes 27 3 FirstContact:theProperCategory 31 3.1 Overview 31 3.2 K\G(cid:2)andItsLarge-ScaleGeometry 33 3.3 Surgery 39 3.4 StrongApproximation 45 3.5 Property(T) 48 Appendix:Property(T)andExpanders 53 3.6 CohomologyofLattices 56 3.7 MixingtheIngredients 65 3.8 Morals 70 3.9 Notes 71 4 HowCanItBeTrue? 79 4.1 Introduction 79 4.2 TheHirzebruchSignatureTheorem 81 4.3 TheNovikovConjecture 84 4.4 FirstPositiveResults 85 v blih d li b C bid i i vi Contents 4.5 Novikov’sTheorem 92 4.6 Curvature,Tangentiality,andControlledTopology 94 4.7 Surgery,Revisited 99 4.8 ControlledTopology,Revisited 106 4.9 ThePrincipleofDescent 110 4.10 SecondaryInvariants 114 4.11 Notes 119 5 PlayingtheNovikovGame 129 5.1 Overview 129 5.2 AnteingUp:IntroductiontoIndexTheory 134 Appendix:AGlimpsethroughtheLookingGlass 139 5.3 PlayingtheGame:WhatHappensinParticularCases? 147 5.4 TheMoral 160 5.5 PlayingtheBorelGame 163 5.6 Notes 175 6 EquivariantBorelConjecture 186 6.1 Motivation 186 6.2 Trifles 189 6.3 h-Cobordisms 199 6.4 Cappell’sUNilGroups 202 6.5 TheSimplestNontrivialExamples 206 6.6 GeneralitiesaboutStratifiedSpaces 212 6.7 TheEquivariantNovikovConjecture 220 6.8 TheFarrell–JonesConjecture 232 6.9 ConnectiontoEmbeddingTheory 235 6.10 EmbeddingTheory 242 6.11 Notes 249 7 ExistentialProblems 258 7.1 SomeQuestions 258 7.2 The“WallConjecture”andVariants 261 7.3 TheNielsenProblemandtheConner–RaymondConjecture 267 7.4 Products:OntheDifferencethataGroupActionMakes 272 7.5 Fibering 277 7.6 ManifoldswithExcessiveSymmetry 283 7.7 Notes 286 8 Epilogue:ASurveyofSomeTechniques 291 8.1 Codimension-1Methods 291 8.2 InductionandControl 294 blih d li b C bid i i Contents vii 8.3 DynamicsandFoliatedControl 296 8.4 TensorSquareTrick 300 8.5 TheBaum–ConnesConjecture 302 8.6 A-T-menability,UniformEmbeddability,andExpanders 306 References 311 SubjectIndex 340 blih d li b C bid i i blih d li b C bid i i Preface Thisessayisaworkofhistoricalfiction–the“WhatifEleanorRooseveltcould fly?”kind.1TheBorelconjectureisacentralproblemintopology:itassertsthe topological rigidity of aspherical manifolds (definitions below!). Borel made his conjecture in a letter to Serre some 65 years ago,2 after learning of some workofMostowontherigidityofsolvmanifolds. We shall reimagine Borel’s conjecture as being made after Mostow had proved the more famous rigidity theorem that bears his name – the rigidity ofhyperbolicmanifoldsofdimensionatleastthree–asthegeometricrigidity ofhyperbolicmanifoldsisstrongerthanwhatistrueofsolvmanifolds,andthe geometricpictureisclearer. I will consider various related problems in a completely ahistorical order. Mymotiveinallthisistohighlightandexplainvariousideas,especiallyrecur- ringideas,thatilluminateour(oratleastmyown)currentunderstandingofthis area. Based on the analogy between geometry and topology imagined by Borel, onecanmakemanyotherconjectures:variationsonBorel’stheme.Many,but perhapsnotall,ofthesevariantsarefalseandonecannotblamethemonBorel. (Onseveraloccasionshedescribedfeelingluckythatheduckedthebulletand hadnotconjecturedsmoothrigidity–aphenomenonindistinguishabletothe mathematicsofthetimefromthestatementthathedidconjecture.) However, even the false variants are false for good reasons, and study- ing these can be quite fun (and edifying); all of the problems we consider enrichourunderstandingofthegeometricandanalyticpropertiesofmanifolds. Verumexerroris. 1 SeeSaturdayNightLive,season4,episode4. 2 May2,1953. ix h d i 0 0 9 8 3 6 2964 00 blih d li b C bid i i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.